Metricsfor Measuring the Effectiveness of Software-Testing Tools

James B. Michael, Bernard J. Bossuyt, and Byron B. Snyder
Department of Computer Science
Naval Postgraduate School
833 Dyer Rd., Monterey, CA 93943-5118, USA
{bmichael, bjbossuy, bbsnyder} @nps.navy.mil

Abstract

The levels of quality, maintainability, testability, and stability
of software can be improved and measured through the use of
automated testing tools throughout the software development
process. Automated testing tools assist software engineers to
gauge the quality of software by automating the mechanical
aspects of the softwaretesting task. Automated testing tools
vary in their underlying approach, quality, and ease-of-use,
among other characteristics. In this paper we propose a suite
of objective metrics for measuring tool characterigtics, as an
aid in systematically evaluating and selecting automated test-
ing tools.

1. Introduction

Automated testing tools assist software engineers to gauge
the qudlity of software by automating the mechanical aspects of
the software-testing task. Automated testing tools vary in their
underlying approach, quality, and ease-of-use, among other
characterigtics. In addition, the selection of testing tools needs
to be predicated on characteridtics of the software component to
be tested. But how does a project manager choose the best
auite of testing tools for testing a particular software compo-
nent?

In this paper we propose a suite of objective metrics for
measuring tool characteridtics, as an aid for systematicaly
evauating and sdecting the automated testing tools that would
be mogt appropriate for testing the system or component under
test. Our suite of metrics are aso intended to be used to moni-
tor and gauge the effectiveness of specific combinations of test-

This research is supported by the Space and Naval Warfare Sys-
tems Command under contract no. NO0O039-01-WR-D481D. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the offi-
cia policies or endorsements, either expressed or implied, of the
U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for Government purposes notwith-
standing any copyright annotations thereon.

ing tools during software development, in addition to con-
ducting ante or ex pogt facto analyses.

In addition, the suite of test-tool metricsisto be used in con-
junction with existing and future guidelines for conducting tools
evaluations and sdections. In December of 1991, a working
group of software developers and tool users completed the Ref-
erence Modd for Computing System-Tool Interconnections
(MCSTI), known as |EEE Standard 1175; see [1] for a discus-
gon of the MCSTI. As an offshoot of their work, they aso
introduced a tool-evaluation system. The system implements a
st of forms which systematicaly guide users in gathering, or-
ganizing, and analyzing information on testing and other types
of tools for developing and maintaining software. The user can
view tool-dependent factors such as performance, user friendli-
ness, and reliability, in addition to environment-dependent fac-
tors such as the cost of the tool, the tool’s affect on organiza
tional policy and procedures, and tool interaction with existing
hardware and software assets of an organization. The data
forms aso facilitate the preference weighting, rating, and sum-
marizing selection criteria The process mode underlying the
MCSTI conggts of five steps: analyzing user needs, establishing
selection criteria, tool search, tool selection, and reeval uation.

2. Software-Quality Metrics

There is an extensive body of open-source literature on the
subject of metrics for measuring the quality of software. The
higtory of software metrics began with counting the number of
lines of code (LOC). It was assumed that more lines of code
implied more complex programs, which in turn were more
likely to have errors. However, software metrics have evolved
well beyond the smple measuresintroduced in the 1960s.

2.1. Procedural (Traditional) Software Metrics

Metrics for traditional or procedural source code have
increased in number and complexity since the first intro-
duction of LOC. While LOC is till used, it is rarely meas-
ured simply to know the length of procedural programs
since there continues to be debate on the correlation be-
tween size and complexity. Instead, LOC is used in the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

computation of other metrics, most notably, in determining
the average number of defects per thousand lines of code.

McCabe [5] first gpplied cyclomatic complexity to computer
software; an estimate of the rdiability, testability, and main-
tainability of a program, based on measuring the number of
linearly independent paths through the program. Cyclomatic
complexity ismeasured by cregting a control graph representing
the entry points, exit points, decison points, and possible
branches of the program being anadlyzed. The complexity is
calculated as shown in Equetion 1.

M=V(G)=e-n+2p)

where V(G) is the cyclomatic number of G, e is the number of
edges, n isthe number of nodes, and p is the number of uncon-
nected parts of G.

This metric however does not look a the specific imple-
mentation of the graph. For example, nested if-then-else Sate-
ments are trested the same as a case statement even though their
complexities are not the same.

