
Code Composer Studio
Development Tools v3.1

Getting Started Guide

Literature Number: SPRU509F

May 2005

paulinelightburn
KCL Address

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DSP dsp.ti.com Broadband www.ti.com/broadband

Interface interface.ti.com Digital Control www.ti.com/digitalcontrol

Logic logic.ti.com Military www.ti.com/military

Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork

Microcontrollers microcontroller.ti.com Security www.ti.com/security

Telephony www.ti.com/telephony

Video & Imaging www.ti.com/video

Wireless www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright  2005, Texas Instruments Incorporated

http://amplifier.ti.com
http://dataconverter.ti.com
http://dsp.ti.com
http://interface.ti.com
http://logic.ti.com
http://power.ti.com
http://microcontroller.ti.com
http://www.ti.com/audio
http://www.ti.com/automotive
http://www.ti.com/broadband
http://www.ti.com/digitalcontrol
http://www.ti.com/military
http://www.ti.com/opticalnetwork
http://www.ti.com/security
http://www.ti.com/telephony
http://www.ti.com/video
http://www.ti.com/wireless

Contents

Preface ... 9

1 Introduction ... 11
1.1 Welcome to the World of eXpressDSP™ .. 12

1.2 Development Flow .. 13

2 Getting Started Quickly ... 15
2.1 Launching the Code Composer Studio Development Tools... 16

2.1.1 Important Icons Used in Code Composer Studio .. 16

2.2 Creating a New Project ... 16

2.3 Building Your Program.. 17

2.4 Loading Your Program.. 17

2.5 Basic Debugging .. 17

2.5.1 Go to Main .. 17

2.5.2 Using Breakpoints.. 17

2.5.3 Source Stepping.. 17

2.5.4 Viewing Variables .. 18

2.5.5 Output Window ... 18

2.5.6 Symbol Browser .. 18

2.6 Introduction to Help ... 18

3 Target and Host Setup .. 19
3.1 Setting Up the Target ... 20

3.1.1 Code Composer Studio Setup Utility .. 20

3.1.2 Parallel Debug Manager... 23

3.1.3 Connect/Disconnect.. 23

3.2 Host IDE Customization .. 24

3.2.1 Default Colors and Faults ... 24

3.2.2 Default Keyboard Shortcuts... 24

3.2.3 Other IDE Customizations .. 25

4 Code Creation .. 27
4.1 Configuring Projects .. 28

4.1.1 Creating a Project .. 28

4.1.2 Project Configurations ... 30

4.1.3 Project Dependencies ... 31

4.1.4 Makefiles .. 32

4.1.5 Source Control Integration .. 33

4.2 Text Editor.. 34

4.2.1 Viewing and Editing Code... 34

4.2.2 Customizing the Code Window... 34

4.2.3 Using the Editor's Text Processing Functionality .. 35

4.2.4 Setting Auto-Save Defaults ... 36

4.2.5 Autocompletion, Tooltips and Variable Watching (CodeSense) 37

ContentsSPRU509F–May 2005 3

4.2.6 Using an External Editor .. 38

4.3 Code Generation Tools... 38

4.3.1 Code Development Flow .. 38

4.3.2 Project Build Options .. 38

4.3.3 Compiler Overview ... 40

4.3.4 Assembly Language Development Tools ... 40

4.3.5 Assembler Overview ... 40

4.3.6 Linker Overview .. 41

4.3.7 C/C++ Development Tools.. 41

4.4 Building Your Code Composer Studio Project .. 42

4.4.1 From Code Composer Studio .. 42

4.4.2 External Make .. 42

4.4.3 Command Line ... 43

4.5 Available Foundation Software .. 43

4.5.1 DSP/BIOS ... 43

4.5.2 Chip Support Library (CSL) ... 43

4.5.3 Board Support Library (BSL).. 44

4.5.4 DSP Library (DSPLIB) ... 44

4.5.5 Image/Video Processing Library (IMGLIB).. 45

4.5.6 TMS320 DSP Algorithm Standard Components ... 46

4.5.7 Reference Frameworks.. 47

4.6 Automation (for Project Management).. 49

4.6.1 Using General Extension Language (GEL) ... 49

4.6.2 Scripting Utility.. 50

5 Debug ... 51
5.1 Setting Up Your Environment for Debug ... 52

5.1.1 Setting Custom Debug Options .. 52

5.1.2 Simulation ... 54

5.1.3 Memory Mapping... 54

5.1.4 Pin Connect ... 56

5.1.5 Port Connect .. 57

5.1.6 Program Load... 58

5.2 Basic Debugging .. 59

5.2.1 Running/Stepping .. 60

5.2.2 Breakpoints ... 61

5.2.3 Probe Points .. 63

5.2.4 Watch Window.. 65

5.2.5 Memory Window.. 67

5.2.6 Register Window ... 68

5.2.7 Disassembly/Mixed Mode ... 69

5.2.8 Call Stack.. 69

5.2.9 Symbol Browser .. 70

5.2.10 Command Window ... 70

5.3 Advanced Debugging Features ... 71

5.3.1 Advanced Event Triggering (AET) ... 71

Contents4 SPRU509F–May 2005

5.4 Real-Time Debugging .. 73

5.4.1 Real-Time Mode.. 73

5.4.2 Rude Real-Time Mode .. 74

5.4.3 Real-Time Data Exchange (RTDX) .. 74

5.5 Automation (for Debug)... 78

5.5.1 Using the General Extension Language (GEL) .. 78

5.5.2 Scripting Utility for Debug ... 78

5.6 Reset Options.. 78

5.6.1 Target Reset .. 78

5.6.2 Emulator Reset ... 78

6 Analyze/Tune ... 79
6.1 Application Code Analysis ... 80

6.1.1 Data Visualization .. 80

6.1.2 Simulator Analysis ... 81

6.1.3 Emulator Analysis .. 81

6.1.4 DSP/BIOS Real-Time Analysis (RTA) Tools ... 82

6.1.5 Code Coverage and Multi-Event Profiler Tool.. 84

6.2 Application Code Tuning (ACT) ... 84

6.2.1 Tuning Dashboard ... 84

6.2.2 Compiler Consultant ... 87

6.2.3 CodeSizeTune (CST) .. 87

6.2.4 Cache Tune ... 88

7 Additional Tools, Help, and Tips ... 91
7.1 Component Manager ... 92

7.1.1 Opening Component Manager ... 93

7.1.2 Multiple Versions of Code Composer Studio ... 93

7.2 Update Advisor .. 93

7.2.1 Registering Update Advisor... 93

7.2.2 Checking for Tool Updates.. 93

7.2.3 Automatically Checking for Tool Updates... 94

7.2.4 Uninstalling the Updates .. 94

7.3 Additional Help... 94

7.3.1 Online Help.. 94

7.3.2 Online Tutorial .. 94

ContentsSPRU509F–May 2005 5

List of Figures

1-1 eXpress DSP™ Software and Development Tools .. 12
1-2 Simplified Code Composer Studio Development Flow .. 13
2-1 Icons on the Code Composer Studio Toolbar .. 16
3-1 Standard Setup Configurations... 20
3-2 GEL File Configuration .. 22
3-3 Parallel Debug Manager... 23
3-4 Modifying Keyboard Shortcuts.. 24
4-1 Project Creation Wizard ... 28
4-2 Code Composer Studio Control Window.. 29
4-3 Add Files to Project .. 29
4-4 Configuration Toolbar.. 30
4-5 Add Project Configurations.. 31
4-6 Project Configuration Dependencies .. 32
4-7 Source Control Integration .. 33
4-8 Elements in the Source Code Window .. 34
4-9 Using Regular Expressions with the Text Editor ... 36
4-10 Selective Display ... 36
4-11 Code Sense ... 37
4-12 Code Development Flow ... 38
4-13 Build Options Dialog Box.. 39
4-14 TMS320 DSP Algorithm Standard Elements .. 46
4-15 Reference Framework Elements ... 48
4-16 Custom GEL Files.. 50
5-1 Disassembly Style.. 54
5-2 Memory Map .. 55
5-3 Pin Connect Tool ... 57
5-4 Port Connect Tool .. 57
5-5 Port Address Connection.. 57
5-6 Data Offset .. 59
5-7 Toolbar Icons for Running and Debugging ... 60
5-8 File I/O Dialog... 63
5-9 Data File Control ... 64
5-10 Adding Your File.. 64
5-11 Probe Point Tab .. 64
5-12 Watch Locals Tab .. 65
5-13 Specifying a Variable to Watch... 66
5-14 Watch Element Values .. 66
5-15 Memory Window.. 67
5-16 Memory Window Options.. 67
5-17 Register Window ... 68
5-18 Editing a Registry Value... 68
5-19 Disassembly Window .. 69
5-20 Call Stack Window ... 69
5-21 Symbol Browser Window.. 70
5-22 Command Window ... 70
5-23 Event Analysis Window.. 72
5-24 Event Sequencer ... 73
5-25 RTDX Data Flow ... 75
5-26 RTDX Diagnostics Window ... 76
5-27 RTDX Configuration Window ... 76
5-28 RTDX Channel Viewer Window .. 76
6-1 Sample Graph Properties Dialog... 80

List of Figures6 SPRU509F–May 2005

6-2 Example Graph ... 81
6-3 Real-Time Capture and Analysis... 82
6-4 DSP/BIOS RTA Toolbar ... 82
6-5 Tuning Dashboard Advice Window .. 85
6-6 Goals Window .. 86
6-7 CodeSizeTune Advice ... 88
6-8 Cache Tune Tool ... 89
7-1 Component Manager .. 92
7-2 Update Advisor Web Settings .. 94

List of FiguresSPRU509F–May 2005 7

List of Tables

4-1 CodeWright Text Editor: A Quick Reference ... 35
5-1 GEL Functions for Memory Maps .. 56

List of Tables8 SPRU509F–May 2005

Preface
SPRU509F–May 2005

Read This First

About This Manual

To get started with Code Composer Studio™ Development Tools, review the first two sections of this
book. The remaining sections contain more detailed information on specific processes and tools. To
determine whether you can utilize these features, see the online help provided with the Code Composer
Studio installation.

Trademarks

Code Composer Studio, CCStudio, DSP/BIOS, Probe Point(s), RTDX, TMS320C2000, TMS320C6000,
C6000, TMS320C62x, TMS320C64x, TMS320C67x, C62x, C64x, C67x, TMS320C5000, TMS320C55x,
C55x, and C54x are trademarks of Texas Instruments Incorporated. The Texas Instruments logo and
Texas Instruments are registered trademarks of Texas Instruments Incorporated.

Intel, Pentium are trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Windows and Windows NT are registered trademarks of Microsoft Corporation.

All trademarks are the property of their respective owners.

Read This FirstSPRU509F–May 2005 9

www.ti.com

Trademarks

SPRU509F–May 200510 Read This First

Chapter 1
SPRU509F–May 2005

Introduction

This section introduces TI’s eXpressDSP technology initiative. It also includes a
simplified development flow for Code Composer Studio development tools.

Topic .. Page

1.1 Welcome to the World of eXpressDSP™ 12
1.2 Development Flow... 13

Introduction 11SPRU509F–May 2005

www.ti.com

1.1 Welcome to the World of eXpressDSP™

Compliant
plug−in

Compliant
plug−in

Program
build debug

Program
analysis

Real−time

Code Composer StudioTM dev tools

XDS560TM emulator

Host computer

RTDXTM

JTAG

Compliant
algorithm software

Application

TMS320TM DSP Algorithm Standard

algorithm
Compliant Compliant

algorithm

Signal processing libraries

DriversDSP/BIOSTM

Application/developer kits

TMS320TM DSP

Embedded emulation
components

Reference Frameworks

Welcome to the World of eXpressDSP™

TI has a variety of development tools available that enable quick movement through the digital signal
processor (DSP) based application design process from concept, to code/ build, through debug analysis,
tuning, and on to testing. Many of the tools are part of TI’s real-time eXpressDSP™ software and
development tool strategy, which is very helpful in quickly getting started as well as saving valuable time in
the design process. TI’s real-time eXpressDSP Software and Development Tool strategy includes three
components that allow developers to use the full potential of TMS320™ DSPs:
• Powerful DSP-integrated development tools in Code Composer Studio
• eXpressDSP Software, including:

– Scalable, real-time software foundation: DSP/BIOS™ kernel
– Standards for application interoperability and reuse: TMS320 DSP Algorithm Standard
– Design-ready code that is common to many applications to get you started quickly on DSP design:

eXpressDSP Reference Frameworks
• A growing base of TI DSP-based products from TI’s DSP Third Party Network, including

eXpressDSP-compliant products that can be easily integrated into systems

Figure 1-1. eXpress DSP™ Software and Development Tools

Introduction12 SPRU509F–May 2005

www.ti.com

1.2 Development Flow

Design
conceptual
planning

Code & build
create project,

write source code,
configuration file

Syntax checking,

logging, etc.
probe points,

Debug

Analyze and Tune

Development Flow

The development flow of most DSP-based applications consists of four basic phases: application design,
code creation, debug, and analysis/tuning. This user’s guide will provide basic procedures and techniques
in program development flow using Code Composer Studio.

Figure 1-2. Simplified Code Composer Studio Development Flow

IntroductionSPRU509F–May 2005 13

www.ti.com

Development Flow

SPRU509F–May 200514 Introduction

Chapter 2
SPRU509F–May 2005

Getting Started Quickly

This section introduces some of the basic features and functionalities in Code
Composer Studio so you can create and build simple projects. Experienced users can
proceed to the following sections for more in-depth explanations of Code Composer
Studio’s various features.

Topic .. Page

2.1 Launching the Code Composer Studio Development Tools............ 16
2.2 Creating a New Project .. 16
2.3 Building Your Program .. 17
2.4 Loading Your Program .. 17
2.5 Basic Debugging... 17
2.6 Introduction to Help .. 18

Getting Started Quickly 15SPRU509F–May 2005

www.ti.com

2.1 Launching the Code Composer Studio Development Tools

2.1.1 Important Icons Used in Code Composer Studio

Launches Code Composer Studio

Rebuilds the project

Builds the project incrementally

Halts execution

Toggles breakpoint

Runs project

Single steps project

Step out

Step over

2.2 Creating a New Project

Launching the Code Composer Studio Development Tools

To launch Code Composer Studio IDE for the first time, click the icon (shown below) on your desktop. A
simulator is automatically configured by default. To configure Code Composer Studio for a specific target,
see Chapter 3 for more information.

These icons will be referred to throughout this manual.

Figure 2-1. Icons on the Code Composer Studio Toolbar

To create a working project, follow these steps:

1. If you installed Code Composer Studio in C:\CCStudio_v3.1, create a folder called practice in the
C:\CCStudio_v3.1\myprojects folder.

2. Copy the contents of C:\CCStudio_v3.1\tutorial\target\consultant folder to this new folder. Target refers
to the current configuration of Code Composer Studio. There is no default configuration, you must set
a configuration before starting Code Composer Studio. See Chapter 3 for more about Code Composer
Studio configurations.

3. From the Project menu, choose New.
4. In the Project Name field, type the project name (practice).
5. In the Location field, type or browse to the folder you created in step 1.
6. By default, Project Type is set as Executable (.out) and Target is set as the current configuration of

Code Composer Studio.
7. Click Finish. Code Composer Studio creates a project file called practice.pjt. This file stores your

project settings and references the various files used by your project.
8. Add files to the project by choosing Add Files to Project from the Project menu. You can also right-click

the project in the Project View window on the left and then select Add Files to Project.

Getting Started Quickly16 SPRU509F–May 2005

www.ti.com

2.3 Building Your Program

2.4 Loading Your Program

2.5 Basic Debugging

2.5.1 Go to Main

2.5.2 Using Breakpoints

2.5.3 Source Stepping

Building Your Program

9. Add main.c, DoLoop.c, and lnk.cmd (this is a linker command file that maps sections to memory) from
the folder you created. Browse to the C:\CCStudio_v3.1\c6000\cgtools\lib\ directory and add the rts.lib
file for your configured target.

10. You do not need to manually add any include files to your project, because the program finds them
automatically when it scans for dependencies as part of the build process. After you build your project,
the include files appear in the Project View.

Now that you have created a functional program, you can build it. Use the Build All function the first time
you build the project. An output window will show the build process and status. When the build is finished,
the output window will display Build complete 0 errors, 0 warnings.

The Rebuild All command is mainly used to rebuild the project when the project options or any files in the
project have changed. For further information, see Section 2.3.

After the program has been built successfully, load the program by going to File→Load Program. By
default, Code Composer Studio IDE will create a subdirectory called Debug within your project directory
and store the .out file in it. Select practice.out and click Open to load the program.

Note:
Remember to reload the program by choosing File→Reload Program if you rebuild the
project after making changes.

To see Code Composer Studio’s versatile debugger in action, complete the following exercises. For more
in-depth information, see Chapter 5.

To begin execution of the Main function, select Debug→Go main. The execution halts at the Main function
and you will notice the program counter (yellow arrow) in the left margin beside the function. This is called
the selection margin.

To set a breakpoint, place the cursor on the desired line and press F9. In addition, you can set the
breakpoint by selecting the Toggle Breakpoint toolbar button. When a breakpoint has been set, a red icon
will appear in the selection margin. To remove the breakpoint, simply press F9 or the Toggle Breakpoint
toolbar button again.

In main.c, set the breakpoint at the line DoLoop(Input1, Input2, Weights, Output, LOOPCOUNT);As
execution was halted at the main function, you can press F5, select Debug→Run, or select the Run
toolbar button to run the program. Once execution reaches the breakpoint, it halts.

Source stepping is only possible when program execution has been halted. Since you halted at the
breakpoint, you can now execute the program line by line using source stepping. Step into the DoLoop
function by selecting the Source-Single Step button. Step through a few times to observe the executions.
The Step Over and Step Out functions are also available below the Single Step button. Assembly stepping
is also available. Whereas source stepping steps through the lines of code, assembly stepping steps
through the assembly instructions. For more information on assembly stepping, see Section 5.2.1.

Getting Started QuicklySPRU509F–May 2005 17

www.ti.com

2.5.4 Viewing Variables

2.5.5 Output Window

2.5.6 Symbol Browser

2.6 Introduction to Help

Introduction to Help

In the debugging process, you should view the value of the variables to ensure that the function executes
properly. Variables can be viewed in the watch window when the CPU has been halted. The watch
window can be opened by selecting View→Watch Window. The Watch Locals tab shows all the relevant
variables in the current execution.

As you continue to Step Into the while loop, the values of the variables change through each execution. In
addition, you can view the values of specific variables by hovering the mouse pointer over the variable or
by placing the variables in the Watch1 tab. For more information on variables and watch windows, see
Section 5.2.4.

The Output window is located at the bottom of the screen by default. It can also be accessed by
View→Output Window. By default, the printf function displays the same Output window, showing
information such as the contents of Stdout and the build log.

The symbol browser allows you to access all the components in your project with a single click. Select
View→Symbol Browser to open the window. The symbol browser has multiple tabs, including tabs for
Files, Functions, and Globals.

Expanding the tree in the Files tab shows the source files in your project. Double-clicking on files in the
Files or Functions tabs automatically accesses the file. The Globals tab allows you to access the global
symbols in your project.

For more information on the Symbol browser, see Section 5.2.9.

You should now have successfully created, built, loaded, and debugged your first Code Composer Studio
program.