Function point (FP) [6] is ametric that may be gpplied inde-
pendent of a specific programming language, in fact, it can be
determined in the design stage prior to the commencement of
writing the program. To determine FP, an Unadjusted Function
Point Count (UFC) is calculated. UFC isfound by counting the
number of external inputs (user input), externa outputs (pro-
gram output), externa inquiries (interactive inputs requiring a
response), externd files (inter-system interface), and interna
files (system logical magter files). Each member of the above
five groups is analyzed as having either smple, average or
complex complexity, and aweight is associated with that mem-
ber based upon atable of FP complexity weights. UFC isthen
calculated via

UFC = Z;..15 (number of items of variety i) x
(weight of i))

Next, a Technicad Complexity Factor (TCF) is determined
by analyzing fourteen contributing factors. Each factor is as-
signed a score from zero to five based on its criticality to the
system being built. The TCF is then found through the equa-
tion:

TCF = 0.65 + 0.015; 4 F; A3)

where FP is the product of UFC and TCF. FP has been criti-
cized due to its reliance upon subjective ratings and its founda-
tion on early design characterigtics that are likely to change as
the devel opment process progresses.

Halstead [7] created a metric founded on the number of op-
erators and operands in aprogram. His software-science metric
(ak.a. hated length) is based on the enumeration of distinct
operators and operands as well as the total number of appesar-
ances of operators and operands. With these counts, a system
of equationsis used to assign valuesto program leve (i.e., pro-
gram complexity), program difficulty, potential minimum vol-
ume of an algorithm, and other measurements.

2.2. Object-Oriented Software Metrics

The most commonly cited software metrics to be computed
for software with an object-oriented design are those proposed
by Chidamber and Kemerer [8]. Their suite of metrics conssts
of the following metrics: weighted methods per class, depth of
inheritance tree, number of children, coupling between object
classes, responsefor aclass, and lack of cohesion in methods.

Weighted-methods-per-class (WMC) is the sum of the indi-
vidua complexities of the methods within that class. The num-
ber of methods and the sum of their complexities correlate to
the leve of investment of time and effort in designing, devel-
oping, testing, and maintaining the class. Additionally, a large
number of methods can result in higher level of complexity due
to theincreased likelihood of their use by children of the class.

Depth of inheritance tree (DIT) is defined as the maximum
length from the node to the root of a class tree. The degper a
class is in the inheritance hierarchy, the greater the likelihood
that it inherits a large number of methods, thereby making its
behavior more complex to both predict and analyze. Also, a
larger DIT implies greater design complexity due to the larger
number of classes and methodsin the project.

The number of immediate subclasses of class is represented
by “number of children” (NOC). A larger NOC implies a Sg-
nificant amount of inheritance and reuse. The more times a
class is inherited, the greater the possibility that errors will be
made in its abstraction and the grester the possible impact the
class has on the project. Therefore, a class with a high NOC
may need to be tested more thoroughly than classes with lower
NOC's.

Coupling between object classes (CBO) is defined as the
number of classes to which it is coupled (i.e., interdependent
on). When a classinherits methods, instance variables, or other
characterigtics from another class, they are coupled. The
greater the number of shared attributes, the greater the interde-
pendence. A dgnificant amount of coupling leads to an in-
creased probability of changes in one class causng unac-
counted, and possibly undesired, changes in the behavior of the
other. Thistighter coupling may reguire more extensive testing
of classesthat aretightly coupled together.

Response for a class (RFC) is defined as the cardindlity of
the set whose members are the methods of the class that can
potentidly be called in response to a message received by an
object in that class. The set’s members include the class meth-
ods cdled by other methods within the class being anadlyzed. A
large RFC indicates that there are numerous ways in which
class methods are called, possibly from many different classes.
This may lead to difficulties in understanding the class, making
analysis, testing, and maintenance of the class uncertain.

Lack of coheson in methods (LCOM) is defined as the
number of method pairs with no shared instance variables mi-
nus the number of method pairs with common attributes. If the
difference is negative, LCOM is st equa to zero. A large
LCOM value indicates strong cohesion within the class. A lack

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

of cohesion, indicated by alow LCOM vaue, sgnifiesthat the
class represents two or more concepts. The assumption hereis
that by separating the class into smaller classes, that the com+
plexity of the class, and perhaps of the entire software project,
can be reduced, ceteris paribus.