Code Composer Studio provides many help tools through the Help menu. Select Help→Contents to
search by contents. Select Help→Tutorial to access tutorials to guide you through the Code Composer
Studio development process.

Select Help→Web Resources to obtain the most current help topics and other guidance. User manuals
are PDF files that provide information on specific features or processes.

You can access updates and a number of optional plug-ins through Help→Update Advisor.

Getting Started Quickly18 SPRU509F–May 2005

Chapter 3
SPRU509F–May 2005

Target and Host Setup

This section provides information on how to define and set up your target configuration
for both single processor and multiprocessor configurations, and how to customize
several general IDE options.

Topic .. Page

3.1 Setting Up the Target... 20
3.2 Host IDE Customization ... 24

Target and Host Setup 19SPRU509F–May 2005

www.ti.com

3.1 Setting Up the Target

3.1.1 Code Composer Studio Setup Utility

Setting Up the Target

This section provides information on how to define and set up your target configuration for both single
processor and multiprocessor configurations, and how to customize several general IDE options.

3.1.1.1 Adding an Existing Configuration

The Setup utility allows you to configure the software to work with different hardware or simulator targets.
You must select a configuration in Setup before starting the Code Composer Studio IDE.

You can create a configuration using the provided standard configuration files, or create a customized
configuration using your own configuration files (see the online help and/or the tutorial). This example
uses the standard configuration files.

To create a system configuration using a standard configuration file:

1. Double-click on the Setup Code Composer Studio desktop icon. The System Configuration dialog box
appears.

2. From the list of Available Factory Boards, select the standard configuration that matches your system.
Determine if one of the available configurations matches your system. If none are adequate, you can
create a customized configuration (see the online help and/or the tutorial).

Figure 3-1. Standard Setup Configurations

3. Click the Add button to import your selection to the system configuration currently being created. The
configuration you selected now displays under the My System icon in the System Configuration pane
of the Setup window.
If your configuration has more than one target, repeat these steps until you have selected a
configuration for each board.

4. Click the Save & Quit button to save the configuration.
5. Click the Yes button to start the Code Composer Studio IDE with the configuration you just created.

You can now start a project. See Chapter 4 of this book, or the online help and tutorial for information
on starting a project.

Target and Host Setup20 SPRU509F–May 2005

www.ti.com

Setting Up the Target

3.1.1.2 Creating a New System Configuration

To set up a new system configuration you will be working from the Code Composer Studio Setup dialog
box.

Start with a blank working configuration by selecting Remove All from the File menu. (You may also start
with a standard or imported configuration that is close to your desired system. In that case, begin at step
three below after loading the starting configuration).

1. Select the My System icon in the System Configuration pane.
2. In the Available Factory Boards pane, select a target board or simulator that represents your system.

With your mouse drag the board that you want to the left screen under My System, or click on the Add
button. To find the correct board, you can filter the list of boards by family, platform and endianness. If
you wish, you can drag more than one board to the left panel under My System.

3. If you want to use a target board or simulator that is not listed in the Available Factory Boards pane,
you must install a suitable device driver now. (For example, you may have received a device driver
from a third-party vendor or you may want to use a driver from a previous version of Code Composer
Studio.) Proceed to Installing/Uninstalling Device Drivers (select Help→Contents→Code Composer
Studio Setup→How To Start→Installing/Uninstalling Device Drivers) and then continue with this section
to complete your system configuration.

4. Click on the processor type you have just added, and open the Connection Properties dialog box using
one of the following procedures:
– Right-click on the processor type in the System Configuration pane and select Properties from the

context menu. If you have selected the current processor, selecting Properties will display the
Processor Properties dialog.

– Select the processor type in the System Configuration pane and then select the Modify Properties
button in the right-hand pane.

5. Edit the information in the Connection Properties dialog, including the Connection Name and Data File,
and the Connection Properties.

6. The starting GEL file, the Master/Slave value, the Startup mode, and the BYPASS name and bit
numbers are included in the Processor Properties dialog. To access the Processor Properties dialog,
right-click on the desired processor and choose Properties from the context menu. Other properties
may be available, depending on your processor. When configuring simulators, multiple properties may
appear with default values based on the processor.
The Connection Properties and Processor Properties dialogs have tabs with different fields. The tabs
that appear and the fields that can be edited will differ depending on the board or processor that you
have selected. After filling in the information in each tab, you can click the Next button to go to the next
tab, or simply click on the next tab itself. When you are done, click the Finish button.

For more information on configuring the Connection or Processor Properties dialogs, see the online help
(Help→Contents→Code Composer Studio Setup→Custom Setup).

3.1.1.3 Creating Multiprocessor Configurations

The most common configurations include a single simulator or a single target board with a single CPU.
However, you can create more complicated configurations in the following ways:
• Connect multiple emulators to your computer, each with its own target board.
• Connect more than one target board to a single emulator, using special hardware to link the scan

paths on the boards.
• Create multiple CPUs on a single board, and the CPUs can be all of the same kind or they can be of

different types (e.g., DSPs and microcontrollers).

Although a Code Composer Studio configuration is represented as a series of boards, in fact, each board
is either a single CPU simulator or a single emulator scan chain that can be attached to one or more
boards with multiple processors. The device driver associated with the board must be able to comprehend
all the CPUs on the scan chain. More information may be found in the online help (Help→Contents→Code
Composer Studio Setup→How To Start→Configuring CCStudio for Heterogeneous Debugging).

Target and Host SetupSPRU509F–May 2005 21

www.ti.com

Setting Up the Target

3.1.1.4 Startup GEL Files

The general extension language (GEL) is an interpretive language, similar to C. GEL functions can be
used to configure the Code Composer Studio development environment. They can also be used to
initialize the target CPU. A rich set of built-in GEL functions is available, or you can create your own
user-defined GEL functions.

The GEL file field under the Processor Properties dialog allows you to associate a GEL file (.gel) with
each processor in your system configuration. Access the Processor Properties dialog by selecting the
current processor and choosing Properties from the context menu.

Figure 3-2. GEL File Configuration

When Code Composer Studio is started, each startup GEL file is scanned and all GEL functions contained
in the file are loaded. If the GEL file contains a StartUp() function, the code within that function is also
executed. For example, the GEL mapping functions can be used to create a memory map that describes
the processor’s memory to the debugger.
StartUp(){ /*Everything in this function will be executed
on startup*/ GEL_MapOn(); GEL_MapAdd(0, 0, 0xF000, 1,
1); GEL_MapAdd(0, 1, 0xF000, 1, 1);}

GEL files are asynchronous and not synchronous; in other words, the next command in the GEL file will
execute before the previous one completes. For more information, see the Code Composer Studio online
help. Select Help→Contents→Creating Code and Building Your Project→Automating Tasks with General
Extension Language).

3.1.1.5 Device Drivers

Special software modules called device drivers, are used to communicate with the target. Each driver file
defines a specific target configuration: a target board and emulator, or simulator. Device drivers may either
be supplied by Texas Instruments or by third-party vendors.

Each target board or simulator type listed in the Available Factory Boards pane is physically represented
by a device driver file. Code Composer Studio IDE does not support creating device drivers, but TI or third
parties may ship device drivers separately from those which are pre-installed.

Target and Host Setup22 SPRU509F–May 2005

www.ti.com

3.1.2 Parallel Debug Manager

3.1.3 Connect/Disconnect

Setting Up the Target

In multiprocessor configurations, invoking Code Composer Studio starts a special control known as the
Parallel Debug Manager Plus (PDM+).

Figure 3-3. Parallel Debug Manager

The Parallel Debug Manager allows you to open a separate Code Composer Studio IDE session for each
target device. Activity on the specified devices can be controlled in parallel using the PDM control.

This version of Parallel Debug Manager (PDM+) contains several changes from earlier versions:

• You can connect or disconnect from targets on-the-fly by right-clicking the processor on the right panel.
• The interface allows an expanded view of processors, with several drop-down filters to reveal a list by

group, by CPU or by board.
• Red highlighting on the processor icon (on the left pane) indicates that the processor is not connected

to the system or that it has updated status information.
• Your can now put processors into loosely-coupled groups, (i.e., where the processors are not all on the

same physical scan chain). Choosing Group View from the second drop-down menu on the toolbar
and System on PDM’s left pane shows which groups are synchronous.

Global breakpoints work only when processors in a group belong to the same physical scan chain.

For further details on the Parallel Debug Manager, see the online help under
Help→Contents→Debugging→Parallel Debug Manager.

Code Composer Studio IDE now makes it easier to dynamically connect and disconnect with the target by
using a new functionality called Connect/Disconnect. Connect/Disconnect allows you to disconnect from
your hardware target and even to restore the previous debug state when connecting again.

By default, Code Composer Studio IDE will not attempt to connect to the target when the control window
is opened. Connection to the target can be established by going to Debug→Connect. The default behavior
can be changed in the Debug Properties tab under Option→Customize.

The Status Bar will briefly flash a help icon to indicate changes in the target’s status. When the target is
disconnected, the status bar will indicate this fact, as well as the last known execution state of the target
(i.e., halted, running, free running or error condition). When connected, the Status Bar will also indicate if
the target is stepping (into, over, or out), and the type of breakpoint that caused the halt (software or
hardware).

After a connection to the target (except for the first connection), a menu option entitled Restore Debug
State will be available under the Debug Menu. Selecting this option will enable every breakpoint that was
disabled at disconnect. You can also reset them by pressing F9 or by selecting Toggle Breakpoints from
the right-click menu. Breakpoints from cTools jobs and emu analysis will not be enabled.

If the Parallel Debug Manager is open, you can connect to a target by right-clicking on the cell
corresponding to the target device underneath the column marked Name.

For further details on Connect/Disconnect, see the Code Composer Studio online help under
Debugging→Connect/Disconnect.

Target and Host SetupSPRU509F–May 2005 23

www.ti.com

3.2 Host IDE Customization

3.2.1 Default Colors and Faults

3.2.2 Default Keyboard Shortcuts

Host IDE Customization

Once Code Composer Studio has been properly configured and launched, you can customize several
general IDE options.

Selecting the menu options Option→Customize→Font→Editor Font and Option→Customize→Editor Color
allows you to modify the default appearance (or View Setup) in the CodeWright text editor (Section 4.2.2).

Selecting the menu options Option→Customize→Font →Tools Font and Option→Customize→Tools Color
allows you to modify the default appearance for various IDE tool windows.

The default IDE has more than 80 predefined keyboard shortcuts that can be modified. New keyboard
shortcuts can be created for any editing or debugging commands that can be invoked from a document
window. To assign keyboard shortcuts:

1. Select Option→Customize.

Figure 3-4. Modifying Keyboard Shortcuts

2. In the Customize dialog box, select the Keyboard tab to view the following options:
– Filename. The standard keyboard shortcuts file is displayed by default. To load a previous

keyboard configuration file (*.key), enter the path and filename, or navigate to the file.
– Commands. Select the command you want to assign to a keyboard shortcut.
– Assigned Keys. Displays the keyboard shortcuts that are assigned to the selected command.
– Add. Click the Add button to assign a new key sequence for invoking the selected command. In

the Assign Shortcut dialog box, enter the new key sequence, and then click OK.
– Remove. To remove a particular key sequence for a command, select the key sequence in the

Assigned Keys list and click the Remove button.
– Default Keys. Immediately reverts to the default keyboard shortcuts.
– Save As. Click the Save As button to save your custom keyboard configuration in a file. In the

Save As dialog box, navigate to the location where you want to save your configuration, name the
keyword configuration file, and click Save.

3. Click OK to exit the dialog box.

Target and Host Setup24 SPRU509F–May 2005

www.ti.com

3.2.3 Other IDE Customizations

Host IDE Customization

• Specify the number of recent files or projects on the File menu by selecting Option→Customize→File
Access.

• Remember a project's active directory by selecting Option→Customize→File Access. When you switch
projects, you can specify whether the IDE will start you inside the directory of your active project or
inside the last directory you used.

• Set what kind of information (processor type, project name, path, etc.) appears in the title bar by
selecting Option→Customize→Control Window Display.

• Set default closing options by selecting Option→Customize→Control Window Display. You can specify
that the IDE should automatically close all windows when you close a project. Or you can choose to
close all projects whenever you close a control window.

• Customize the code window using CodeWright (see Section 4.2.2).

Target and Host SetupSPRU509F–May 2005 25

www.ti.com

Host IDE Customization

SPRU509F–May 200526 Target and Host Setup

Chapter 4
SPRU509F–May 2005

Code Creation

This describes the options available to create code and build a basic Code Composer
Studio IDE project.

Topic .. Page

4.1 Configuring Projects ... 28
4.2 Text Editor ... 34
4.3 Code Generation Tools .. 38
4.4 Building Your Code Composer Studio Project 42
4.5 Available Foundation Software ... 43
4.6 Automation (for Project Management) ... 49

Code Creation 27SPRU509F–May 2005

www.ti.com

4.1 Configuring Projects

4.1.1 Creating a Project

Configuring Projects

A project stores all the information needed to build an individual program or library, including:

• Filenames of source code and object libraries
• Code generation tool options
• Include file dependencies

The following procedure allows you to create single or multiple new projects (multiple projects can be
open simultaneously). Each project’s filename must be unique.

The information for a project is stored in a single project file (*.pjt).

1. From the Project menu, choose New. The Project Creation wizard window displays.

Figure 4-1. Project Creation Wizard

2. In the Project Name field, type the project name.
3. In the Location field, specify the directory where you want to store the project file. Object files

generated by the compiler and assembler are also stored here. You can type the full path in the
Location field or click the Browse button and use the Choose Directory dialog box. It is a good idea to
use a different directory for each new project.

4. In the Project Type field, select a Project Type from the drop-down list. Choose either Executable (.out)
or Library (lib). Executable indicates that the project generates an executable file. Library indicates that
you are building an object library.

5. In the Target field, select the target family for your CPU. This information is necessary when tools are
installed for multiple targets.

6. Click Finish. A project file called yourprojectname.pjt is created. This file stores all files and project
settings used by your project.

The new project and first project configuration (in alphabetical order) become the active project, and
inherit the TI-supplied default compiler and linker options for debug and release configurations.

Code Creation28 SPRU509F–May 2005

www.ti.com

DSP/BIOS
toolbar Build

toolbar

Active
project

Project
view
window

Drop-down list of
file types

Configuring Projects

Figure 4-2. Code Composer Studio Control Window

After creating a new project file, add the files for your source code, object libraries, and linker command
file to the project list.

4.1.1.1 Adding Files to a Project

You can add several different files or file types to your project. The types are shown in the graphic below.
To add files to your project:

1. Select Project→Add Files to Project, or right-click on the project’s filename in the Project View window
and select Add Files to Project. The Add Files to Project dialog box displays.

Figure 4-3. Add Files to Project

Code CreationSPRU509F–May 2005 29

www.ti.com

4.1.2 Project Configurations

Select Active
Project

Select Active
Configuration

Configuring Projects

2. In the Add Files to Project dialog box, specify a file to add. If the file does not exist in the current
directory, browse to the correct location. Use the Files of Type drop-down list to set the type of files
that appear in the File name field.

Note:
Do not try to manually add header/include files (*.h) to the project. These files are
automatically added when the source files are scanned for dependencies as part of the
build process.

3. Click Open to add the specified file to your project.

The Project View (see Figure 4-2) is automatically updated when a file is added to the current project.

The project manager organizes files into folders for source files, include files, libraries, and DSP/BIOS
configuration files. Source files that are generated by DSP/BIOS are placed in the Generated Files folder.
Code Composer Studio IDE searches for project files in the following path order when building the
program:

• The folder that contains the source file
• The folders listed in the Include search path for the compiler or assembler options (from left to right)
• The folders listed in the definitions of the optional DSP_C_DIR (compiler) and DSP_A_DIR

(assembler) environment variables (from left to right)

4.1.1.2 Removing a File

If you need to remove a file from the project, right-click on the file in the Project View and choose Remove
from Project in the context menu.

A project configuration defines a set of project level build options. Options specified at this level apply to
every file in the project.

Project configurations enable you to define build options for the different phases of program development.
For example, you can define a Debug configuration to use while debugging your program and a Release
configuration for building the finished product.

Each project is created with two default configurations: Debug and Release. Additional configurations can
be defined. Whenever a project is created or an existing project is initially opened, the first configuration
(in alphabetical order) is set to active in the workspace.

When you build your program, the output files generated by the software tools are placed in a
configuration-specific subdirectory. For example, if you have created a project in the directory MyProject,
the output files for the Debug configuration are placed in MyProject\Debug. Similarly, the output files for
the Release configuration are placed in MyProject\Release.

4.1.2.1 Changing the Active Project Configuration

Click on the Select Active Configuration field in the Project toolbar and select a configuration from the
drop-down list.

Figure 4-4. Configuration Toolbar

Code Creation30 SPRU509F–May 2005

www.ti.com

4.1.3 Project Dependencies

Configuring Projects

4.1.2.2 Adding a New Project Configuration
1. Select Project→Configurations, or right-click on the project's filename in the Project View window and

select Configurations.
2. In the Project Configurations dialog box, click Add. The Add Project Configuration window displays.

Figure 4-5. Add Project Configurations

3. In the Add Project Configuration dialog box, specify the name of the new configuration in the Create
Configuration field, and choose to Use Default Settings (build options) or Copy Settings from an
existing configuration to populate your new configuration.

4. Click OK to accept your selections and exit the Add Project Configuration dialog.
5. Click Done to exit the Project Configurations dialog.
6. Modify your new configuration using the build options dialog found in the Project menu.

The project dependencies tool allows you to manage and build more complex projects. Project
dependencies allow you to break a large project into multiple smaller projects and then create the final
project using those dependencies. Subprojects are always built first, because the main project depends on
them.

4.1.3.1 Creating Project Dependencies (Subprojects)

There are three ways to create a project dependency relationship or subproject.
• Drag-and-drop from the project view windows. Drop the sub-project to the target project icon or to

the Dependent Projects icon under the target project. You can drag-and-drop from within the same
project view window, or you can drag-and-drop between the project view windows of two Code
Composer Studios running simultaneously.

• Drag-and-drop from Windows File Explorer.
1. Open the main project in Code Composer Studio.
2. Launch Windows Explorer. Both Explorer and Code Composer Studio should be open.
3. In Windows Explorer, select the .pjt file of the project you want to be a subproject.
4. Drag this .pjt file to the Project Window of Code Composer Studio. A plus sign should appear on

the .pjt file you are moving.
5. Drop it into the Dependent Projects folder of the main project.

• Use the context menu. In the project view, right-click on the Dependent Projects icon under a loaded
project, select Add Dependent Projects from the context menu. In the dialog, browse and select
another project .pjt file. The selected .pjt file will be a sub-project of the loaded project. If the selected
.pjt file is not yet loaded, it will be automatically loaded.

Code CreationSPRU509F–May 2005 31

www.ti.com

4.1.4 Makefiles

Configuring Projects

4.1.3.2 Project Dependencies Settings

Sub-projects each have their own configuration settings. In addition, the main project has configuration
settings for each sub-project. All of these settings can be accessed from the Project Dependencies dialog.
To open the dialog, select Project Dependencies from the Project menu or from the context menu of the
project.

4.1.3.3 Modifying Project Configurations

In the Project Dependencies dialog, it is possible to modify the subproject settings. As mentioned
previously, the dialog can be accessed by Project→Project Dependencies.

As shown by Figure 4-6, you can choose to exclude certain subprojects from your configuration. In the
example shown, the MyConfig configuration for sinewave.pjt excludes zlib.pjt from the build. In addition,
you can also select a particular subproject configuration for this configuration. In MyConfig, test.pjt is built
using the Debug configuration rather than the default MyConfig subproject configuration.

Figure 4-6. Project Configuration Dependencies

4.1.3.4 Sub-project configurations

Each sub-project has its own set of build configurations. For each main project configuration, you can
choose to build each sub-project using a particular configuration. To modify the sub-project setting, use
the drop-down box besides the project (under the Setting column).

The Code Composer Studio IDE supports the use of external makefiles (*.mak) and an associated
external make utility for project management and build process customization.

To enable the Code Composer Studio IDE to build a program using a makefile, a Code Composer Studio
project must be created that contains the makefile. After a Code Composer Studio project is associated
with the makefile, the project and its contents can be displayed in the Project View window and the
Project→Build and Project→Rebuild All commands can be used to build the program.

1. Double-click on the name of the makefile in the Project View window to open the file for editing.
2. Modify your makefile build commands and options.

Special dialogs enable you to modify the makefile build commands and makefile options. The normal
Code Composer Studio Build Options dialogs are not available when working with makefiles.

Multiple configurations can be created, each with its own build commands and options.

Code Creation32 SPRU509F–May 2005

www.ti.com

4.1.5 Source Control Integration

Configuring Projects

Note:
Limitations and Restrictions: Source files can be added to or removed from the project
in the Project View. However, changes made in the Project View do not change the
contents of the makefile. These source files do not affect the build process nor are they
reflected in the contents of the makefile. Similarly, editing the makefile does not change
the contents in the Project View. File-specific options for source files that are added in the
Project View are disabled. The Project→Compile File command is also disabled.
However, when the project is saved, the current state of the Project View is preserved.

Note:
Before using Code Composer Studio IDE commands to build your program using a
makefile, it is necessary to set the necessary environment variables. To set environment
variables, run the batch file DosRun.bat. The batch file is located in the directory
C:\CCStudio_v3.1. If you installed Code Composer Studio IDE in a directory other than
C:\CCStudio_v3.1, the batch file will be located in the specified directory.

The project manager can connect your projects to a variety of source control providers. The Code
Composer Studio IDE automatically detects any installed providers that are compatible.

1. From the Project menu, choose Source Control.
2. From the Source Control submenu, choose Select Provider.
3. Select the Source Control Provider that you want to use and press OK.

If no source control providers are listed, ensure that you have correctly installed the client software for
the provider on your machine.

4. Open one of your projects and select Add to Source Control from Project→Source Control.
5. Add your source files to Source Control.
6. You can check files in and out of source control by selecting a file in the Project View window and right

clicking on the file. Icons will identify source files that are connected to a source control.

Figure 4-7. Source Control Integration

Code CreationSPRU509F–May 2005 33

www.ti.com

4.2 Text Editor

4.2.1 Viewing and Editing Code

Selection
Margin

Mixed Mode (Assembly
and C source)

Program
Counter

Divider

4.2.2 Customizing the Code Window

Text Editor

Double-click on the filename in the Project View to display the source code in the IDE window.

Figure 4-8. Elements in the Source Code Window

• Selection margin. By default, a selection margin is displayed on the left-hand side of integrated editor
and disassembly windows. Colored icons in the selection margin indicate that a breakpoint (red) or
Probe Point (blue) is set at this location. A yellow arrow identifies the location of the Program Counter
(PC). The selection margin can be resized by dragging the divider.

• Keywords. The integrated editor features keyword highlighting. Keywords, comments, strings,
assembler directives, and GEL commands are highlighted in different colors. In addition, you can
create or customize new sets of keywords and save them in keyword files (*.kwd).

• Keyboard shortcuts. The default keyboard shortcuts can be changed and new keyboard shortcuts
can be created for any editing or debugging commands that can be invoked from a document window.
Keyboard shortcuts can be modified through the Customize dialog box in the Option menu.

• Bookmarks. Set bookmarks on any line in any source file to find and maintain key locations.

The IDE's text editor (called CodeWright) lets you customize code formatting and behavior. The
Option→Editor menu has additional options for Language, ChromaCoding Lexers, and View Setups.
• Language. You can associate a file type (i.e. .cpp , .awk , etc.) with a set of behaviors. Note that the

list of file types under Option→Editor→Language is different from the list of ChromaCoding lexers. By
default, many of the file types are associated with the relevant lexer (i.e., the .h file type is associated
with the C lexer). Some file types are not mapped to lexers at all.

• ChromaCoding Lexers. A lexer stores a collection of settings to color various elements of the
programming language vocabulary. This vocabulary includes identifiers, braces, preprocessors,
keywords, operators, strings, and comments. The CodeWright text editor comes with about 20
language-specific lexers already configured for use, including several specific lexers for the Code
Composer Studio IDE (i.e., GEL, CCS, C, DSP/BIOS, and so on). You can also create new lexers by
clicking the New or Save as button on the right side of any ChromaCoding Lexer dialog box.

Code Creation34 SPRU509F–May 2005

www.ti.com

4.2.3 Using the Editor's Text Processing Functionality

Text Editor

• View Setups. This defines more generic features that are not specific to a single programming
language, such as specifying that all comments in all languages should be colored blue. However, a
lexer defines what comment delimiters to use before and after a comment for the text editor.

Table 4-1. CodeWright Text Editor: A Quick Reference

CodeWright Menu Location Configurable Settings and Options

Editor Properties (global settings): Options for the editor, file loading, debug, selection margin
Option→Editor→Properties resizing, tool tips, external editors, and backup (auto-save)

Settings for File Types (language properties): Language options and mapping, tabs and indenting, templates,
Option→Editor→Language coloring for code text, CodeSense, formatting for different file

types, and comments

Lexer Settings (settings for language-specific lexers): Identifiers, brace characters, color excluding for regex, adding
Option→Editor→ChromaCoding Lexers new words (keywords, preprocessors, operators) and keyword

defaults, language-specific comments, defaults for strings, num-
ber elements

View Setups (additional global settings): Showing line numbers and rulers, line highlighting, scrolling, line
Option→Editor→View Setups number widths, showing visibles (EOL, tabs, spaces, etc.),

general color defaults, general font defaults

Advanced Text Processing Caps to lower (and vice versa), inserting comments and func-
Edit→Advanced, or right-click within text window and select tions, tabs to spaces (and vice versa), and other advanced
Advanced editing options

The text editor includes several additional functions for processing text.
• Differencing and merging. You can use the diffing function (File→Difference between files) to

compare two similar files and show any differences. Merging (File→Merge Files) allows you to merge
multiple files.

• Support for regular expressions. Select Edit→Find in Files or Edit→Replace in Files. In addition to
the usual find or replace functionality, the text editor lets you use regular expressions for more complex
text processing. For example, you can do a global replace for all the files in a certain directory. You
can also use saved searches and use the helper drop-down window (see below) to make it easier to
construct regular expressions.

Code CreationSPRU509F–May 2005 35

www.ti.com

4.2.4 Setting Auto-Save Defaults

Text Editor

Figure 4-9. Using Regular Expressions with the Text Editor

• Selectively hiding and displaying code. Selective display lets you toggle to reveal or hide certain
kinds of code according to the chosen parameters. For example, you can specify that the editor use
the selective display function to expand and collapse certain kinds of code. Or you can choose to hide
all function definitions or preprocessor directives by choosing the appropriate option. When this is
done, a small icon will appear on the margin to indicate that code has been hidden (see Figure 4-10).
Clicking on the icon will let you toggle to show or reveal that particular block of code.

Figure 4-10. Selective Display

The text editor can periodically save your working files to prevent loss of work in the event of a system
crash. To use this function, select Option→Editor→Properties→Backup and check the box to enable
auto-save. You can also select the time interval between saves or specify the name and location of the
backup file. CCStudio will prompt you before overwriting an old backup file unless you specify otherwise.

Code Creation36 SPRU509F–May 2005

www.ti.com

4.2.5 Autocompletion, Tooltips and Variable Watching (CodeSense)

Text Editor

The CodeWright text editor uses an autocompletion engine called CodeSense. When the tooltip or
autocompletion activates, an icon will appear underneath the current line of your code. It shows symbols,
function parameters and tooltips for C, C++, and Java code. Tooltips can also be used for variable
watching.

CodeSense only works with certain file types and when the CodeSense DLL is enabled.

To enable CodeSense:

1. Choose Option→Editor→Language→CodeSense.
2. In the left box, highlight the file type you are working with.
3. To the right of the File Type box, make sure that CodeSense DLL is enabled. (If CodeSense is not

supported for that particular file type, the check box will be disabled.)

After the CodeSense DLL is enabled, CodeSense can be used to:
• List symbols (functions, structs, macros, members, etc.) that are associated with the symbol being

typed.
• Insert symbols from the context list into the current document, completing the symbol being typed.
• Access a symbol's definition using a selected symbol's Goto button in the list. (Ctrl-G is the

corresponding keyboard shortcut for the Goto functionality).
• Obtain a tooltip listing necessary parameters for a function as it is being typed.
• See a symbol's definition in a hover tooltip that can appear automatically, or when either Ctrl or Shift is

pressed (depending on the CodeSense settings).

CodeSense word completion helps you finish typing symbols. Once you have entered a few characters,
complete the following steps to use this feature:

1. Press Ctrl and Space together to bring up a list box of context-sensitive symbols to choose from. The
symbols begin with whatever you have typed so far; the right-hand column provides the definition of
each symbol.

Figure 4-11. Code Sense

2. Highlight the appropriate symbol from the list. Press the selected symbol's corresponding image (the
Goto button) to display the definition of the symbol within the library's source code. The key sequence
Ctrl-G will also access a selected symbol's definition.

3. While the drop-down list is still displayed, press Enter. The highlighted symbol is entered into your
document automatically, completing the word you began.

Code CreationSPRU509F–May 2005 37

www.ti.com

4.2.6 Using an External Editor

4.3 Code Generation Tools

4.3.1 Code Development Flow

Assembler
source

.asm files

(optional)
Optimizer

Parser

C/C++ compiler

Assembler

COFF

(.obj) files
object

preprocessor
Assembly

Assembly
optimizer:

ONLY applies
to C6000

C or C/C++
source files

Linker

.out file
COFF file

Executable

With the linker
option (−z)

Code
generator

4.3.2 Project Build Options

Code Generation Tools

The Code Composer Studio IDE supports the use of an external (third-party) text editor in place of the
default integrated editor. After an external editor is configured and enabled, it is launched whenever a new
blank document is created or an existing file is opened. An external editor can only be used to edit files.
The integrated editor is used to debug your program. You can configure an external editor by selecting the
External Editor tab from the Option→Editor→Properties dialog.

Code generation tools include an optimizing C/C++ compiler, an assembler, a linker, and assorted utilities.
The figure below shows how these tools and utilities work together generating code.

Figure 4-12. Code Development Flow

A graphical interface is provided for using the code generation tools. A Code Composer Studio project
keeps track of all information needed to build a target program or library. A project records:

• Filenames of source code and object libraries
• Compiler, assembler, and linker options
• Include file dependencies

Code Creation38 SPRU509F–May 2005

www.ti.com

Code Generation Tools

When you build a project, CCStudio invokes the appropriate code generation tools to compile, assemble,
and/or link the program.

The Build Options dialog box specifies the compiler, assembler, and linker options (see Figure 4-13). This
dialog box lists nearly all the command line options. Any options that are not represented can be typed
directly into the editable text box at the top of the dialog. Each target configuration has a device-specific
set of options. See the compiler or assembly guide for your target for more information.

Figure 4-13. Build Options Dialog Box

You can set the compiler and linker options that are used during the build process.

Your build options can be set at two different levels, depending on how frequently or in what configuration
they are needed. First, you can define a set of project-level options that apply to all files in your project.
Then, you can optimize your program by defining file-specific options for individual source code files.

Note:
For options that are commonly used together, you can set project-level configurations,
rather than setting the same individual options repeatedly. You can also look for this
information in the online help and tutorial.

4.3.2.1 Setting Project-Level Build Options
1. Select Project→Build Options.
2. In the Build Options Dialog Box, select the appropriate tab.
3. Select the options to be used when building your program.
4. Click OK to accept your selections.

Code CreationSPRU509F–May 2005 39

www.ti.com

4.3.3 Compiler Overview

4.3.4 Assembly Language Development Tools

4.3.5 Assembler Overview

Code Generation Tools

4.3.2.2 Setting File-Specific Options
1. Right-click on the name of the source file in the Project View window and select File Specific Options

from the context menu.
2. Select the options to be used when compiling this file. These will differ from the project-level build

options.
3. Click OK to accept your selections.
4. Any changes will only be applied to the selected file.

The C and C++ compilers (for C5000™ and C6000™) are full-featured optimizing compilers that translate
standard ANSI C programs into assembly language source. The following subsection describes the key
features of the compilers.

4.3.3.1 Interfacing with the Code Composer Studio IDE

The following features allow you to interface with the compiler:

• Compiler shell program. The compiler tools include a shell program that you use to compile,
assembly optimize, assemble, and link programs in a single step. For more information, see the About
the Shell Program section in the Optimizing Compiler User’s Guide appropriate for your device.

• Flexible assembly language interface. The compiler has straightforward calling conventions, so you
can write assembly and C functions that call each other. For more information, see the section on
Run-Time Environment in the Optimizing Compiler User’s Guide appropriate for your device.

The following is a list of the assembly language development tools:

• Assembler. The assembler translates assembly language source files into machine language object
files. The machine language is based on common object file format (COFF).

• Archiver. The archiver allows you to collect a group of files into a single archive file called a library.
Additionally, the archiver allows you to modify a library by deleting, replacing, extracting, or adding
members. One of the most useful applications of the archiver is building a library of object modules.

• Linker. The linker combines object files into a single executable object module. As it creates the
executable module, it performs relocation and resolves external references. The linker accepts
relocatable COFF object files and object libraries as input.

• Absolute lister. The absolute lister accepts linked object files as input and creates .abs files as output.
You can assemble these .abs files to produce a listing that contains absolute, rather than relative,
addresses. Without the absolute lister, producing such a listing requires many manual operations.

• Cross-reference lister. The cross-reference lister uses object files to produce a cross-reference listing
showing symbols, their definitions, and their references in the linked source files.

• Hex-conversion utility. The hex-conversion utility converts a COFF object file into TI-Tagged,
ASCII-hex, Intel, Motorola-S, or Tektronix object format. You can download the converted file to an
EPROM programmer.

• Mnemonic-to-algebraic translator utility. For the TMS320C54x device only, this tool converts
assembly language source files. The utility accepts an assembly language source file containing
mnemonic instructions. It converts the mnemonic instructions to algebraic instructions, producing an
assembly language source file containing algebraic instructions.

The assembler translates assembly language source files into machine language object files. These files
are in common object file format (COFF).

The two-pass assembler does the following:

• Processes the source statements in a text file to produce a relocatable object file
• Produces a source listing (if requested) and provides you with control over this listing

Code Creation40 SPRU509F–May 2005

www.ti.com

4.3.6 Linker Overview

4.3.7 C/C++ Development Tools

Code Generation Tools

• Allows you to segment your code into sections and maintains a section program counter (SPC) for
each section of object code

• Defines and references global symbols and appends a cross-reference listing to the source listing (if
requested)

• Assembles conditional blocks
• Supports macros, allowing you to define macros inline or in a library

The linker allows you to configure system memory by allocating output sections efficiently into the memory
map. As the linker combines object files, it performs the following tasks:

• Allocates sections into the target system’s configured memory
• Relocates symbols and sections to assign them to final addresses
• Resolves undefined external references between input files

The linker command language controls memory configuration, output section definition, and address
binding. The language supports expression assignment and evaluation. You configure system memory by
defining and creating a memory module. The directives MEMORY and SECTIONS allow you to:

• Allocate sections into specific areas of memory
• Combine object file sections
• Define or redefine global symbols at link time

4.3.6.1 Text-Based Linker

The text linker combines object files into a single executable COFF object module. Linker directives in a
linker command file allow you to combine object file sections, bind sections or symbols to addresses or
within memory ranges, and define or redefine global symbols. For more information, see the Code
Generation Tools online help.

The following is a list of the C/C++ development tools:

• C/C++ compiler. The C/C++ compiler accepts C/C++ source code and produces assembly language
source code. A shell program, an optimizer, and an interlist utility are parts of the compiler.

– The shell program enables you to compile, assemble, and link source modules in one step. If any
input file has a .sa extension, the shell program invokes the assembly optimizer.

– The optimizer modifies code to improve the efficiency of C programs.
– The interlist utility interweaves C/C++ source statements with assembly language output.

• Assembly optimizer (C6000 only). The assembly optimizer allows you to write linear assembly code
without being concerned with the pipeline structure or with assigning registers. It accepts assembly
code that has not been register-allocated and is unscheduled. The assembly optimizer assigns
registers and uses loop optimization to turn linear assembly into highly parallel assembly that takes
advantage of software pipelining.

• Library-build utility. You can use the library-build utility to build your own customized
run-time-support library. Standard run-time-support library functions are provided as source code in
rts.src and rstcpp.src. The object code for the run-time-support functions is compiled for little-endian
mode versus big-endian mode and C code versus C++ code into standard libraries. The
run-time-support libraries contain the ANSI standard run-time-support functions, compiler-utility
functions, floating-point arithmetic functions, and C I/O functions that are supported by the compiler.

• C++ name demangling utility. The C++ compiler implements function overloading, operator
overloading, and type-safe linking by encoding a function’s signature in its link-level name. The
process of encoding the signature into the link name is often referred to as name mangling. When you
inspect mangled names, such as in assembly files or linker output, it can be difficult to associate a
mangled name with its corresponding name in the C++ source code. The C++ name demangler is a
debugging aid that translates each mangled name it detects to its original name found in the C++
source code.

Code CreationSPRU509F–May 2005 41

www.ti.com

4.4 Building Your Code Composer Studio Project

4.4.1 From Code Composer Studio

4.4.2 External Make

Building Your Code Composer Studio Project

To build and run a program, follow these steps:

1. Choose Project→Rebuild All or click the Rebuild All toolbar button. All the files in your project are
recompiled, reassembled, and relinked. Messages about this process are shown in a frame at the
bottom of the window.

2. By default, the .out file is built into a debug directory located under your current project folder. To
change this location, select a different one from the Select Configuration toolbar.

3. Choose File→Load Program. Select the program you just rebuilt, and click Open. The program is
loaded onto the target DSP and opens a disassembly window that shows the disassembled
instructions that make up the program.

4. Choose View→Mixed Source/ASM. This allows you to simultaneously view your c source and the
resulting assembly code.

5. Click on an assembly instruction in the mixed-mode window. (Click on the actual instruction, not the
address of the instruction or the fields passed to the instruction.)

6. Press the F1 key. The Code Composer Studio IDE searches for help on that instruction.
7. Choose Debug→Go Main to begin execution from the main function. The execution halts at Main.
8. Choose Debug→Run to run the program.
9. Choose Debug→Halt to quit running the program.

Note:
You can use the supplied timake.exe utility located in the CCStudio_v3.1\cc\bin directory
to build a project from the DOS shell.

Code Composer Studio supports the use of external makefiles (*.mak) and an associated external make
utility for project management and build process customization.

To enable the Code Composer Studio IDE to build a program using a makefile, a Code Composer Studio
project must be created that contains the makefile. After a Code Composer Studio project is associated
with the makefile, the project and its contents can be displayed in the Project View window and the
Project→Build and Project→Rebuild All commands can be used to build the program.