Lie and Henry [9] extended Chidamber and Kemerer's suite.
They introduced the Message Passing Coupling (MPC) metric
that counts the number of send statements defined in a class;
this sgnifies the complexity of message passing between
classes. Their Data Abstraction Coupling (DAC) metric is cal-
culated based on the number of abstract data types used in the
class and defined in another class. The greater the DAC value,
the greater the dependence on other classes and therefore the
greater the complexity of the development and maintenance of
the software.

Henry and Kafura developed the Information Flow Com-
plexity (IFC) metric to measure the total level of information
flow of amodule [10]. A module's (M) fan-in is defined as the
number of local flows that terminate at M plus the number of
data structures from which information is retrieved by M. Fan-
out is defined asthe number of locd flows that emanate from M
plus the number of data structures that are updated by M. Loca
flow is defined as either a module invoking a second module
and passing information to it or a module being invoked re-
turning a result to the calling module. IFC is then found by
summing the LOC of M and the square of the product of M’s
fan-in and fan-out. Shepperd removed LOC to achieve ametric
more directly related to information flow [11].

IFC(M) = LOC(M) + [fan-in(M) x fan-out(M)]? (@]

Lorenz and Kidd [12] proposed another set of object-ori-
ented software quality metrics. Their suite includes the follow-
ing:

* Number of scenarios scripts (use cases) (NSS)

* Number of key classes (NKC)

e Number of support classes

» Average number of support classes per key class (ANSC)
e Number of subsystems (NSUB)

* Classgze(CY)

e Totd number of operations + number of attributes

» Bothinclude inherited features

* Number of operations overridden by subclass (NOO)
* Number of operations added by a subclass (NOA)

e Specidizationindex (SI)

e SI=[NOOxlevd]/[Tota class method]

* Averagemethod size

* Average number of methods

e Average number of instance variables

» Classhierarchy nesting level

3. Prior Work on Metrics for Software-

Testing Tools

The Inditute for Defense Analyses (IDA) published two
survey reports on tools for testing software [2],[3]. Although
the tool descriptions contained in those reports are dated, the
analyses provide a historical frame of reference for the recent
advances in testing tools and identify a large number of meas-
urements that may be used in assessing teting tools. For each
tool, the report details different types of analysis conducted, the
capabilities within those analys's categories, operating environ-
ment requirements, tool-interaction features, along with generic
tool information such as price, graphica support, and the num-
ber of users.

The research conducted a IDA was intended to provide
guidance to the U.S. Department of Defense on how to evaluate
and select software-testing tools. The mgor conclusions of the
study were that:

e Test management tools offer critical support for planning
tests and monitoring test progress.

e Problem reporting tools offered support for test manage-
ment by providing insght software products status and
development progress.

e Available gatic andysis tools of the time were limited to
facilitating program understanding and assessing charac-
terigtics of software quality.

e Static anadysis tools provided only minima support for
guiding dynamic testing.

e Many needed dynamic analysis capabilities were not com-
monly available.

e Tools were available that offered considerable support for
dynamic testing to increase confidence in correct software
operétion.

e Mog importantly, they determined that the range of capa
bilities of the tools and the tools' immaturity required care-
ful analysis prior to sdection and adoption of a specific
tool.

The Software Technology Support Center (STSC) at Hill
AFB works with Air Force software organizations to identify,
evauate and adopt technologies to improve product qudity,
increase production efficiency, and hone cost and schedule pre-
diction ability [4]. Section four of their report discusses severd
issues that should be addressed when evauating testing tools
and provides a sample tool-scoring matrix. Current product
critiques and tool-eva uation metrics and other information can
be obtained by contacting them through their webdte at
http:/Amwww.gtsc.hill.af.mil/SWTesting/.

4. Proposed Suite of Metrics for Evaluating
and Selecting Software-Testing Tools

Weyuker identified nine properties that complexity measures
should possess [13]. Severa of these properties can be applied

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

to other metricstoo; these characteristics were considered in our
formulation of metrics for evaluating and sdecting software-
testing tools.

Our suite of metrics for evaluating and selecting software-
testing tools has the following properties. the metrics exhibit
non-coarseness in that they provide different values when ap-
plied to different testing tools; the metrics are finite in thet there
are afinite number of tools for which the metrics resultsin an
equa value, yet they are non-unique in that a metric may pro-
vide the same vaue when applied to different tools, and the
metrics are designed to have an objective means of assessment
rather than being based on subjective opinions of the evaluator.