Double-click on the name of the makefile in the Project View window to open the file for editing. You can
also modify your makefile build commands and options through special dialogs. The normal Build Options
dialogs are not available when working with makefiles. Multiple configurations can be created, each with
its own build commands and options.

Note:
Limitations and Restrictions: Source files can be added to or removed from the project
in the Project View. However, changes made in the Project View do not change the
contents of the makefile. These source files do not affect the build process nor are they
reflected in the contents of the makefile. Similarly, editing the makefile does not change
the contents in the Project View. File-specific options for source files that are added in the
Project View are disabled. The Project→Compile File command is also disabled.
However, when the project is saved, the current state of the Project View is preserved.

Code Creation42 SPRU509F–May 2005

www.ti.com

4.4.3 Command Line

4.5 Available Foundation Software

4.5.1 DSP/BIOS

4.5.2 Chip Support Library (CSL)

Available Foundation Software

4.4.3.1 Using the Timake Utility From the Command Line

The timake.exe utility located in the CCStudio_v3.1\cc\bin directory provides a way to build projects (*.pjt)
outside of the Code Composer Studio environment from a command prompt. This utility can be used to
accomplish batch builds.

To invoke the timake utility:

1. Open a DOS Command prompt.
2. Set up the necessary environment variables by running the batch file DosRun.bat. This batch file must

be run before using timake. If you installed the Code Composer Studio product in C:\CCStudio_v3.1,
the batch file is located at: C:\CCStudio_v3.1\DosRun.bat.

3. Run the timake utility.

See the online help topic on the timake utility for more information.

4.4.3.2 Makefiles

In addition to the option of using external makefiles within the Code Composer Studio IDE, you can also
export a standard Code Composer Studio project file (*.pjt) to a standard makefile that can be built from
the command line using any standard make utility. Code Composer Studio comes with a standard make
utility (gmake) that can be run after running the DosRun.bat file.

To export a Code Composer Studio Project to a standard makefile:

1. Make the desired project active by selecting the project name from the Select Active Project drop-down
list on the Project toolbar.

2. Select Project→Export to Makefile.
3. In the Exporting <filename>.pjt dialog box, specify the configurations to export, the default configur-

ation, the host operating system for your make utility, and the file name for the standard makefile.
4. Click OK to accept your selections and generate a standard makefile.

See the online help topic, Exporting a Project to a Makefile for more information.

DSP/BIOS™ is a scalable real-time kernel, designed specifically for the TMS320C5000™ ,
TMS320C2000™, and TMS320C6000™ DSP platforms. DSP/BIOS enables you to develop and deploy
sophisticated applications more quickly than with traditional DSP software methodologies and eliminates
the need to develop and maintain custom operating systems or control loops. Because multithreading
enables real-time applications to be cleanly partitioned, an application using DSP/BIOS is easier to
maintain and new functions can be added without disrupting real-time response. DSP/BIOS provides
standardized APIs across C2000, C5000, and C6000 DSP platforms to support rapid application
migration.

Updated versions of the DSP/BIOS API and configuration tools are available through the Update Advisor.
After installing an updated version of DSP/BIOS, you can specify which DSP/BIOS version to be used by
CCStudio with the Component Manager.

The Chip Support Library (CSL) provides C-program functions to configure and control on-chip
peripherals. It is intended to simplify the process of running algorithms in a real system. The goal is
peripheral ease of use, shortened development time, portability, hardware abstraction, and a small level of
standardization and compatibility among devices.

Code CreationSPRU509F–May 2005 43

www.ti.com

4.5.3 Board Support Library (BSL)

4.5.4 DSP Library (DSPLIB)

Available Foundation Software

4.5.2.1 Benefits of CSL

CSL has the following benefits:

• Standard protocol to program peripherals. CSL provides a higher-level programming interface for
each on-chip peripheral. This includes data types and macros to define peripheral register
configuration, and functions to implement the various operations of each peripheral.

• Basic resource management. Basic resource management is provided through the use of open and
close functions for many of the peripherals. This is especially helpful for peripherals that support
multiple channels.

• Symbol peripheral descriptions. As a side benefit to the creation of CSL, a complete symbolic
description of all peripheral registers and register fields has been created. It is suggested that you use
the higher-level protocols described in the first two bullets, as these are less device-specific, making it
easier to migrate your code to newer versions of DSPs.

The TMS320C6000 DSK Board Support Library (BSL) is a set of C-language application programming
interfaces (APIs) used to configure and control all on-board devices, allowing developers to get algorithms
functioning in a real system. The BSL consists of discrete modules that are built and archived into a library
file. Each module represents an individual API and is referred to as an API module. The module
granularity is constructed such that each device is covered by a single API module except the I/O Port
module, which is divided into two API modules: LED and DIP.

4.5.3.1 Benefits of BSL

Some of the advantages offered by the BSL include: device ease of use, a level of compatibility between
devices, shortened development time, portability, some standardization, and hardware abstraction.

The DSP Library (DSPLIB) includes many C-callable, assembly-optimized, general-purpose sig-
nal-processing, and image/video processing routines. These routines are typically used in computationally
intensive real-time applications where optimal execution speed is critical. By using these routines, you can
achieve execution speeds considerably faster than equivalent code written in standard ANSI C language.
In addition, by providing ready-to-use DSP and image/video processing functions, DSPLIB and IMGLIB
can significantly shorten your application development time.

For more information on DSPLIB, see the appropriate reference guide for your device:
• TMS320C54x DSP Library Programmer’s Reference (SPRU518)
• TMS320C55x DSP Library Programmer’s Reference (SPRU422)
• TMS320C62x DSP Library Programmer’s Reference (SPRU402)
• TMS320C64x DSP Library Programmer’s Reference (SPRU565)

4.5.4.1 Benefits of DSPLIB

DSPLIB includes commonly-used routines. Source code is provided that allows you to modify functions to
match your specific needs.

Features include:
• Optimized assembly code routines
• C and linear assembly source code
• C-callable routines fully compatible with the TI Optimizing C compiler
• Benchmarks (cycles and code size)
• Tested against reference C model

Code Creation44 SPRU509F–May 2005

www.ti.com

4.5.5 Image/Video Processing Library (IMGLIB)

Available Foundation Software

4.5.4.2 DSPLIB Functions Overview

DSPLIB provides a collection of C-callable high performance routines that serve as key enablers for a
wide range of signal and image/video processing applications.

The routines contained in the DSPLIB are organized into the following functional categories:
• Adaptive filtering
• Correlation
• FFT
• Filtering and convolution
• Math
• Matrix functions
• Miscellaneous

The Image/Video Processing Library (IMGLIB) includes many C-callable, assembly-optimized, gen-
eral-purpose signal-processing, and image/video processing routines. The IMGLIB is only available for
C5500/C6000 platform devices. These routines are typically used in computationally intensive real-time
applications where optimal execution speed is critical. By using these routines, you can achieve execution
speeds faster than equivalent code written in standard ANSI C language. In addition, DSPLIB and IMGLIB
can significantly shorten application development time by providing ready-to-use DSP and image/video
processing functions.

For more information on IMGLIB, see the appropriate reference guide for your device:
• TMS32C55x Imaging/Video Processing Library Programmer’s Reference (SPRU037)
• TMS320C62x Image/Video Processing Library Programmer’s Reference (SPRU400)
• TMS320C64x Image/Video Processing Library Programmer’s Reference (SPRU023)

4.5.5.1 Benefits of IMGLIB

IMGLIB includes commonly used routines. Source code is provided that allows you to modify functions to
match your specific needs.

Features include:
• Optimized assembly code routines
• C and linear assembly source code
• C-callable routines fully compatible with the TI Optimizing C compiler
• Benchmarks (cycles and code size)
• Tested against reference C model

4.5.5.2 IMGLIB Functions Overview

IMGLIB provides a collection of C-callable high performance routines that can serve as key enablers for a
wide range of signal and image/video processing applications.

The set of software routines included in the IMGLIB are organized into three different functional categories
as follows:
• Image/video compression and decompression
• Image analysis
• Picture filtering/format conversions

Code CreationSPRU509F–May 2005 45

www.ti.com

4.5.6 TMS320 DSP Algorithm Standard Components

Rules for C62xx

Level 1

Level 2

Interrupt usageLevel 3

Level 4

Memory usage
Register usage
etc.

Telecom
Vocoders
Echo cancel
etc.

Rules for C54xx
Interrupt usage
Memory usage
Register usage
etc.

Rules for C2xxx
Interrupt usage
Memory usage
Register usage
etc.

Imaging
JPEG
etc.

Audio
Coders
etc.

Automotive
etc.

Other

Algorithm Component Model
Modules Packaging etc.
Generic Interfaces

General Programming Guidelines
C callable Reentrant etc.
No hard coded addresses

Available Foundation Software

DSPs are programmed in a mix of C and assembly language, and directly access hardware peripherals.
For performance reasons, DSPs have little or no standard operating system support. Unlike gen-
eral-purpose embedded microprocessors, DSPs are designed to run sophisticated signal processing
algorithms and heuristics. However, because of the lack of consistent standards, it is not possible to use
an algorithm in more than one system without significant reengineering. Reusing DSP algorithms is labor
intensive, so the time-to-market for a new DSP-based product is lengthy.

The TMS320 DSP Algorithm Standard (known as XDAIS) defines a set of requirements for DSP
algorithms that allow system integrators to quickly assemble systems from using one or more such
algorithms.

4.5.6.1 Scope of XDAIS

Figure 4-14. TMS320 DSP Algorithm Standard Elements

Level 1 contains programming guidelines that apply to all algorithms on all DSP architectures, regardless
of application area. Almost all recently developed software modules already follow these guidelines, so
this level formalizes them.

Level 2 contains rules and guidelines that enable all algorithms to operate within a single system.
Conventions are established for an algorithm’s use of data memory and names for external identifiers, as
well as rules for algorithm packaging.

Level 3 contains the guidelines for specific DSP families. There are no current agreed-upon guidelines for
algorithms for use of processor resources. These guidelines outline the uses of the various architectures.
Deviations from these guidelines may occur, but the algorithm vendor can outline the deviation in the
relevant documentation or module headers.

The shaded boxes in Figure 4-14 represent the areas that are covered in this version of the specification.

Level 4 contains the various vertical markets. Due to the inherently different nature of each of these
businesses, it seems appropriate for the market leaders to define the interfaces for groups of algorithms
based on the vertical market. If each unique algorithm has an interface, the standard will not stay current.
At this level, any algorithm that conforms to the rules defined in the top three levels is considered
eXpressDSP-compliant.

Code Creation46 SPRU509F–May 2005

www.ti.com

4.5.7 Reference Frameworks

Available Foundation Software

4.5.6.2 Rules and Guidelines

The TMS320 DSP Algorithm Standard specifies both rules and guidelines. Rules must be followed for
software to be eXpressDSP-compliant. On the other hand, guidelines are strongly suggested recommen-
dations that are not required for software to be eXpressDSP-compliant.

4.5.6.3 Requirements of the Standard

The required elements of XDAIS are as follows:
• Algorithms from multiple vendors can be integrated into a single system.
• Algorithms are framework-agnostic. That is, the same algorithm can be efficiently used in virtually any

application or framework.
• Algorithms can be deployed in purely static as well as dynamic run-time environments.
• Algorithms can be distributed in binary form.
• Integration of algorithms does not require recompilation of the client application; however,

reconfiguration and relinking may be required.

4.5.6.4 Goals of the Standard

The XDAIS must meet the following goals:
• Enable developers to easily conform to the standard
• Enable developers to verify conformance to the standard
• Enable system integrators to easily migrate between TI DSPs
• Enable host tools to simplify a system integrator’s tasks; including configuration, performance

modeling, standard conformance, and debugging
• Incur little or no overhead for static systems

Reference frameworks for eXpressDSP software are provided for applications that use DSP/BIOS and the
TMS320 DSP Algorithm Standard. You first select the reference framework that best approximates your
system and its future needs, and then adapt the framework and populate it with eXpressDSP-compliant
algorithms. Common elements such as device drivers, memory management, and channel encapsulation
are already pre-configured in the frameworks, therefore you can focus on your system. Reference
frameworks contain design-ready, reusable, C-language source code for TMS320C5000 and
TMS320C6000 DSPs.

Reference frameworks software and documentation are available for download from the TI website. They
are not included in the Code Composer Studio installation.

Figure 4-15 shows the elements that make up a reference framework on the target DSP.

Code CreationSPRU509F–May 2005 47

www.ti.com

abstraction
Channel

Algorithm
manager

Framework components

eXpressDSP
alg. 1

eXpressDSP
alg. 2

Application level code

DSP/BIOS Chip support library

Device driver adapter

Device driver controller

TMS320 DSP hardware

Memory
management
and overlays

Available Foundation Software

Figure 4-15. Reference Framework Elements

See the following list for element descriptions:

• Device controller and device adapter. The device drivers used in reference frameworks are based
on a standard driver model, which provides device adapters and specifies a standard device controller
interface. If you have unique external hardware, the device controller might require modification, but
the device adapter probably needs little or no modification.

• Chip Support Library (CSL). The device controller uses chip support library modules to support
peripheral hardware.

• DSP/BIOS. This extensible software kernel is a good example of how each reference framework
leverages different amounts of the eXpressDSP infrastructure, depending on its needs. The low-end
RF1 framework uses relatively few DSP/BIOS modules. In addition to providing an obvious footprint
savings, reducing the number of modules helps clarify design choices for a designer who may not fully
appreciate the ramifications of module selections.

• Framework components. These elements are crafted to provide overall system resource manage-
ment. One example of this is channel abstraction. Every reference framework needs some kind of
channel management. However, design optimizations can be made based on the number of channels
likely to be in use. For simple systems with 1 to 3 channels, channel scheduling is handled with the
low-overhead DSP/BIOS HWI and IDL modules. For larger numbers of channels, it is wiser to use the
SWI module, although it comes with some extra footprint. For large systems with channels that change
dynamically, the TSK module is most appropriate. The algorithm managers manage some
eXpressDSP-compliant algorithms, similar to channel managers. Other framework components are
modules that handle memory overlay schemes, which is a critical technique in most memory
constrained systems. Starting with the appropriate framework simplifies many development choices.

• eXpressDSP-compliant algorithms. Each algorithm follows the rules and guidelines detailed in
theTMS320 DSP Algorithm Standard Rules and Guidelines (SPRU352). To be standard-compliant,

Code Creation48 SPRU509F–May 2005

www.ti.com

4.6 Automation (for Project Management)

4.6.1 Using General Extension Language (GEL)

Automation (for Project Management)

algorithms must not directly access any hardware peripherals and must implement standard resource
management interfaces known as IALG (for memory management) and optionally, IDMA (for DMA
resource management). In the examples that TI provides, the algorithms are simple, including finite
impulse response (FIR) filters and volume controllers. You can substitute more significant
eXpressDSP-compliant algorithms for the TI-provided ones, making a generic reference framework
more application-specific.

• Application-level code. The last step is to modify the application-level code. This code applies unique
and value-added application-specific knowledge, allowing for real product differentiation. For instance,
the application code required for a single-channel MP3 player is different than that required for a digital
hearing aid.

The General Extension Language (GEL) is an interpretive language, similar to C, that lets you create
functions for Code Composer Studio. You create your GEL functions by using the GEL grammar, and then
load them into the Code Composer Studio IDE. A subset of GEL functions may be used to automate
project build options, or custom GEL menus may be created to automatically open and build a project.

Here's a sample GEL Script to open the volume project:
/*
* Copyright 1998 by Texas Instruments Incorporated.
* All rights reserved. Property of Texas Instruments
Incorporated.
* Restricted rights to use, duplicate or disclose this
code are
* granted through contract.
*/
/*
* ======== PrjOpen.gel ========
* Simple gel file to demonstrate project management
capabilities of GEL
*/
menuitem "MyProjects"
hotmenu OpenVolume()
{
// Open Volume tutorial example
GEL_ProjectLoad("C:\\CCStudio_v3.1\\tutorial\\sim55xx\\volume1\\volume.pjt");
// Set currently active configuration to debug
GEL_ProjectSetActiveConfig("C:\\CCStudio_v3.1\\tutorial\\sim55xx\\volume1\\volume.pjt",
"Debug");
// Build the project.
GEL_ProjectBuild();
}

Code CreationSPRU509F–May 2005 49

www.ti.com

4.6.2 Scripting Utility

Automation (for Project Management)

Figure 4-16. Custom GEL Files

The scripting utility is a set of IDE commands that are integrated into a VB or perl scripting language. You
may utilize the full capabilities of a scripting language, such as perl or VB, and combine it with automation
tasks in Code Composer Studio. The scripting utility can configure a test scenario, open and build a
corresponding project, and load it for execution. There are a number of scripting commands that may be
used to build and manage projects. Scripting is synchronous.

The scripting utility is an add-on capability available through Update Advisor (see Section 7.2).

Code Creation50 SPRU509F–May 2005

Chapter 5
SPRU509F–May 2005

Debug

This section applies to all platforms using Code Composer Studio IDE. However, not all
devices have access to all of the tools discussed in this section. For a complete listing
of the tools available to you, see the online help and online documentation provided
with the Code Composer Studio IDE.

This section discusses the various debug tools included with Code Composer Studio.

Topic .. Page

5.1 Setting Up Your Environment for Debug 52
5.2 Basic Debugging... 59
5.3 Advanced Debugging Features... 71
5.4 Real-Time Debugging .. 73
5.5 Automation (for Debug) ... 78
5.6 Reset Options... 78

Debug 51SPRU509F–May 2005

www.ti.com

5.1 Setting Up Your Environment for Debug

5.1.1 Setting Custom Debug Options

Setting Up Your Environment for Debug

Before you can successfully debug an application, the environment must be configured as shown in the
following sections.

Several debugging options are customizable within Code Composer Studio IDE. You can configure these
options to help with the debug process or to suit your desired preferences.

5.1.1.1 Debug Properties Tab

This debug properties dialog is available from the Customize Tab under Option→Customize→Debug
Properties. It allows you to disable certain default behaviors when debugging, other options are described
in the online help. The behaviors available from the debug properties tab are as follows:
• Open the Disassembly Window automatically. Disabling this option prevents the disassembly

Window from appearing after a program is loaded. This option is enabled by default.
• Perform Go Main automatically. Enabling this option instructs the debugger to automatically run to

the symbol main for the application loaded. This option is disabled by default.
• Connect to the target when a control window is opened. A control window is the entire IDE

interface for Code Composer Studio. You can have multiple instances control windows open when
running PDM. You can disable this option when you are experiencing target connection problems or
don’t need the actual target to be connected (i.e., when writing source code, etc.). This option is
disabled by default.

• Remove remaining debug state at connect. When Code Composer Studio IDE disconnects from the
target, it typically tries to remove breakpoints by default. If there are errors in this process, Code
Composer Studio will try again to remove breakpoints when reconnecting to the target. However, this
second attempt to remove breakpoints may put some targets into a bad state. Thus, TI recommends
disabling this option to prevent a second attempt to remove breakpoints when reconnecting.

• Animation speed. Animation speed is the minimum time (in seconds) between breakpoints. Program
execution does not resume until the minimum time has expired since the previous breakpoint. See
Section 5.2.1.1 for more details.

5.1.1.2 Directories

To open the source file, the debugger needs the location of the source file where the application is halted.
The debugger includes source path information for all the files in an open project, files in the current
directory, and specified paths to Code Composer Studio IDE.

The paths you specify to Code Composer Studio IDE are empty by default. Thus, if the application being
debugged uses source files that are not in an open project or current directory, then you must specify the
path to these files. If not, the debugger will not be able to automatically open the file when execution halts
at a location that references that source file. It will then prompt you to manually find the file. For instance,
including libraries in a build is a common example of using source files that are not in the open project.

The Directories dialog box enables you to specify additional search paths that the debugger uses to find
the included source files.

Debug52 SPRU509F–May 2005

www.ti.com

Setting Up Your Environment for Debug

To specify a search path directory, select the Directories tab in the Option→Customize menu dialog. You
may need to use the scroll arrows at the top of the dialog to locate the tab. The options include:

• Directories. The Directories list displays the defined search path. The debugger searches the listed
directories in order from top to bottom. If two files have the same name and are located in different
directories, the file located in the directory that appears highest in the Directories list takes precedence.

• New. To add a new directory to the Directories list, click New. Enter the full path or browse to the
appropriate directory. By default, the new directory is added to the bottom of the list.

• Delete. Select a directory in the Directories list, then click Delete to remove that directory from the list.
• Move Up/Move Down. Select a directory in the Directories list, then click Move Up to move that

directory higher in the list, or Move Down to move that directory lower in the list.
• Look in subfolders. You can enable the debugger to search in the subfolders of the listed paths.
• Default File I/O Directory. In addition to setting source file directories, you can now set a default

directory for File I/O files by enabling the Default File I/O directory option. Use the browse button to
find the path you wish to select as the default directory.

5.1.1.3 Program Load Options

You can set defaults for loading a program by selecting the Program/Project Load tab from the
Option→Customize menu dialog, including the following default behaviors:

• Perform verification during Program Load. This check box is enabled by default. This means that
Code Composer Studio will verify (by reading back selected memory) that the program was loaded
correctly.

• Load Program After Build. When this option is selected, the executable is loaded immediately upon
building the project, thus the target contains the current symbolic information generated after a build.

• Do Not Set CIO Breakpoint At Load. By default, if your program has been linked using a TI runtime
library (rts*.lib), a C I/O breakpoint (C$$IO$$) is set when the program is loaded. This option enables
you to choose not to set the C I/O breakpoint. The C I/O breakpoint is necessary for the normal
operation of C I/O library functions such as printf and scanf. The C I/O breakpoint is not needed if your
program does not execute CIO functions. When C I/O code is loaded in RAM, Code Composer Studio
sets a software breakpoint. However, when C I/O code is loaded in ROM, Code Composer Studio uses
a hardware breakpoint. Since most processors support only a small number of hardware breakpoints,
using even one can significantly impact debugging. You can also avoid using the hardware breakpoint
when C I/O code is loaded in ROM by embedding a breakpoint in your code and renaming the label
C$$IO$$ to C$$IOE$$.

• Do Not Set End of Program Breakpoint At Load. By default, if your program has been linked using a
TI runtime library (rts*.lib), an End of Program breakpoint (C$$EXIT) is set when the program is
loaded. This option allows you to choose not to set the End of Program breakpoint. The End of
Program breakpoint halts the processor when your program exits following completion. The End of
Program breakpoint is not needed if your program executes an infinite loop. When End of Program
code is loaded in RAM, Code Composer Studio sets a software breakpoint. However, when End of
Program code is loaded in ROM, Code Composer Studio uses a hardware breakpoint. Since most
processors support only a small number of hardware breakpoints, using even one can have a
significant impact when debugging. You can also avoid using the hardware breakpoint when End of
Program code is loaded in ROM by embedding a breakpoint in your code and renaming the label
C$$EXIT to C$$EXITE$$ to indicate that this is an embedded breakpoint.

• Disable All Breakpoints When Loading New Programs. Enabling this option will remove all existing
breakpoints before loading a new program.

• Open Dependent Projects When Loading Projects. By default, if your program has subprojects
upon which a main project is dependent, all the subprojects are opened along with the main project. If
this option is disabled, then the subprojects will not be opened.

• Do Not Scan Dependencies When Loading Projects. To determine which files must be compiled
during an incremental build, the project must maintain a list of include file dependencies for each
source file. A dependency tree is created whenever you build a project. To create the dependency
tree, all the source files in the project list are recursively scanned for #include, .include, and .copy
directives, and each included file name is added to the project list. By default, when a project is
opened, all files in the project are scanned for dependencies. If this option is disabled, it will not
automatically scan for dependencies upon opening a project, and the project may open more quickly.

DebugSPRU509F–May 2005 53

www.ti.com

5.1.2 Simulation

5.1.3 Memory Mapping

Setting Up Your Environment for Debug

5.1.1.4 Disassembly Style

Several options are available for changing the information view in the disassembly window. The
Disassembly Style Options dialog box allows you to input specific viewing options for your debugging
session.

To set disassembly style options:

1. Select Option→Disassembly Style, or right-click in the disassembly window and select Proper-
ties→Disassembly Options.

2. Enter your choices in the Disassembly Style Options dialog box.

Figure 5-1. Disassembly Style

3. Click OK. The contents of the disassembly window are immediately updated with the new style.

To configure the simulator to behave closer to the actual hardware target, you can set options for memory
mapping (Section 5.1.3), pin connect (Section 5.1.4), or port connect (Section 5.1.5).

The memory map tells the debugger which areas of memory it can access. Memory maps vary depending
on the application.

When a memory map is defined and memory mapping is enabled, the debugger checks every memory
access against the memory map. The debugger will not attempt to access an area of memory that is
protected by the memory map.

The debugger compares memory accesses against the memory map in software, not hardware. The
debugger cannot prevent your program from attempting to access nonexistent memory.

5.1.3.1 Memory Mapping with Simulation

The simulator utilizes pre-defined memory map ranges to allow the most generic representation of valid
memory settings for simulated DSP targets. The memory map settings can be altered to some degree;
however, this is not recommended, as simulator performance may be affected by extensive changes to
valid memory ranges.

Debug54 SPRU509F–May 2005

www.ti.com

Setting Up Your Environment for Debug

5.1.3.2 Memory Mapping Using the Debugger

Although the memory map can be defined interactively while using the debugger, this can be inconvenient
because you normally set up one memory map before debugging, and then use this memory map for all
other debugging sessions.

To add a new memory map range:

1. Select Option→Memory Map.

Figure 5-2. Memory Map

2. If your actual or simulated target memory configuration supports multiple pages, the Memory Map
dialog box contains a separate tab for each type of memory page (e.g., Program, Data, and I/O).
Select the appropriate tab for the type of memory that you want to modify. Tabs do not appear for
processors that have only one memory page. The Memory Map dialog offers the following options:
– Enable Memory Mapping. Ensure that the Enable Memory Mapping check box is checked.

Otherwise, the debugger assumes all addressable memory (RAM) on your target is valid.
– Starting Address. Enter the start address of the new memory range in the Starting Address input

field.
– Length. Enter the length of the new memory range in the Length input field.
– Attributes. Select the read/write characteristics of the new memory range in the Attributes field.
– Access Size (bits). Specify the access size for your target processor. You can select an access

size from the drop-down list, or you can type a value in the Access Size field. It is not necessary to
specify a size for processors that support only one access size.

– Volatile Memory. Normally, a write access consists of Read, Modify, and Write operations. When
the Volatile Memory option is set on a segment of memory, any write access to that memory is
completed by using only a Write operation.

– Memory Map List. Displays the list of memory-mapped ranges.
– Add. Adds a new memory range to the Memory Map list.
– Delete. In the Memory Map List, select the desired memory map range and click the Delete button.

You can also delete an existing memory map range by changing the Attributes field to None - No
Memory/Protected. This means you can neither read nor write to this memory location.

– Reset. Resets the default values in the Memory Map List.
3. Click Done to accept your selections.

DebugSPRU509F–May 2005 55

www.ti.com

5.1.4 Pin Connect

Setting Up Your Environment for Debug

The debugger allows you to enter a new memory range that overlaps existing ones. The new range is
assumed to be valid, and the overlapped range’s attributes are changed accordingly.

After you have defined a memory map, you may wish to modify its read/write attributes. You can do this
by defining a new memory map (with the same Starting Address and Length) and clicking the Add button.
The debugger overwrites the existing attributes with the new ones.

5.1.3.3 Defining Memory Map with GEL

The memory map can also be defined using the general extension language (GEL) built-in functions. GEL
provides a complete set of memory-mapping functions. You can easily implement a memory map by
putting the memory-mapping functions in a GEL text file and executing the GEL file at start up. (See
Section 5.5.1 for an introduction to GEL.)

When you first invoke the Code Composer Studio IDE, the memory map is turned off. You can access any
memory location without interference from the memory map. If you invoke Code Composer Studio with an
optional GEL filename specified as a parameter, the GEL file is automatically loaded. If the file contains
the GEL function StartUp(), the GEL functions in the file are executed. You can specify GEL mapping
functions in this file to automatically define the memory mapping requirements for your environment.

Use the following GEL functions to define your memory map:

Table 5-1. GEL Functions for Memory Maps

Function Description

GEL_MapAdd() Memory map add

GEL_MapDelete() Memory map delete

GEL_MapOn() Enable memory map

GEL_MapOff() Disable memory map

GEL_MapReset() Reset memory map

The GEL_MapAdd() function defines a valid memory range and identifies the read/write characteristics of
the memory range. The following is a sample of a GEL file that can be used to define two blocks of length
0xF000 that are both readable and writeable:
StartUp()
{
GEL_MapOn();
GEL_MapReset();
GEL_MapAdd(0, 0, 0xF000, 1, 1);
GEL_MapAdd(0, 1, 0xF000, 1, 1);
}

When you have set up your memory map, choose Option→Memory Map to view the memory map.

The Pin Connect tool enables you to specify the interval at which selected external interrupts occur.

To simulate external interrupts:

1. Create a data file that specifies interrupt intervals.
2. Start the Pin Connect tool by choosing Pin Connect from the Tools menu.
3. Select the Pin name and click Connect.
4. Load your program.
5. Run your program.

For detailed information on the Pin Connect tool, see the Pin Connect topics provided in the online help:
Help→Contents→Debugging→Analysis Tools for Debugging→Pin Connect.

Debug56 SPRU509F–May 2005

www.ti.com

5.1.5 Port Connect

Setting Up Your Environment for Debug

Figure 5-3. Pin Connect Tool

You can use the Port Connect tool to access a file through a memory address. Then, by connecting to the
memory (port) address, you can read data in from a file, and/or write data out to a file.

To connect a memory (port) address to a data file, follow these steps:

1. From the Tools menu, select Port Connect to display the Port Connect window and start the Port
Connect tool.

Figure 5-4. Port Connect Tool

2. Click the Connect button to open the Connect dialog box.

Figure 5-5. Port Address Connection

3. In the Port Address field, enter the memory address. This parameter can be an absolute address, any
C expression, the name of a C function, or an assembly language label. If you want to specify a hex
address, be sure to prefix the address number with 0x. Otherwise, it is treated as a decimal address.

DebugSPRU509F–May 2005 57

www.ti.com

5.1.6 Program Load

Setting Up Your Environment for Debug

4. In the Length field, enter the length of the memory range. The length can be any C expression.
5. In the Page field (C5000 only), choose type of memory (program or I/O) that the address occupies. For

program memory, choose Prog. For I/O space, choose I/O.
6. In the Type field, select the Write or Read radio button, depending on whether you want to read data

from a file or write data to a file.
7. Click OK to display the Open Port File window.
8. Select the data file to which you want to connect and click Open.
9. Select the No Rewind feature to prohibit the file from being rewound when the end-of-file (EOF) is

reached. For read accesses made after EOF, the value 0xFFFFFFFF is read and the file pointer is
kept unchanged.

The file is accessed during an assembly language read or write of the associated memory address. Any
memory address can be connected to a file. A maximum of one input and one output file can be
connected to a single memory address. Multiple addresses can be connected to a single file.

For detailed information on the Port Connect tool, see the Port Connect topics provided in the online help:
Help→Contents→Debugging→Analysis Tools for Debugging→Port Connect.

The COFF file (*.out) produced by building your program must be loaded onto the actual or simulated
target board prior to execution.

Program code and data are downloaded onto the target at the addresses specified in the COFF file.
Symbols are loaded into a symbol table maintained by the debugger on the host. The symbols are loaded
at the code and data addresses specified in the COFF file.

A COFF file can be loaded by selecting File→Load Program and then using the Load Program dialog box
to select the desired COFF file.

5.1.6.1 Loading Symbols Only

It is useful to load only symbol information when working in a debugging environment where the debugger
cannot or need not load the object code, such as when the code is in ROM.

Symbols can be loaded by selecting File→Load Symbols→Load Symbols Only from the main menu and
then using the Load Symbols dialog box to select the desired COFF file.

The debugger deletes any previously loaded symbols from the symbol table maintained on the host. The
symbols in the symbol file are then loaded into the symbol table. Symbols are loaded at the code and data
addresses specified in the symbol file. This command does not modify memory or set the program entry
point.

You can also specify a code offset and a data offset that the debugger will apply to every symbol in the
specified symbol file. For example, if you have a symbol file for an executable that contains code
addresses starting at 0x100 and data addresses starting at 0x1000. However, in the program loaded on
the target, the corresponding code starts at 0x500100 and the data is located at 0x501000.

To specify the code and data offset, select File→Load Symbols→Load Symbols with Offsets from the
main menu and then use the Load Symbols dialog box to select the desired COFF file. Once a COFF file
is selected, an additional Load Symbols with Offsets dialog box will appear for you to enter the actual
starting addresses for code and data.

Debug58 SPRU509F–May 2005

www.ti.com

5.2 Basic Debugging

Basic Debugging

Figure 5-6. Data Offset

The debugger automatically offsets every symbol in that symbol file by the given value.

5.1.6.2 Adding Symbols Only

Symbol information can also be appended to the existing symbol table. This command differs from the
Load Symbol command in that it does not clear the existing symbol table before loading the new symbols.

The steps for adding symbol information, with File→Load Symbols→Load Symbols with Offsets, or without
offsets File→Load Symbols→Load Symbols Only, is similar to the steps outlined above for loading
symbols.

Several components are often necessary for basic debugging in the Code Composer Studio IDE. The
chart below provides a list of the icons used for debugging in CCStudio. If these icons are not visible in
the toolbar, select View→Debug Toolbars→ASM/Source Stepping. From the Debug Toolbars options list,
you will see a list of various debug toolbars which can be made visible. A visible toolbar has a checkmark
next to the name in the menu.

DebugSPRU509F–May 2005 59

www.ti.com

Step into (source mode)

Step over (source mode)

Single step (assembly mode)

Step over (assembly mode)

Step out (source and assembly mode)

Run

Halt

Animate

Toggle breakpoint

Toggle Probe Point

Expression

Run to Cursor

Set PC to Cursor

5.2.1 Running/Stepping

Basic Debugging

Figure 5-7. Toolbar Icons for Running and Debugging

5.2.1.1 Running

To run a program, select the appropriate command under the Debug item on the IDE's menu. If the Target
Control toolbar is also visible, run icons will be visible on a vertical toolbar on the left side. If these icons
are not already visible, select View→Debug Toolbars→Target Control.

These commands allow you to run the program:

• Main. You can begin your debugging at main by selecting Debug→Go Main. This action will take your
execution to your main function.

• Run. After execution has been halted, you can continue to run by pressing the Run button.
• Run to Cursor. If you want the program to run to a specific location, you can place the cursor at that

location and press this button.
• Set PC to Cursor. You can also set the program counter to a certain location by placing the cursor at

the location and then pressing this button.
• Animate. This action runs the program until a breakpoint is encountered. At the breakpoint, execution

stops and all windows not connected to any probe points are updated. Probe points stop execution and
update all graphs and windows associated with them and then continue to run. You can animate
execution by pressing the button.
Animate speed can be modified by selecting Customize from the Option menu.

• Halt. Lastly, you can halt execution at any time by pressing the halt button.

Debug60 SPRU509F–May 2005

www.ti.com

5.2.2 Breakpoints

Basic Debugging

5.2.1.2 Stepping

Both source and assembly stepping are available only when the execution has been halted. Source
Stepping steps through lines of code displayed in your source editor; Assembly stepping steps through
lines of instructions that display in your disassembly window. By accessing the mixed Source/ASM mode
through View→Mixed Source/ASM, you can view both source and assembly code simultaneously.

To perform a stepping command, choose the appropriate stepping icon on the toolbar. Another way to
perform the same action is to select Debug→Assembly/Source Stepping (and then the appropriate
command).

There are three types of stepping:

• Single Step or Step Into executes one single statement and halts execution.
• Step Over executes the function and halts after the function returns.
• Step Out executes the current subroutine and returns to the calling function. Execution is then halted

after returning to the calling function.

5.2.1.3 Multiprocessor Broadcast Commands Using PDM

When using the Parallel Debug Manager (PDM), all run/step commands are broadcast to all target
processors in the current group. If the device driver supports synchronous operation, each of the following
commands is synchronized to start at the same time on each processor.

• Use Locked Step (Step Into) to single step all processors that are not already running.
• Use Step Over to execute a step over on all processors that are not already running.
• If all the processors are inside a subroutine, you can use Step Out to execute the step-out command

on all the processors that are not already running.
• Run sends a global run command to all processors that are not already running.
• Halt stops all processors simultaneously.
• Animate starts animating all the processors that are not already running.
• Run Free disables all breakpoints, including probe points, before executing the loaded program starting

from the current PC location.

Breakpoints are essential components of any debugging session. They stop the execution of the program.
While the program is stopped, you can examine the state of the program, examine or modify variables,
examine the call stack, etc. Breakpoints can be set on a line of source code in an Editor window or on a
disassembled instruction in the disassembly window. After a breakpoint is set, it can be enabled or
disabled.

If a breakpoint is set on a source line, there must be an associated line of disassembly code. When
compiler optimization is turned on, many source lines do not allow the setting of breakpoints. To see
allowable lines, use mixed mode in the editor window.

Note:
Code Composer Studio tries to relocate a breakpoint to a valid line in your source window
and places a breakpoint icon in the selection margin beside the line on which it locates
the breakpoint. If an allowable line cannot be determined, it reports an error in the
message window.

Note:
Code Composer Studio briefly halts the target whenever it reaches a probe point. Any
windows or displays connected to the probe point are updated when execution stops.
Therefore, the target application may not meet real-time deadlines if you are using probe
points. At this stage of development, you are testing the algorithm. Later, you can analyze
real-time behavior using RTDX and DSP/BIOS.

DebugSPRU509F–May 2005 61

www.ti.com

Basic Debugging

5.2.2.1 Software Breakpoints

Breakpoints can be set in any disassembly window or document window containing C/C++ source code.
There is no limit to the number of software breakpoints that can be set, provided they are set at writable
memory locations (RAM). Software breakpoints operate by modifying the target program to add a
breakpoint instruction at the desired location.

To set a software breakpoint:

1. In a document window or disassembly window, move the cursor over the line where you want to place
a breakpoint.

2. Double-click in the selection margin immediately preceding the line when you are in a document
window. In a disassembly window, double-click on the desired line.

A breakpoint icon (solid red dot) in the selection margin indicates that a breakpoint has been set at the
desired location.

The Toggle Breakpoint command or Toggle Breakpoint button also enable you to quickly set and clear
breakpoints.