4.1. Metrics for Tools that Support Testing Pro-
cedural Software

These metrics are applied to the testing tool in its en-
tirety vice a specific function performed by the tool.

4.1.1. Human Interface Desgn (HID). All automated testing
tools require the tester to set configurations prior to the com-
mencement of testing. Tools with well-designed human inter-
faces enable easy, efficient, and accurate setting of tool configu-
ration. Factors that lead to difficult, inefficient, and inaccurate
human input include multiple switching between keyboard and
mouse input, requiring large amount of keyboard input overal,
and individua input fields that require long strings of input.
HID dso accounts for easy recognition of the functiondity of
provided shortcut buttons.

HID = KMS+ IFPF + ALIF + (100 — BR) (5)

where KMS is the average number of keyboard to mouse
switches per function, IFPF is the average number of input
fields per function, ALIF is the average string length of in-
put fields, BR is the percentage of buttons whose functions
were identified viainspection by first time userstimesten

A large HID indicates the level of difficulty to learn the
tool’s procedures on purchase and the likelihood of errors in
using the tool over along period of time. HID can be reduced
by designing input functions to take advantage of current con-
figurations as well as using input to recent fields as default in
applicable follow on input fields. For example, if a tool re-
quires severa directories to be identified, subsequent directory
path input fields could be automatically completed with previ-
oudy used paths. This would require the tester to only modify
the final subfolder as required vice reentering lengthy directory
paths multiple times.

4.1.2. Maturity & Customer Base (M CB). There are severa
providers of automated testing tools vying for the business of
software testers. These providers have a wide range of experi-
ence in developing software-testing tools. Tools that have
achieved consderable maturity typically do so as a result of
customer satisfaction in the tool’ s ability to adequately test their

software. This satisfaction leads to referras to other users of
testing tools and an increase in the tool’ s customer base.

MCB=M+CB+P (6)

where M (maturity) is the number of years tool (and its pre-
vious versions) have been applied in real world applica-
tions, CB (customer base) is the number of customers who
have more than one year of experience applying the tool,
and P (projects) is the number of previous projects of simi-
lar size that used the tool

Care mugt be teken in evaluating meturity to ensure the
tool’s current version does not depart too far from the vendor’'s
previous successful path. Customer base and projects are diffi-
cult to evaluate without relying upon informetion from a vendor
who has avested interest in the outcome of the measurement.

4.1.3. Tool Management (TM). As software projects become
larger and more complex, large teams are used to design, en-
code, and test the software. Automated testing tools should
provide for several users to access the information while en-
suring proper management of the information. Possible meth-
ods may include automated generation of reports to inform
other testers on outcome of current tests, and different levels of
access (eg., read results, add test cases, modify/remove test
cases).

TM = AL +ICM ©)

where AL (access levels) is the number of different access
levels to tool information, and ICM (information control
methods) is the sum of the different methods of controlling
tool and test information.

4.1.4. Ease of Use (EU). A tedting tool must be easy to useto
ensure timely, adequate, and continua integration into the soft-
ware development process. Ease of use accounts for the fol-
lowing: learning time of firg-time users, retainability of proce-
dura knowledge for frequent and casua users, and operationd
time of frequent and casua users.

EU =LTFU + RFU + RCU + OTFU + OFCU (8)

where LTFU is the learning time for first users, RFU isthe
retainability of procedure knowledge for frequent users,
RCU is the retainability of procedure knowledge for casual
users, OTFU is the average operational time for frequent
users, and OTCU is the average operational time for casual
users.

4.15. User Control (UC). Automated testing tools that pro-
vide users expangve control over tool operations enable testers
to effectively and efficiently test those portions of the program
that are considered to have a higher level of criticality, have
insufficient coverage, or meet other criteria determined by the
tester. UC is defined as the summation of the different portions
and combinations of portions that can be tested. A tool that

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

tests only an entire executable program would receive alow UC
value. Toolsthat permit the tester to identify which portions of
the executable will be evaluated by tester-specified test scenar-
ios would earn a higher UC value. Tooals that will be imple-
mented by testing teams conducting a significant amount of
regression testing should have a high UC value to avoid retest-
ing of unchanged portions of code.