1. In a document window or disassembly window, put the cursor in the line where you want to set the
breakpoint.

2. Right-click and select Toggle Breakpoint, or click on the Toggle Breakpoint icon button on the Project
toolbar.

5.2.2.2 Hardware Breakpoints

Hardware breakpoints differ from software breakpoints in that they do not modify the target program; they
use hardware resources available on the chip. Hardware breakpoints are useful for setting breakpoints in
ROM memory or breaking on memory accesses instead of instruction acquisitions. A breakpoint can be
set for a particular memory read, memory write, or memory read or write. Memory access breakpoints are
not shown in the source or memory windows. The number of hardware breakpoints you can use depends
on your DSP target.

Hardware breakpoints can also have a count, which determines the number of times a location is
encountered before a breakpoint is generated. If the count is 1, a breakpoint is generated every time.
Hardware breakpoints cannot be implemented on a simulated target.

To set a hardware breakpoint:

1. Select Debug→Breakpoints. The Break/Probe Points dialog box appears with the Breakpoints tab
selected.

2. In the Breakpoint type field, choose H/W Break for instruction acquisition breakpoints or choose Break
on <bus> <Read|Write|R/W> at location for a memory access breakpoint.

3. Enter the program or memory location where you want to set the breakpoint. Use one of the following
methods:
– For an absolute address, you can enter any valid C expression, the name of a C function, or a

symbol name.
– Enter a breakpoint location based on your C source file. This is convenient when you do not know

where the C instruction is located in the executable. The format for entering in a location based on
the C source file is: fileName line lineNumber.

4. In the Count field, enter the number of times the location is hit before a breakpoint is generated. Set
the count to 1 if you wish to break every time.

5. Click the Add button to create a new breakpoint. This causes a new breakpoint to be created and
enabled.

6. Click OK.

Debug62 SPRU509F–May 2005

www.ti.com

5.2.3 Probe Points

Basic Debugging

5.2.3.1 Probe Point Functions

Probe points read data from a file on your PC. They are useful for algorithm development. You can use
them to:

• Transfer input data from a file on the host PC to a buffer on the target for use by the algorithm
• Transfer output data from a buffer on the target to a file on the host PC for analysis
• Update a window, such as a graph, with data

5.2.3.2 Differences Between Probe Points and Breakpoints

Both probe points and breakpoints halt the target to perform actions. However, they differ in the following
ways:

• Probe points halt the target momentarily, perform a single action, and resume target execution.
• Breakpoints halt the CPU until execution is manually resumed and cause all open windows to be

updated.
• Probe points permit automatic file input or output to be performed; breakpoints do not.

5.2.3.3 Using Probe Points to Transfer Data from a PC File to a Target

This section shows how to use a probe point to transfer the contents of a PC file to the target for use as
test data. It also uses a breakpoint to update all open windows when the Probe Point is reached.

1. Choose File→Load Program. Select filename.out, and click Open.
2. Double-click on the filename.c file in the Project View.
3. Put your cursor in a line of the main function to which you want to add a probe point.
4. Click the Toggle Software Probe Point toolbar button.
5. From the File menu, choose File I/O. The File I/O dialog appears so that you can select input and

output files.

Figure 5-8. File I/O Dialog

6. In the File Input tab, click Add File.
7. Browse to your project folder, select filename.dat and click Open. A control window for the filename.dat

file appears. When you run the program, you can use this window to start, stop, rewind, or fast forward
within the data file.

DebugSPRU509F–May 2005 63

www.ti.com

Basic Debugging

Figure 5-9. Data File Control

8. In the File I/O dialog, change the Address and the Length values. Also, put a check mark in the Wrap
Around box. The Address field specifies where to place the data from the file. The Length field
specifies how many samples from the data file are read each time the Probe Point is reached. The
Wrap Around option enables the data to start being read from the beginning of the file when it reaches
the end of the file, allowing the data file to be treated as a continuous data stream.

Figure 5-10. Adding Your File

9. Click Add Probe Point to show Probe Points tab of the Break/Probe Points dialog.

Figure 5-11. Probe Point Tab

10. In the Probe Point list, select the Probe Point you created previously.
11. In the Connect To field, click the down arrow and select a .dat file from the list.
12. Click Replace. The Probe Point list changes to show that this point is connected to the sine.dat file.
13. Click OK. The File I/O dialog shows that the file is now connected to a Probe Point.
14. Click OK to close the File I/O dialog.

Debug64 SPRU509F–May 2005

www.ti.com

5.2.4 Watch Window

Basic Debugging

5.2.4.1 Using Watch Window to Track a Variable's Value

When debugging a program, it is helpful to understand how the value of a variable changes during
program execution. The watch window allows you to monitor the values of local and global variables and
C/C++ expressions. For detailed information on the watch window, see the Watch Window topics provided
in the online help: Help→Contents→Debugging→Viewing Debug Information→Watch Window.

To open the watch window:

1. Select View→Watch Window, or click the Watch Window icon button on the Watch toolbar.
The watch window contains two tabs: Watch Locals and Watch 1.

– In the Watch Locals tab, the debugger automatically displays the Name, Value, Type, and Radix
option of the variables that are local to the currently executing function.

– In the Watch 1 tab, the debugger displays the Name, Value, Type, and Radix option of the local
and global variables and expressions that you specify.

2. Choose File→Load Program.
3. Double-click on the filename.c file in the Project View.
4. Put your cursor in a line that allows breakpoints.
5. Click the Toggle Breakpoint toolbar button or press F9. The selection margin indicates that a

breakpoint has been set (red icon).
6. Choose View→Watch Window. A separate area in the lower-right corner of the window appears. At run

time, this area shows the values of watched variables. By default, the Watch Locals tab is selected and
displays variables that are local to the executed function.

7. If not at main, choose Debug→Go Main.
8. Choose Debug→Run, or press F5, or press the Run icon. The watch window will update the local

values.

Figure 5-12. Watch Locals Tab

9. Select the Watch 1 tab.
10. Click on the Expression icon in the Name column and type the name of the variable to watch.
11. Click on the white space in the watch window to save the change. The value should immediately

appear, similar to this example.

DebugSPRU509F–May 2005 65

www.ti.com

Basic Debugging

Figure 5-13. Specifying a Variable to Watch

12. Click the Step Over toolbar button or press F10 to step over the call to your watched variable.

In addition to watching the value of a simple variable, you can watch the values of the elements of a
structure.

5.2.4.2 Using Watch Window to Watch Values of a Structure's Elements

To watch the values of the elements of a structure:

1. Select the Watch 1 tab.
2. Click on the Expression icon in the Name column and type the name of the expression to watch.
3. Click on the white space in the watch window to save the change.
4. Click once on the + sign. The line expands to list all the elements of the structure and their values.

(The address shown for Link may vary.)

Figure 5-14. Watch Element Values

5. Double-click on the value of any element in the structure to edit that value.
6. Change the value of a variable.

Notice that the value changes in the watch window. The value also changes color to red, indicating that
you have changed it manually.

Debug66 SPRU509F–May 2005

www.ti.com

5.2.5 Memory Window

Basic Debugging

The memory window allows you to view the contents of memory starting at a specified address. Options
enable you to format the memory window display. You can also edit the contents of a selected memory
location.

Figure 5-15. Memory Window

The Memory Window Options dialog box allows you to specify various characteristics of the memory
window.

Figure 5-16. Memory Window Options

The dialog offers these memory window options:

• Title. Enter a meaningful name for the memory window. When the memory window is displayed, the
name appears in the title bar. This feature is especially useful when multiple memory windows are
displayed.

• Address. Enter the starting address of the memory location you want to view.
• Track Expression. Checking this option will cause the memory window to automatically reevaluate

and change its start address based on the expression associated with its start address. It will
reevaluate and reposition itself when the target halts, restarts, or changes its symbols. For example, if
you opened a memory window at SP, the window would continually reposition itself when you stepped
through code, loaded a new program, or modified the register itself.

• Q-Value. You can display integers using a Q value. This value represents integer values as more
precise binary values. A decimal point is inserted in the binary value; the offset from the least
significant bit (LSB) is determined by the Q value as follows:
New_integer_value = integer / (2^(Q value))
A Q value of xx indicates a signed 2s complement integer whose decimal point is displaced xx places
from the least significant bit (LSB).

• Format. From the drop-down list, select the format of the memory display. More information on the
different formats can be found in the online help.

• Enable Reference Buffer. Save a snapshot of a specified area of memory that can be used for later
comparison.

DebugSPRU509F–May 2005 67

www.ti.com

5.2.6 Register Window

Basic Debugging

• Start Address. Enter the starting address of the memory locations you want to save in the Reference
Buffer. This field only becomes active when Enable Reference Buffer is selected.

• End Address. Enter the ending address of the memory locations you want to save in the Reference
Buffer. This field only becomes active when Enable Reference Buffer is selected.

• Update Reference Buffer Automatically. Select this check box to automatically overwrite the
contents of the reference buffer with the current memory contents at the specified range of addresses.
When this option is selected, the Reference Buffer is updated whenever the memory window is
refreshed (for example, when the Refresh Window is selected, a breakpoint is hit, or execution on the
target is halted). If this check box is not selected, the contents of the reference buffer are not changed.
This option only becomes active when Enable Reference Buffer is selected.

• Bypass Cache. This option forces the memory to always read memory contents from physical
memory. Normally, if a memory’s contents were in cache, the returned memory value would display the
value from cache, not from physical memory. If this option is enabled, Code Composer Studio will
ignore or bypass the cached memory contents.

• Highlight Cache Differences. This option highlights the value of memory locations when the cached
value and physical value differ. It is also possible to use colors to highlight the cache difference.
Choose Option→Customize→Color and select the Cache Bypass Differences option under the Screen
Element drop-down box.

See the online help sections on the memory window for more detailed information.

The register window enables you to view and edit the contents of various registers on the target.

Figure 5-17. Register Window

To access the register window, select View→Registers and select the register set that you would like to
view/edit.

To access the contents of a register, select Edit→Edit Register, or from the register window, double-click
on a register, or right-click in the register window and select Edit Register.

Figure 5-18. Editing a Registry Value

Debug68 SPRU509F–May 2005

www.ti.com

5.2.7 Disassembly/Mixed Mode

5.2.8 Call Stack

Basic Debugging

5.2.7.1 Disassembly Mode

When you load a program onto your actual or simulated target, the debugger automatically opens a
disassembly window.

Figure 5-19. Disassembly Window

The disassembly window displays the disassembled instructions and symbolic information needed for
debugging. Disassembly reverses the assembly process and allows the contents of memory to be
displayed as assembly language code. Symbolic information consists of symbols and strings of
alphanumeric characters that represent addresses or values on the target.

As you step through your program using the stepping commands, the PC advances to the instruction.

5.2.7.2 Mixed Mode

In addition to viewing disassembled instructions in the disassembly window, the debugger enables you to
view your C source code interleaved with disassembled code, allowing you to toggle between source
mode and mixed mode. To change your selection, toggle View→Mixed Source/ASM, or right-click in the
source file window and select Mixed Mode or Source Mode, depending on your current selection.

Use the Call Stack window to examine the function calls that led to the current location in the program.

To display the Call Stack:

1. Select View→Call Stack, or click the View Stack button on the Debug toolbar.

Figure 5-20. Call Stack Window

2. Double-click on a function listed in the Call Stack window. The source code containing that function is
displayed in a document window. The cursor is set to the current line within the desired function. Once
you select a function in the Call Stack window, you can observe local variables that are within the
scope of that function.

The call stack only works with C programs. Calling functions are determined by walking through the linked
list of frame pointers on the runtime stack. Your program must have a stack section and a main function;
otherwise, the call stack displays the message C source is not available. Also note that the Call Stack
window displays only the first 100 lines of output, it omits any lines over 100.

DebugSPRU509F–May 2005 69

www.ti.com

5.2.9 Symbol Browser

5.2.10 Command Window

Basic Debugging

The Symbol Browser window (Figure 5-21) displays five tabbed windows for a loaded COFF output file
(*.out):

• All associated files
• Functions
• Global variations
• Types
• Labels

Each tabbed window contains nodes representing various symbols. A plus sign (+) preceding a node
indicates that the node can be further expanded. To expand the node, simply click the + sign. A minus
sign (?) precedes an expanded node. Click the ? sign to hide the contents of that node.

To open the Symbol Browser window, select View→Symbol Browser.

Figure 5-21. Symbol Browser Window

For detailed information on the Symbol Browser tool, see the Symbol Browser topics provided in the
online help.

The Command Window enables you to specify commands to the debugger using the TI Debugger
command syntax.

Many of the commands accept C expressions as parameters. This allows the instruction set to be
relatively small, yet powerful. Because evaluating some types of C expressions can affect existing values,
you can use the same command to display or change a value.

To open the Command Window, select Tools→Command Window.

Figure 5-22. Command Window

For detailed information on the Command Window, see the Command Window topics provided in the
online help.

Debug70 SPRU509F–May 2005

www.ti.com

5.3 Advanced Debugging Features

5.3.1 Advanced Event Triggering (AET)

Advanced Debugging Features

Advanced Event Triggering (AET) uses Event Analysis and Event Sequencer tools to simplify hardware
analysis.

Event Analysis uses a simple interface to configure common hardware debug tasks called jobs. You can
easily set breakpoints, action points, and counters by using a context menu and performing a simple
drag-and-drop action. You can access Event Analysis from the Tools menu, or by right-clicking in a source
file.

Event Sequencer looks for conditions in your target program and initiates specific actions when it detects
these conditions. While the CPU is halted, you define the conditions and actions, then run your target
program. The sequence program looks for the specified condition and performs the requested action.

5.3.1.1 Event Analysis

The following jobs can be performed using Event Analysis:

• Setting breakpoints
– Hardware breakpoints
– Hardware breakpoints with count
– Chained breakpoint
– Global hardware breakpoint

• Setting action/watch points
– Data actionpoint
– Program actionpoint
– Watchpoint
– Watchpoint with data

• Setting counters
– Data access counter
– Profile counter
– Watchdog timer
– Generic counter

• Other
– Benchmark to here
– Emulation pin configuration

For detailed information on the Event Analysis tool, see the Event Analysis topics provided in the online
help.

To configure a job using the Event Analysis Tool, Code Composer Studio IDE must be configured for a
target processor that contains on-chip analysis features. You can use Event Analysis by selecting it from
the Tools menu or by right-clicking in a source file. Once you configure a job, it is enabled and will perform
analysis when you run code on your target. For information about how to enable or disable a job that is
already configured, see the Advanced Event Triggering online help.

1. Select Tools→Advanced Event Triggering→Event Analysis to view the Event Analysis window.

DebugSPRU509F–May 2005 71

www.ti.com

Advanced Debugging Features

Figure 5-23. Event Analysis Window

2. Right-click in the Event Analysis Window and choose Event Triggering→Job Type→Job. The job menu
is dynamically built and dependent on the target configuration. If a job is not supported on your target,
the job is grayed out.

3. Type your information in the Job dialog box.
4. Click Apply to program the job and save your changes.

5.3.1.2 Event Sequencer

Event Sequencer looks for conditions in your target program and initiates specific actions when it detects
these conditions. While the CPU is halted, you define the conditions and actions, then run your target
program. The sequence program looks for the specified condition and performs the requested action.

To use the Event Sequencer, Code Composer Studio IDE must be configured for a target processor that
contains on-chip analysis features. You can use the Event Sequencer by selecting it from the Tools menu.
Once you create an Event Sequencer program, it is enabled and performs analysis when you run code on
your target. For information on creating an Event Sequencer program, see the Advanced Event Triggering
online help.

To enable the Event Sequencer:

1. Select Tools→Advanced Event Triggering→Event Sequencer. The Event Sequencer displays.

Debug72 SPRU509F–May 2005

www.ti.com

Add a Global
Action

Add a Global
If statement

Add a state

Add a boolean
“and” operator

Add open and close
parenthesis

Erase the Sequencer
program

Launch online help

5.4 Real-Time Debugging

5.4.1 Real-Time Mode

Real-Time Debugging

Figure 5-24. Event Sequencer

2. Right-click in the Event Sequencer window or use the Event Sequencer toolbar buttons to create a
sequencer program.

Traditional debugging approaches (stop mode) require that programmers completely halt their system,
which stops all threads and prevents interrupts from being handled. Stop mode can be exclusively used
for debug as long as the system/application does not have any real-time constraints. However, for a better
gauge of your application’s real-world system behavior, Code Composer Studio IDE offers several options,
including Real-Time Mode (Section 5.4.1), Rude Real-Time Mode (Section 5.4.2), and Real-Time Data
Exchange (Section 5.4.3).

Real-time mode allows time-critical interrupts in the foreground code to be taken while the target is halted
in background code. A time-critical interrupt is an interrupt that must be serviced even when background
code is halted. For example, a time-critical interrupt might service a motor controller or a high-speed timer.
You can suspend program execution in multiple locations, which allows you to break within one
time-critical interrupt while still servicing others.

To enable real-time mode debug:

1. You may need to configure interrupts and set breakpoints to get ready for real-time mode, see the
online tutorial on Real-Time Emulation for more information. Select Debug→Real-time Mode. The
status bar at the bottom of the control window now indicates POLITE REALTIME.

2. Configure the real-time refresh options by selecting View→Real-Time Refresh Options. The first option
will specify how often the Watch Window is updated. Checking the Global Continuous Refresh check
box will continuously refresh all windows that display target data, including memory, graph, and watch
windows. To continuously update only a certain window, uncheck this box and select Continuous
Refresh from the window’s context menu.

3. Click OK to close the dialog box.
4. Select View→Registers→Core Registers to open the Core Register window. The debug interrupt

enable register (DIER) should be visible in the list. DIER designates a single interrupt, a specific subset
of interrupts, or all interrupts that you selected via the interrupt enable registers (IER) as real-time
(time-critical) interrupts. DIER mirrors the architecturally specified IER.

DebugSPRU509F–May 2005 73

www.ti.com

5.4.2 Rude Real-Time Mode

5.4.3 Real-Time Data Exchange (RTDX)

Real-Time Debugging

5. Right-click on a register and select Edit Register.
6. Enter the new register value to specify which interrupts to designate as real-time interrupts.
7. Click Done to close the Edit Registers dialog box.
8. Code Composer Studio IDE has been configured for Real-Time Mode debug.

High priority interrupts, or other sections of code can be extremely time-critical, and the number of cycles
taken to execute them must be kept at a minimum or to an exact number. This means debug actions (both
execution control and register/memory accesses) may need to be prohibited in some code areas or
targeted at a specific machine state. In default real-time mode, the processor runs in polite mode by
absence of privileges, i.e., debug actions will respect the appropriate action delaying and not intrude in the
debug sensitive windows.

However, debug commands (both execution control and register/memory access) can fail if they are not
able to find a window that is not marked debug action-sensitive. In order to have the debugger gain
control, you must change real-time debug from polite to rude mode. In rude real-time mode, the
possession of privileges allows a debug action to override any protection that may prevent debug access
and be executed successfully without delay. Also, you can not debug critical code regions until they are
switched into rude real- time mode.

To enable rude real-time mode, perform one of the following:

• Select Perform a Rude Retry from the display window when a debug command fails.
• Select Enable Rude Real-time Mode from Debug menu when Real-Time is enabled.

When rude real-time is enabled, the status bar at the bottom of the main program window displays RUDE
REALTIME. To disable rude real-time, deselect the Enable Rude Real-time Mode item in the Debug
menu. The status bar now reads POLITE REALTIME.

If rude real-time is enabled and you halt the CPU, there is a good chance that the CPU will halt even
when debug accesses are blocked, which might be within a time-critical ISR. This prevents the CPU from
completing that ISR in the appropriate amount of time, as the CPU cannot proceed until you respond to
the breakpoint. To prevent this problem, you must switch back to polite real-time mode by deselecting
Enable Rude Real-time Mode.

See the online help section Debugging→Real Time Debugging for more detailed information on real-time
mode.

The DSP/BIOS Real-Time Analysis (RTA) facilities utilize the Real-Time Data Exchange (RTDX) link to
obtain and monitor target data in real-time. You can utilize the RTDX link to create your own customized
interfaces to the DSP target by using the RTDX API Library.

Real-time data exchange (RTDX) transfers data between a host computer and target devices without
interfering with the target application. This bi-directional communication path provides for data collection
by the host as well as host interaction with the running target application. The data collected from the
target may be analyzed and visualized on the host. Application parameters may be adjusted using host
tools, without stopping the application. RTDX also enables host systems to provide data stimulation to the
target application and algorithms.

RTDX consists of both target and host components. A small RTDX software library runs on the target
application. The target application makes function calls to this library’s API in order to pass data to or from
it. This library uses a scan-based emulator to move data to or from the host platform via a JTAG interface.
Data transfer to the host occurs in real-time while the target application is running.

On the host platform, an RTDX host library operates in conjunction with Code Composer Studio IDE. Data
visualization and analysis tools communicate with RTDX through COM APIs to obtain the target data
and/or to send data to the DSP application.

Debug74 SPRU509F–May 2005

www.ti.com

User
interface

RTDX

library
host

Code
composer

Host
client

interface
COM

Target

Host

JTAG interface

RTDX
target
library

Target
application

log file
Optional

Real-Time Debugging

The host library supports two modes of receiving data from a target application: continuous and
non-continuous. In continuous mode, the data is simply buffered by the RTDX Host Library and is not
written to a log file. Continuous mode should be used when the developer wants to continuously obtain
and display the data from a target application, and does not need to store the data in a log file. In
non-continuous mode, data is written to a log file on the host. This mode should be used when developers
want to capture a finite amount of data and record it in a log file.

For details on using RTDX, see the online help or tutorial.

5.4.3.1 RTDX Data Flow

RTDX forms a two-way data pipe between a target application and a host client. This data pipe consists of
a combination of hardware and software components as shown below.

Figure 5-25. RTDX Data Flow

5.4.3.2 Configuring RTDX Graphically

The RTDX tools allow you to configure RTDX graphically, set up RTDX channels, and run diagnostics on
RTDX. These tools allow you to enhance RTDX functionality when transmitting data.

RTDX has three menu options: Diagnostics Control, Configuration Control, and Channel Viewer Control.

Diagnostics Control. RTDX provides the RTDX Diagnostics Control to verify that RTDX is working
correctly on your system. The diagnostics test the basic functionality of target-to-host transmission and
host-to-target transmission. To open the RTDX Diagnostics Control, select Tools→RTDX→Diagnostics
Control. This tests are only available if RTDX is enabled.

DebugSPRU509F–May 2005 75

www.ti.com

Real-Time Debugging

Figure 5-26. RTDX Diagnostics Window

Configuration Control. This is the main RTDX window. It allows you to:
• View the current RTDX configuration settings
• Enable or disable RTDX
• Access the RTDX Configuration Control Properties page to reconfigure RTDX and select port

configuration settings
To open the RTDX Configuration Control, select Tools→RTDX→Configuration Control.

Figure 5-27. RTDX Configuration Window

Channel View Control. The RTDX Channel Viewer Control is an Active X control that automatically
detects target-declared channels and adds them to the viewable list. The RTDX Channel Viewer Control
also allows you to:
• Remove or add a target-declared channel from the viewable list
• Enable or disable a channel that is on the list
To open the RTDX Channel Viewer Control in Code Composer Studio IDE, select
Tools→RTDX→Channel Viewer Control. The Channel Viewer Control window displays.

Figure 5-28. RTDX Channel Viewer Window

Debug76 SPRU509F–May 2005

www.ti.com

Real-Time Debugging

Click on the Input and Output Channels tabs to display a list of those channels. Both the Output and Input
Channels windows allow you to view, delete, and re-add channels.

Checking the Auto-Update feature enables you to automatically update information for all channels without
refreshing the display. If you are not using the Auto-Update feature, right-click on a tab and select Refresh
from the context menu to update information for all channels.

Note:
For the RTDX Channel View Control to receive extended channel information for a
specific channel, an RTDX client must have that channel open.

5.4.3.3 Sending a Single Integer to the Host

The basic function of RTDX is to send a single integer to the host. The following steps provide an
overview of the process of sending data from the target to the host and from the host to the target. For
specific commands and details on transmitting different types of data, see the online RTDX help or tutorial.

To send data from your target application to the host:

1. Prepare your target application to capture real-time data by inserting specific RTDX syntax into your
application code to allow real-time data transfer from the target to the host. Although the process for
preparing a target application is the same for all data types, different data types require different
function calls for data transfer. Therefore, sending an integer to the host requires you to add a function
call that is specific to only transmitting a single integer, instead of sending an array of integers to the
host.

2. Prepare your host client to process the data by instantiating one RTDX object for each desired
channel, opening a channel for the objects specified, and calling any other desired functions.

3. Start Code Composer Studio IDE.
4. Load your target application onto the TI processor.
5. Check the Enable RTDX box under Tools→RTDX→Configuration Control.
6. Run your target application to capture real-time data and send it to the RTDX Host Library.
7. Run your host client to process the data.

For details on using RTDX, see the online RTDX help or tutorial.

5.4.3.4 Receiving Data from the Host

A client application can send data to the target application by writing data to the target. Data sent from the
client application to the target is first buffered in the RTDX Host Library. The data remains in the RTDX
Host Library until a request for data arrives from the target. Once the RTDX Host Library has enough data
to satisfy the request, it writes the data to the target without interfering with the target application.

The state of the buffer is returned into the variable buffer state. A positive value indicates the number of
bytes the RTDX Host Library has buffered which the target has not yet requested. A negative value
indicates the number of bytes that the target has requested which the RTDX Host Library has not yet
satisfied.

To send data from a host client to your target application:

1. Prepare your target application to receive data by writing a simple RTDX target application that reads
data from the host client.

2. Prepare your host client to send data by instantiating one RTDX object for each desired channel,
opening a channel for the objects specified, and calling any other desired functions.

3. Start Code Composer Studio IDE.
4. Load your target application onto the TI processor.
5. Check the Enable RTDX box under Tools→RTDX→Configuration Control.
6. Run your target application.
7. Run your host client.

For details on using RTDX, see the online RTDX help or tutorial.

DebugSPRU509F–May 2005 77

www.ti.com

5.5 Automation (for Debug)

5.5.1 Using the General Extension Language (GEL)

5.5.2 Scripting Utility for Debug

5.6 Reset Options

5.6.1 Target Reset

5.6.2 Emulator Reset

Automation (for Debug)

As mentioned earlier, GEL scripts can be used to create custom GEL menus and automate steps in Code
Composer Studio. Section 4.6.1 described how to use built-in GEL functions to automate various project
management steps. There are also many built-in GEL functions that can be used to automate debug
steps, such as setting breakpoints, adding variables to the Watch Window, beginning execution, halting
execution, and setting up File I/O.

The scripting utility (Section 4.6.2) also has commands that can automate many debug steps. See the
online help that comes with the scripting utility for more information.

It may be necessary to perform a reset of the target or the emulator using commands integrated in the
Code Composer Studio IDE. The availability of these reset commands depends on the IDE connection to
the target. See Section 3.1.3 for more information on connecting or disconnecting the target.

Target reset initializes the contents of all registers to their power-up state, and halts execution of the
program. If the target board does not respond to this command and you are using a kernel-based device
driver, the CPU kernel may be corrupt. In this case, you must reload the kernel.

The simulator initializes the contents of all registers to their power-up state, according to target simulation
specifications.

To reset the target processor, select Debug→Reset CPU.

Note:
Connection must be established with the target for the Debug→Reset CPU option to be
available.

Some processors require putting the processor into its functional run state before a hard reset will work. In
this case, the only way to force the processor back into this functional run state is to reset the emulator.
An emulator reset will pull the TRST pin active, forcing the device to the functional run mode.

The Reset Emulator option becomes available whenever Code Composer Studio is disconnected from the
target. To reset the emulator, choose Debug→Reset Emulator. Upon running Reset Emulator, the
hardware is left in a free running state and you can now manually reset the target hardware by pressing
the reset button or by selecting Debug→Reset CPU. Note that this does not apply to ARM devices.

Debug78 SPRU509F–May 2005

Chapter 6
SPRU509F–May 2005

Analyze/Tune

To create an efficient application, you may need to focus on performance, power, code
size, or cost, depending on your goals.

Application Code Analysis is the process of gathering and interpreting data about the
factors that influence an application’s efficiency. Application Code Tuning is the
modification of code to improve its efficiency. DSP developers can analyze and tune
their application as often as necessary to meet the efficiency goals defined by their
customers, application, and hardware.

Code Composer Studio IDE provides various tools to help developers analyze and tune
their applications.

Topic .. Page

6.1 Application Code Analysis ... 80
6.2 Application Code Tuning (ACT) .. 84

Analyze/Tune 79SPRU509F–May 2005

www.ti.com

6.1 Application Code Analysis

6.1.1 Data Visualization

Application Code Analysis

The analysis tools offered by Code Composer Studio IDE have been designed to gather important data
and present it to the DSP developer.

Code Composer Studio IDE can graph data processed by your program in a variety of ways, including
time/frequency, constellation diagram, eye diagram, and image.

Access these graphs by choosing View→Graph and selecting the desired graph. Then you can specify the
graph properties in the graph property dialog. The example below shows a Single Time (Time/Frequency)
graph property dialog.

Figure 6-1. Sample Graph Properties Dialog

Once the properties are configured, click the OK button to open a graph window that plots the specified
data points.

Analyze/Tune80 SPRU509F–May 2005

www.ti.com

6.1.2 Simulator Analysis

6.1.3 Emulator Analysis

Application Code Analysis

Figure 6-2. Example Graph

See the online help or tutorials for more detailed information on this topic.

The Simulator Analysis tool reports on particular system events so you can accurately monitor and
measure your program performance.

User options for simulator analysis include:

• Enable/disable analysis
• Count the occurrence of selected events
• Halt execution whenever a selected event occurs
• Delete count or break events
• Create a log file
• Reset event counter

To use the Simulator Analysis tool:

1. Load your program.
2. Start the analysis tool. Select Tools→Simulator Analysis for your device.
3. Right-click in the Simulator Analysis window and select Enable Analysis from the context menu, if it is

not already enabled.
4. Run or step through your program.
5. Analyze the output of the analysis tool.

For detailed information on the Simulator Analysis tool, see the Simulator Analysis topics provided in the
online help.

The Emulator Analysis tool allows you to set up, monitor, and count events and hardware breakpoints.

To start the Emulator Analysis tool, load your program, and select Tools→Emulator Analysis for your
device from the menu bar.

The Emulator Analysis window contains the following information in columns:
• Event. The event name.
• Type. Whether the event is a break or count event.
• Count. The number of times the event occurred before the program halted.
• Break Address. The address at which the break event occurred.
• Routine. The routine in which the break event occurred.

Analyze/TuneSPRU509F–May 2005 81

www.ti.com

6.1.4 DSP/BIOS Real-Time Analysis (RTA) Tools

DSP/BIOS kernel interface

Host command
server

Host
data

channels

Statistics
accumulators

Software
event
logs

Target DSP platform

Real−
time
data
link

Host computer

Development

Execution trace
Timing analysis
Regression testing
Parametric variation

Deployment

System console
Activity monitoring
Live signal capture
Diagnostic modules

Open Message Log

Open Statistics View

Open Host Channel Control

Open RTA Control Panel

Open Execution Graph

Open CPU Load Graph

Open Kernel/Object View

Application Code Analysis

Note:
You cannot use the analysis feature while you are using the profiling clock.

For detailed information on the Emulator Analysis tool, see the Emulator Analysis topics provided in the
online help.

The DSP/BIOS Real-Time Analysis (RTA) features, shown in Figure 6-3, provide you with unique visibility
into your application by allowing you to probe, trace, and monitor a DSP application during execution.
These utilities piggyback upon the same physical JTAG connection already employed by the debugger,
and use this connection as a low-speed (albeit real-time) communication link between the target and host.

Figure 6-3. Real-Time Capture and Analysis

DSP/BIOS RTA requires the presence of the DSP/BIOS kernel within the target system. In addition to
providing run-time services to the application, the DSP/BIOS kernel provides support for real-time
communication with the host through the physical link. By structuring an application around the DSP/BIOS
APIs and statically created objects, you can automatically instrument the target for capturing and
uploading the real-time information that drives the CCStudio visual analysis tools. Supplementary APIs
and objects allow explicit information capture under target program control as well. From the perspective
of its hosted utilities, DSP/BIOS affords several broad capabilities for real-time program analysis.

The DSP/BIOS Real-Time Analysis tools can be accessed through the DSP/BIOS toolbar (Figure 6-4).

Figure 6-4. DSP/BIOS RTA Toolbar

Analyze/Tune82 SPRU509F–May 2005

www.ti.com

Application Code Analysis

Here is a description of each element on the toolbar:

• Message Log. Displays time-ordered sequences of events written to kernel log objects by independent
real-time threads. This is useful for tracing the overall flow of control in the program. There are two
ways in which the target program logs events:

– Explicitly, through DSP/BIOS API calls. For example, this can be done through LOG_printf(&trace,
“hello world!”); , where trace is the name of the log object.

– Implicitly, by the underlying kernel when threads become ready, dispatched, and terminated. An
example of this would be log events in the Execution Graph Details.
You can output the log to a file by right-clicking in the Message Log window and selecting Property
Page.

• Statistics View. Displays summary statistics amassed in kernel accumulator objects, reflecting
dynamic program elements ranging from simple counters and time-varying data values, to elapsed
processing intervals of independent threads. The target program accumulates statistics explicitly
through DSP/BIOS API calls or implicitly by the kernel when scheduling threads for execution or
performing I/O operations. You can change various settings by right-clicking in the Statistics View
window and selecting Property Page.

• Host Channel Control. Displays host channels defined by your program. You can use this window to
bind files to these channels, start the data transfer over a channel, and monitor the amount of data
transferred. Binding kernel I/O objects to host files provides the target program with standard data
streams for deterministic testing of algorithms. Other real-time target data streams managed with
kernel I/O objects can be tapped and captured to host files on-the-fly for subsequent analysis.

• RTA Control Panel. Controls the real-time trace and statistics accumulation in target programs. In
effect, this allows developers to control the degree of visibility into the real-time program execution. By
default, all types of tracing are enabled. You must check the Global host enable option to enable the
tracing types. Your program can also change the settings in this window. The RTA Control Panel
checks for any programmatic changes at the rate set for the RTA Control Panel in the Property Page.
In the Property Page, you can also change refresh rates for any RTA tool, such as the Execution
Graph.

• Execution Graph. Displays the execution of threads in real-time. Through the execution graph you
can see the timing and the order in which threads are executed. Thick blue lines indicate the thread
that is currently running, that is, the thread using the CPU. More information about different lines in the
graph can be accessed by right-clicking in the Execution Graph window and selecting Legend. If you
display the Execution Graph Details in a Message Log window, you can double-click on a box (a
segment of a line) in the Execution Graph to see details about that event in text form. You can also
hide threads in the graph by right-clicking in the Execution Graph window and selecting Property Page.

• CPU Load Graph. Displays a graph of the target CPU processing load. The most recent CPU load is
shown in the lower-left corner and the highest CPU load reached so far is shown in the lower-right
corner. The CPU load is defined as the amount of time not spent performing the low-priority task that
runs when no other thread needs to run. Thus, the CPU load includes any time required to transfer
data from the target to the host and to perform additional background tasks. The CPU load is averaged
over the polling rate period. The longer the polling period, the more likely it is that short spikes in the
CPU load are not shown in the graph. To set the polling rate, open the RTA Control Panel window and
right-click in the window. Select Property Page, and in the Host Refresh Rates tab, set the polling rate
with the Statistics View / CPU Load Graph slider and click OK.

• Kernel/Object View. Displays the configuration, state, and status of the DSP/BIOS objects currently
running on the target. This tool shows both the dynamic and statically configured objects that exist on
the target. You can right-click in the window and select Save Server Data to save the current data.

Note:
When used in tandem with the Code Composer Studio IDE standard debugger during
software development, the DSP/BIOS real-time analysis tools provide critical visibility into
target program behavior during program execution when the debugger can offer little
insight. Even after the debugger halts the program and assumes control of the target,
information already captured through DSP/BIOS can provide invaluable insights into the
sequence of events that led up to the current point of execution.

Analyze/TuneSPRU509F–May 2005 83

www.ti.com

6.1.5 Code Coverage and Multi-Event Profiler Tool

6.2 Application Code Tuning (ACT)

6.2.1 Tuning Dashboard

Application Code Tuning (ACT)

The DSP/BIOS real-time analysis tools also can act as the software counterpart of the hardware logic
analyzer. The embedded DSP/BIOS kernel and host analysis tools combine to form a new set of
manufacturing test and field diagnostic tools. These tools are capable of interacting with application
programs in operative production systems through the existing JTAG infrastructure.

The overhead cost of using DSP/BIOS is minimal, therefore instrumentation can be left in to enable field
diagnostics, so that developers can capture and analyze the actual data that causes failures.

The Code Coverage and Multi-event Profiler tool provides two distinct capabilities:

• Code coverage provides visualization of source line coverage to help developers to construct tests to
ensure adequate code coverage.

• Multi-event profiling provides function profile data collected over multiple events of interest – all in a
single simulation run of the application. Events include CPU cycles, instructions executed, pipeline
stalls, cache hits, misses and so on. This tool helps identify possible factors affecting performance.

See the Code Coverage and Multi-event Profiler User’s Guide (SPRU624) for further details.

The tuning process begins where the analysis stage ends. When application code analysis is complete,
the DSP developer should have identified inefficient code. The tuning process consists of determining
whether inefficient code can be improved, setting efficiency objectives, and attempting to meet those goals
by modifying code. Code Composer Studio links several tools together into an organized method of
tuning, as well as providing a single point for analyzing tuning progress.

The Dashboard is a central focal point for the tuning process. It displays build- and run-time profile data
suggestions for which tuning tool to use, and it can launch each of the tools. The Dashboard is the main
interface during the tuning phase of the development cycle.

6.2.1.1 Advice Window

The Advice window is a component of the Dashboard that displays tuning information. It guides you
through the tuning process, explaining and detailing the appropriate steps, and displaying helpful
information, links to other tools and documentation, and important messages.

The Advice window should be consulted when first using a tool, or to determine the appropriate action to
take at any point in the tuning procedure.

Code Composer Studio IDE initially starts in the Debug layout. To open the Advice window, switch to the
Tuning layout by clicking the tuning fork icon on the toolbar. Alternatively, you can choose Advice from the
Profile→Tuning menu item. The Advice window will open at the left of the Code Composer Studio IDE
screen and display the Welcome information.