4.1.6 Test Case Generation (TCG). The ahility to automati-
caly generate and readily modify test cases is desrable. Test-
ing tools which can automatically generate test cases based on
parsing the software under test are much more desirable that
tools that require testers to generate their own test cases or pro-
vide ggnificant input for tool generation of test cases. Avail-
ability of functions to create new test cases based on modifica-
tion to automatically generated test cases grestly increases the
tester’s ability to observe program behavior under different
operating conditions.

TCG = ATG + TRF (9)
where ATG is the level of automated test case generation as
defined by:

10: fully automated generation of test cases

8: tester provides tool with parameter names & types via
user-friendly methods (i.e., pull down menus)

6: tester provides tool with parameter names & types

4: tester must provide tool with parameter names, types and
range of values via user-friendly methods

2: tester must provide tool with parameter names, types and
range of values

0: tester must generate test cases by hand

and TRF isthe level of test case reuse functionality:

10: test cases may be modified by user friendly methods
(i.e. pull down menus on each test case parameter) and
saved as a new test case

8: test cases may be modified and saved as a new test case

6: test cases may be modified by user friendly methods but
cannot be saved as new test cases

4: test cases may be modified but cannot be saved as new
test cases

0: test cases cannot be modified

4.1.7. Tool Support (TS). The level of tool support isimpor-
tant to ensure efficient implementation of the testing tool, but it
is difficult to objectively measure. Technical support should be
available to testers at all times testing is being conducted, in-
cluding outside traditional weekday working hours. This is
especially important for the extensive amount of testing fre-
quently conducted just prior to product release. Technica sup-
port includes help desks available telephonically or via email,
and on-line users groups monitored by vendor technical sup-
port gaff. Additionally, the availability of tool documentation

that is well organized, indexed, and searchable is of great bene-
fit to users.

TS= ART + ARTAH + ATSD — DI (10)

where ART is the average response time during scheduled
testing schedule, ARTAH is the average response time out-
side scheduled testing schedule, ATSD is the average time
to search documentation for desired information, and DI is
the documentation inadequacy measured as the number of
unsuccessful searches of documentation.

4.18. Edimated Return on Investment (EROI). A study
conducted by the Quality Assurance Inditute involving 1,750
test cases and 700 errors has shown that automated testing can
reduce time requirements for nearly every testing stage and
reduces overal testing time by approximately 75% [14]. Ven-
dors may aso be able to provide smilar gatigtics for their cus-
tomers currently using their tools.

EROI = (EPG x ETT x ACTH) + Ell —ETIC +
(EQC x EHCSx ACCS) (11)

where EPG is the Estimated Productivity Gain, ETT is the
Estimated Testing Time without tool, ACTH isthe Average
Cost of One Testing Hour, Ell is the Estimated Income In-
crease, ETIC is the Estimated Tool Implementation Cost,
EQC is the Estimated Quality Gain, EHCS is the Estimated
Hours of Customer Support per Project, and ACCS is the
Average Cost of One Hour of Customer Support.

4.1.9. Reliability (Rel). Tool reliability is defined as the
average mean time between failures.

4.1.10. Maximum Number of Classes (MNC). Maximum
number of classes that may be included in a tool’s testing
project.

41.11. Maximum Number of Parameters (MNP).
Maximum number of parameters that may be included in a
tool’ s testing project.

4.1.12. Response Time (RT). Amount of time used to ap-
ply test case on specified size of software. RT isdifficult to
measure due to the varying complexity of different pro-
grams of the same size.

4.1.13. Features Support (FS).

features:

» Extendable: tester can write functions that expand pro-
vided functions

* Database available: open database for use by testers

* Integrates with software development tools

e Provides summary reports of findings

Count of the following

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

4.2. Metrics for Tools that Support Testing Ob-
ject-Oriented Software

Studies are continuoudy being conducted to ascertain the
vaidity and usefulness of other software quality metrics. A
seminal study, conducted at the University of Maryland, deter-
mined that the mgjority of the metrics proposed by Chidamber
and Kemerer were useful in predicting the proneness of the
software under test to containing faults [15]. As such, auto-
mated testing tools implemented on object-oriented software
should support their metric suite with the exception of LCOM.
Testing tool support of the other object-oriented software qual-
ity metrics discussed previoudy should also be measured. This
will enable the software development manager to measure the
level of support for measuring the quality of object-oriented
software.

5. Three Tools Selected for Usein Validating
the Proposed Suite of Metrics

As a firg attempt to validate our proposed suite of metrics
for evaluating and selecting software-testing tools, we selected
three commercia-off-the-shelf (COTS) software-testing tools
againgt which to apply our metrics. In the following subsec-
tions, we describe each tool, discuss the setup of each tool for
vaidation purposes, and discuss problems we encountered in
exercisng the tools. The tools were sdlected based on whether
or not they support C++ and also whether or not they could be
run on a Microsoft Windows platform.

5.1. LDRA Testbed

LDRA Testbed is a source code anadysis and test coverage
measurement tool. Testbed utilizes its own parsing engine.
Each of its modules is integrated into an automated, software
testing tool set.

LDRA Testbed's two main testing domains are Static and
Dynamic Analysis. Static Analysis analyzes the code, while
Dynamic Anaysis involves execution with test data to detect
defects at run time. LDRA Testbed analyzes the source code,
producing reports in textual and graphical form depicting both
the quality and structure of the code, and highlighting areas of
concern.

LDRA Testbed supports the C, C++, ADA, Cobol, Coral 66,
Fortran, Pascal, and Algol programming languages. It has been
ported to the following operating sysems MS Windows
NT/2000/9x/Me, Digital Unix, HP-UX, AIX, SCO ODT, SGI
Irix, SUnOS 4 (Solaris. 2.1), Solaris Sparc/intel, VAX/VMS,
OpenVMS, MVS, Unisys A Series, and Unisys 2200 Se-
riesLDRA Testbed was ingtalled on a computer usng Micro-
soft Windows 98. Projects tested were written, compiled, and
executed in Microsoft Visual Studio 6.0. LDRA Testbed does
not embed itsdf into the Visua Studio application, but does

provide an icon on the desktop for easy launching of the testing
tool.

The tool performed well once a few configuration difficul-
ties were corrected. The ingtallation wizard did not autometi-
caly update settings for the location of the vevars32.bat file. In
response to queries, LDRA's technical support was timely,
friendly, and knowledgesble.

5.2. Parasoft Testbed

For validation purposes, we used the following Parasoft
Products; C++ Test with embedded CodeWizard (beta version
1.3 August 2, 2001), and Insuret+. C++ Test is a C/C++ unit-
testing tool that automaticdly tests any C/C++ class, function,
or component without requiring the user to develop test cases,
harnesses, or stubs. C++ Test automaticaly performs white-
box, black-box, and regression testing. CodeWizard can en-
force over 170 industry-accepted C/C++ coding standards and
permits the user to create custom rules that apply to a particular
software-development effort. Insure++ automatically detects
runtime errorsin C/C++ programs.

Parasoft’s Testing Tool suite supports Microsoft Visua Stu-
dio 6.0 on Windows NT/2000. Programs tested were written,
compiled, and executed in Microsoft Visual Studio 6.0 running
on top of Microsoft Windows 2000. All three products alow
themsalves to be integrated into the Visua Studio application.
Testing operations can be conducted from either buttons added
to Visua Studio toolbars or via the Tools menu on the Visud
Studio menu bar.

Configuring CodeWizard: In order to use CodeWizard, you
must have CodeWizard (with a valid CodeWizard license) in-
stalled on your machine. To configure C++ Test to automati-
caly run your classes and methods through CodeWizard, en-
able the Use CodeWizard option by choosing Options> Project
Settings, then sdecting the Use CodeWizard option in the Build
Optionstab.

Parasoft C++ Test was initidly installed on a computer us-
ing Microsoft Windows 98, as had been done during earlier
testing. During test execution, C++ Test consistently produced
time-out errors. After speaking with technical support to iden-
tify the source of the difficulties, it was discovered that version
1.3 (June 2001) of C++ Test did not support Windows 98.
After obtaining version 1.3 (July 2001) of C++ Ted, it and
Code Wizard and Insure++ were ingalled on a computer using
Windows 2000. As Parasoft technical support was discussing
the many features available in their products, it was determined
that there was a newer verson (beta verson 1.3, August 2,
2001) available. This new version incorporates the code analy-
sisfeatures of Code Wizard into C++ Test.

5.3. Telelogic Testbed

Logiscope TestChecker measures sructura test coverage
and shows uncovered source code paths. Logiscope Tedt-
Checker is based on a source code instrumentation technique

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

that can be tailored to the test environment. Logiscope Test-
Checker identifies which parts of the code remain untested. It
a0 identifies inefficient test cases and regression tests that
should be re-executed when a function or file is modified. Lo-
giscope TestChecker is based on source code insrumentation
techniques (e.g., use of probes).