Analyze/Tune84 SPRU509F–May 2005

www.ti.com

Application Code Tuning (ACT)

Figure 6-5. Tuning Dashboard Advice Window

At the top of the Advice Window there is a toolbar with buttons for Internet-style navigation of advice
pages as well as buttons for opening the main advice pages. Click on the arrows in the toolbar to navigate
back and forth through the history of advice pages for that tab. There are one or more tabs below the
center pane. These tabs display different advice pages, allowing you to carry out more than one task at
once. Click on the tabs at the bottom of the Advice Window to switch between open pages. To close the
active tab, right-click on the Advice Window and choose Close Active Tab from the context menu.

The Welcome advice page contains links to descriptions of each of the major tuning tools. At the bottom of
the Welcome advice page, there is a blue box containing suggestions for the next step in the tuning
process. These blue Action boxes are found throughout the Advice Window pages.

When navigating through the Advice Window pages, red warning messages may appear. These
messages serve as helpful reminders and contain valuable solutions for various problems.

When you have launched a tool, such as CodeSizeTune, an advice tab for that tool appears at the bottom
of the Advice window. The page contains information about the tool, including its function, use, and how to
apply the tool for optimum tuning efficiency.

6.2.1.2 Profile Setup

As the Advice Window indicates, Code Composer Studio IDE must identify the desired code elements for
tuning before beginning the process. This can be accomplished using Profile Setup. The Profile Setup
window should be used at the beginning of the tuning process to specify the data to be collected and the
requisite sections of code.

The Profile Setup window can be opened using the Advice Window. In the blue Action box at the bottom
of the Welcome page, click the link to open the Setup Advice page. The first Action box will contain a link
to open the Profile Setup window. Profile Setup can also be launched from the main menu topic
Profile→Setup.

Analyze/TuneSPRU509F–May 2005 85

www.ti.com

Application Code Tuning (ACT)

The Activities tab displays the activity for which the profiling session will collect data for your application.
The Ranges tab specifies the program ranges for which data is collected. Functions, loops, and arbitrary
segments of code can be added to the Ranges tab for collection of tuning information. Use the exit points
in the Control tab to notify Code Composer Studio when to stop data collection. You can also use the
Control tab to isolate different sections of code by adding Halt or Resume Collection points. The Custom
tab collects custom data, such as cache hits or CPU idle cycles.

6.2.1.3 Goals Window

Tuning an application requires setting and reaching efficiency goals, so Code Composer Studio provides a
method of recording numerical goals and tracking your progress.

The Goals Window displays a summary of application data, including values for the size of the code and
number of cycles, that can be updated each time the code is run. It also compares the current data
against both the last run's data and the defined goals.

To open the Goals Window, select Goals from the Profile→Tuning menu.

Figure 6-6. Goals Window

If an application has been loaded and profiling has been set up, the Goals Window can be populated with
data simply by running the application. To record objectives for tuning, click in the Goals column, type in
the goal and press Enter. If a goal has been reached, the data will be displayed in green and in
parentheses. Otherwise, the data will appear in red. When the application is restarted and run, the Current
values in the Goals Window will move to the Previous column and the difference will be displayed in the
Delta column. The Goals Window also allows you to save or view the contents in a log at any time, by
using the logging icons at the left side of the window.

6.2.1.4 Profile Viewer

The Profile Viewer displays collected data during the tuning process. It consists of an information grid.
Each row corresponds to the elements of code selected in the Ranges tab of the Profile Setup window.
The columns store the collected data for each profiled section of code, as selected in the Activities and
Custom tabs of the Profile Setup window.

The Profile Viewer provides a single location for the display of all collected information during the tuning
process. Ranges can be sorted by different data values. Data sets displayed in the Profile Viewer can be
saved, restored, and compared with other data sets.

The Profile Viewer pinpoints the most inefficient sections of code. For instance, to determine which
function results in the most cache stalls, the cache stall data in the Profile Viewer can be sorted from
largest to smallest. Sections of the function can then be profiled to determine exactly what code is
generating cache stalls.

To open the Profile Viewer, select Profile→Viewer from the main menu. Alternatively, navigate to the
Setup tab in the Advice Window. At the bottom of the Setup Advice page, click on the Profile Data Viewer
link to display the Profile Viewer in the lower portion of the screen. If tuning has been set up using the
Profile Setup window, running the application will display data in the Profile Viewer. The view can be
customized by dragging and dropping rows and columns. The data can be saved and restored using the
Profile Viewer buttons, and it can be sorted by double-clicking on the title of a column. In addition, several
Profile Viewers can be opened simultaneously.

Analyze/Tune86 SPRU509F–May 2005

www.ti.com

6.2.2 Compiler Consultant

6.2.3 CodeSizeTune (CST)

Application Code Tuning (ACT)

The Compiler Consultant tool analyzes your C/C++ source code and provides you with specific advice on
changes that will improve performance. The tool displays two types of information: Compile Time Loop
Information and Run Time Loop Information. Compile Time Loop Information is created by the compiler.
Run Time Loop Information is data gathered by profiling your application. Each time you compile or build
your code, Consultant will analyze the code and create suggestions for different optimization techniques to
improve code efficiency. You then have the option of implementing the advice and building the project
again. You can then use the Profile Viewer window to view the results of the optimization.

When you analyze Compiler Consultant information, sort information in the Profile Viewer by the different
columns, as follows:

• If you didn’t profile, sort on Estimated Cycles Per Iteration to see which loops take the most estimated
cycles in a single iteration (Compile Time Loop Information).

• If you profiled with the activity Collect Run Time Loop Information, sort on cycle.CPU: Excl. Total to
see which loops execute the most cycles, ignoring system effects.

• If you profiled with the activity Profile all Functions and Loops for Total Cycles, sort on cycle.Total:
Excl. Total to see which loops execute the most cycles, including system effects.

• Sort on Advice Count to see which loops have the most advice.

This sorting will bring the rows to the top of the Profile Viewer that consume the most CPU cycles and
which should gain the most performance benefit by tuning. You can then work on tuning one loop at a
time. Double-clicking on the Advice Types entry for any loop row will bring up the full advice for that loop
in the Consultant tab of the Advice window.

After you have applied the advice to fix individual loops, it is useful to hide that row in the Profile Viewer
window. Hiding rows reduces the amount of information present in the Profile Viewer window. Rows can
always be unhidden.

For more information, see Compiler Consultant in the online help under Application Code Tuning.

CodeSizeTune (CST) enables you to easily optimize the trade-off between code size and cycle count for
your application. Using a variety of profiling configurations, CodeSizeTune will profile your application,
collect data on individual functions, and determine the best combinations of compiler options. CST will
then produce a graph of these function-specific option sets, allowing you to graphically choose the
configuration that best fits your needs.

Previous users of Code Composer Studio will recognize CST as a replacement for the Profile-Based
Compiler (PBC).

1. To begin, check out CodeSizeTune in the online help under Application Code Tuning to make sure
your application meets the criteria for CST profiling.

2. CST will use several profile collection options sets to build and profile your application. Using the
profile information it gains on function performance under several different profile collection options,
CST pieces together collection options that contain compiler options at the function level. To find out
more about how to build and profile, see Build and Profile under CodeSizeTune in the online help.

3. The best function-specific options sets are then plotted on a two-dimensional graph of code size
versus performance, which allows you to graphically select the optimum combination of size and speed
to meet your system needs. For more on selecting a desired collection options set, see the topic Select
Desired Speed and Code Size under CodeSizeTune in the online help.

4. Finally, you will save your selected collection options set to the Code Composer Studio project. See
Save Settings and Close under CodeSizeTune in the online help.

The Advice window guide you though the steps of the process. When you launch CodeSizeTune, the
CodeSizeTune tab of the advice window will be displayed automatically. See CodeSizeTune Advice
Window in the online help for more information.

Analyze/TuneSPRU509F–May 2005 87

www.ti.com

6.2.4 Cache Tune

Application Code Tuning (ACT)

Figure 6-7. CodeSizeTune Advice

The CacheTune tool provides a graphical visualization of cache accesses over time. This tool is highly
effective at highlighting non-optimal cache usage (due to conflicting code placement, inefficient data
access patterns, etc.). Using this tool, you can significantly optimize cache efficiency, thereby reducing the
cycles consumed in the memory subsystem and improving the cache efficiency of the overall application.

All the memory accesses are color-coded by type. Various filters, panning, and zoom features facilitate
quick drill-down to view specific areas. This visual/temporal view of cache accesses enables quick
identification of problem areas, such as conflict, capacity, or compulsory misses.

The Tuning→CacheTune menu item launches the Cache Tune tool showing the latest cache traces.
Various options must be chosen in the Profile Setup to view the cache traces, see the online help for more
information. There are three kinds of cache trace files:

• Program Cache trace
• Data Cache trace
• Cross Cache trace

The data cache trace tab is displayed by default. If no cache traces have been collected, then the graph is
empty.

Once the tool is launched, you can view other cache data files by opening a saved dataset.

Datasets can be opened by clicking the Open dataset button, pressing its hotkey, or clicking the Load
dataset item in the context menu.

See the Cache Analysis User’s Guide (SPRU575) on the TI website for further information on the Cache
Analysis tool.

Analyze/Tune88 SPRU509F–May 2005

www.ti.com

Application Code Tuning (ACT)

Figure 6-8. Cache Tune Tool

Analyze/TuneSPRU509F–May 2005 89

www.ti.com

Application Code Tuning (ACT)

SPRU509F–May 200590 Analyze/Tune

Chapter 7
SPRU509F–May 2005

Additional Tools, Help, and Tips

This section identifies how to customize your IDE installation, how to update the
installation, and how to find additional help and documentation.

Topic .. Page

7.1 Component Manager ... 92
7.2 Update Advisor ... 93
7.3 Additional Help ... 94

Additional Tools, Help, and Tips 91SPRU509F–May 2005

www.ti.com

7.1 Component Manager

Tree listing of all Code
Composer Studio installa-
tions and tools

Properties of the item highlighted
in the Code Composer Studio
installation pane

Component Manager

Note:
The Component Manager is an advanced tool used primarily to customize or modify your
installation. Use this tool only to resolve component interaction in a custom or multiple
installation environment.

Multiple installations of the Code Composer Studio IDE can share installed tools. The Component
Manager provides an interface for handling multiple versions of tools with these multiple installations.

The Component Manager window displays a listing of all installations, build tools, Texas Instruments
plug-in tools, and third-party plug-in tools. When a node is selected in the tree (the left pane of the
Component Manager), its properties are displayed in the Properties pane to the right (see Figure 7-1).

With the Component Manager, you can enable or disable tools for a particular Code Composer Studio
installation. This functionality allows you to create a custom combination of tools contained within the IDE.
The Component Manager also allows you to access the Update Advisor to download the most recent
version of the tools from the web.

Figure 7-1. Component Manager

Additional Tools, Help, and Tips92 SPRU509F–May 2005

www.ti.com

7.1.1 Opening Component Manager

7.1.2 Multiple Versions of Code Composer Studio

7.2 Update Advisor

7.2.1 Registering Update Advisor

7.2.2 Checking for Tool Updates

Update Advisor

To open the Component Manager:

1. From the Help menu in the Code Composer Studio IDE, select About. The About Code Composer
Studio dialog box appears.

2. In the About dialog box, click the Component Manager button. The Component Manager window
displays.

The following is a list of requirements for maintaining multiple versions of the Code Composer Studio IDE
and related tools:

• To keep more than one version of the Code Composer Studio IDE or a related tool, you must install
each version in a different directory.

• If you install an additional version of the Code Composer Studio IDE, or an additional version of a tool
in the same directory as its previous installation, the original installation will be overwritten.

• You cannot enable multiple versions of the same tool within one installation.

The Update Advisor allows you to download updated versions of the Code Composer Studio IDE and
related tools. The Update Advisor accesses the Available Updates web site. This site displays a list of
patches, drivers, and tools available for downloading.

To use the Update Advisor, you must have Internet access and a browser installed on your machine. See
Update Advisor under the online help for complete system requirements.

Note:
You must be registered with my.TI before you can access the Available Updates web site.

If you did not register your product during installation, you can access the online registration form from the
Code Composer Studio help menu: Help→Register.

Note:
The first time you use Update Advisor, your browser may display the my.TI web page. To
register, follow the directions displayed on the page.

You must register online and have a valid subscription plan to receive downloads through Update Advisor.
You receive a 90 day free subscription service with the Code Composer Studio product. At the end of this
period, you must purchase an annual subscription service. Annual subscriptions are only available for the
full product.

In the Code Composer Studio IDE, select Help→Update Advisor→Check for Updates. If you are already
registered with my.TI and have accepted the cookie necessary for automatic log-in, your browser will go
directly to the Available Updates web site. To query the Available Updates web site, the Update Advisor
passes certain information from your machine:

• Code Composer Studio IDE product registration number
• Code Composer Studio IDE installation version
• Text description of the installed product
• List of installed plugins

Additional Tools, Help, and TipsSPRU509F–May 2005 93

www.ti.com

7.2.3 Automatically Checking for Tool Updates

7.2.4 Uninstalling the Updates

7.3 Additional Help

7.3.1 Online Help

7.3.2 Online Tutorial

Additional Help

The Available Updates web site will then list any updates appropriate for your Code Composer Studio
installation.

You have the opportunity to just download the updates, or to download and install them immediately.

You can also configure the Update Advisor to automatically check for updates.

You may check for tool updates at any time, or you can configure the Update Advisor to automatically
check for updates.

1. Select Help→Update Advisor→Settings. The Web Setting dialog box appears:

Figure 7-2. Update Advisor Web Settings

2. To enable the automatic update feature, click the check box to the left of the Enable timed check for
update upon startup field. When this field is enabled, the Update Advisor automatically checks for web
updates according to the specified schedule.

3. In the Check for Update field, specify how often the Update Advisor should check the Available
Updates web site.

4. Click OK to save your changes and close the dialog box.

Any installed update can be uninstalled to restore the previous version of the Code Composer Studio IDE.

Note that only the previous version of a tool can be restored. If you install one update for a tool, and then
install a second update for the same tool, the first update can be restored. The original version of the tool
cannot be restored, even if you uninstall both the second update and the first update.

You can access Help→Contents to guide you through certain topics step by step, perform the online
tutorials, view online help sites that provide the most current help topics, or view user manuals in PDF
format that provide information on specific features or processes. Additionally, you can access the Update
Advisor to get the newest features through Help→Update Advisor.

The online help provides links to the tutorials, multimedia demos, user manuals, application reports, and a
website (www.dspvillage.com) where you can obtain information regarding the software. Simply click on
Help and follow the links provided. For context-sensitive help, choose a relevant part of the IDE and click
F1.

The Code Composer Studio IDE Tutorial contains lessons that help you get started quickly with the Code
Composer Studio IDE. To start the Code Composer Studio IDE Tutorial, select Help→Tutorial.

Additional Tools, Help, and Tips94 SPRU509F–May 2005

	Table of Contents
	Preface
	1 Introduction
	1.1 Welcome to the World of eXpressDSP
	1.2 Development Flow

	2 Getting Started Quickly
	2.1 Launching the Code Composer Studio Development Tools
	2.1.1 Important Icons Used in Code Composer Studio

	2.2 Creating a New Project
	2.3 Building Your Program
	2.4 Loading Your Program
	2.5 Basic Debugging
	2.5.1 Go to Main
	2.5.2 Using Breakpoints
	2.5.3 Source Stepping
	2.5.4 Viewing Variables
	2.5.5 Output Window
	2.5.6 Symbol Browser

	2.6 Introduction to Help

	3 Target and Host Setup
	3.1 Setting Up the Target
	3.1.1 Code Composer Studio Setup Utility
	3.1.2 Parallel Debug Manager
	3.1.3 Connect/Disconnect

	3.2 Host IDE Customization
	3.2.1 Default Colors and Faults
	3.2.2 Default Keyboard Shortcuts
	3.2.3 Other IDE Customizations

	4 Code Creation
	4.1 Configuring Projects
	4.1.1 Creating a Project
	4.1.2 Project Configurations
	4.1.3 Project Dependencies
	4.1.4 Makefiles
	4.1.5 Source Control Integration

	4.2 Text Editor
	4.2.1 Viewing and Editing Code
	4.2.2 Customizing the Code Window
	4.2.3 Using the Editor's Text Processing Functionality
	4.2.4 Setting Auto-Save Defaults
	4.2.5 Autocompletion, Tooltips and Variable Watching (CodeSense)
	4.2.6 Using an External Editor

	4.3 Code Generation Tools
	4.3.1 Code Development Flow
	4.3.2 Project Build Options
	4.3.3 Compiler Overview
	4.3.4 Assembly Language Development Tools
	4.3.5 Assembler Overview
	4.3.6 Linker Overview
	4.3.7 C/C++ Development Tools

	4.4 Building Your Code Composer Studio Project
	4.4.1 From Code Composer Studio
	4.4.2 External Make
	4.4.3 Command Line

	4.5 Available Foundation Software
	4.5.1 DSP/BIOS
	4.5.2 Chip Support Library (CSL)
	4.5.3 Board Support Library (BSL)
	4.5.4 DSP Library (DSPLIB)
	4.5.5 Image/Video Processing Library (IMGLIB)
	4.5.6 TMS320 DSP Algorithm Standard Components
	4.5.7 Reference Frameworks

	4.6 Automation (for Project Management)
	4.6.1 Using General Extension Language (GEL)
	4.6.2 Scripting Utility

	5 Debug
	5.1 Setting Up Your Environment for Debug
	5.1.1 Setting Custom Debug Options
	5.1.2 Simulation
	5.1.3 Memory Mapping
	5.1.4 Pin Connect
	5.1.5 Port Connect
	5.1.6 Program Load

	5.2 Basic Debugging
	5.2.1 Running/Stepping
	5.2.2 Breakpoints
	5.2.3 Probe Points
	5.2.4 Watch Window
	5.2.5 Memory Window
	5.2.6 Register Window
	5.2.7 Disassembly/Mixed Mode
	5.2.8 Call Stack
	5.2.9 Symbol Browser
	5.2.10 Command Window

	5.3 Advanced Debugging Features
	5.3.1 Advanced Event Triggering (AET)

	5.4 Real-Time Debugging
	5.4.1 Real-Time Mode
	5.4.2 Rude Real-Time Mode
	5.4.3 Real-Time Data Exchange (RTDX)

	5.5 Automation (for Debug)
	5.5.1 Using the General Extension Language (GEL)
	5.5.2 Scripting Utility for Debug

	5.6 Reset Options
	5.6.1 Target Reset
	5.6.2 Emulator Reset

	6 Analyze/Tune
	6.1 Application Code Analysis
	6.1.1 Data Visualization
	6.1.2 Simulator Analysis
	6.1.3 Emulator Analysis
	6.1.4 DSP/BIOS Real-Time Analysis (RTA) Tools
	6.1.5 Code Coverage and Multi-Event Profiler Tool

	6.2 Application Code Tuning (ACT)
	6.2.1 Tuning Dashboard
	6.2.2 Compiler Consultant
	6.2.3 CodeSizeTune (CST)
	6.2.4 Cache Tune

	7 Additional Tools, Help, and Tips
	7.1 Component Manager
	7.1.1 Opening Component Manager
	7.1.2 Multiple Versions of Code Composer Studio

	7.2 Update Advisor
	7.2.1 Registering Update Advisor
	7.2.2 Checking for Tool Updates
	7.2.3 Automatically Checking for Tool Updates
	7.2.4 Uninstalling the Updates

	7.3 Additional Help
	7.3.1 Online Help
	7.3.2 Online Tutorial