The Telelogic Tau Logiscope 5.0 testing tool suite was in-
galled on a computer using Microsoft Windows 2000. Projects
tested were written, compiled, and executed in Microsoft Visua
Studio 6.0. Tedogic provides access to its functions by plac-
ing selection into the Tools menu on the Visual Studio menu
bar, but does not automaticaly introduce graphical shortcut
buttons on the Visua Studio toolbar.

While the example in the ingtallation manua worked wll, it
did not address al the functions that are not performed by the
wizard (e.g., creation of batch files). Severa of the problems
that we encountered could be eliminated by better organization
of ingallation manudls, such as placing the Microsoft Visua
Studio integration content at the beginning of the manual. Once
integrated into Visua Studio, the tools were quite easy to use.

6. Three Versions of the Software Program
Used for Validation Purposes

The vaidation experiments conducted were performed on
three versons of discrete-event smulation programs, al of
which model the same bus-type Carrier Sense Multiple Access
with Collison Detection (CSMA/CD) network. The first ver-
dson is a procedura program developed by Sadiku and llyas
[16] with the modification of one line so that it could be oper-
ated on a wide range of C and C++ compilers. This verson
will be referred to asthe procedural version.

This program was selected for this project for two purposes.
Firgt, it uses severa blocks of code numerous times throughout
the program. This factor lends the program to implementation
through the use of functionsin place of those blocks of code as
was done in the second version of the program, hereafter called
the functional verson. Second, it Smulates the interaction of
severd red-world items that lend themselves to being repre-
sented by classes and objects. This approach to smulating the
network was used in the third version of the program, which we
refer to as the object-oriented version of the program.

7. Exercising the Software-Testing Tools
7.1. LDRA Testbed

7.11. Procedural. Coverage Report — In order to achieve
DO178B Leve A, the program must achieve 100% coverage in
both statement coverage and branch coverage. The procedura
program achieved an overall grade of fal because it only
achieved 88% statement coverage and 83% branch coverage.
554 of a possible 629 statements were covered during the test-

ing process, and the testing tool covered 146 out of 176
branches. What isimportant to note about 88% coverageis that
we only used default test settings and did not conduct additional
test runs to improve our coverage. As mentioned before in the
tool summary, to increase the coverage, the user must construct
further sets of test data to be run with the instrumented source
code. The report lists each individud line that is not executed
by any testing data.

Metrics Report — Our procedural program returned a value
of 130 knots and a cyclomatic complexity of sixty-one. The
130 knots signds that the procedurd code is digointed and
would require somebody trying to read the code to jump back
and forth between functions in order to understand what the
code s attempting to accomplish. The cyclomatic complexity of
sixty-one demongtrates that the program can be re-ordered to
improve readability and reduce complexity.

Quality Report — The Quality Report gives an instant view
on the qudlity of the source code andyzed. Overal LDRA'’s
Testbed gave the procedural program a grade of fail. It re-
ported 109 occurrences of eighteen different violations class-
fied as “Mandatory (Required) Standards,” eleven occurrences
of three different violations classfied as “Checking (Manda
tory/Required) Standards,” and eighty occurrences of six differ-
ent violations againg standards considered “Optiona (Advi-
sory).” If a Motor Industry Software Reliability Association
(MISRA) code is violated, it is so annotated by the LDRA re-

port.

7.1.2. Functional. Coverage Report — The functional program
achieved an overal grade of fail because it only achieved 90%
satement coverage and 86% branch coverage. 557 of a possi-
ble 619 statements were covered during the testing process, and
the tegting tool covered 169 out of 196 branches. Again, in
achieving 88% coverage, we only used default test settings and
did not conduct additiona test runsto improve our coverage.

Metrics Report — Our functional program returned a value of
109 knots and a cyclomatic complexity of fifty-five. The 109
knots signals that the functional code is digoint, require some-
body trying to read the code to jump back and forth between
functions in order to understand what the code does. The cyc-
lomatic complexity of fifty-five indicates that the program can
be re-ordered to improve readability and reduce complexity.

Quadlity Report — The Qudlity Report provides a view of the
qudlity of the source code. Overal LDRA’s Testbed gave the
functional program a grade of fail. It reported 115 occurrences
of eighteen different violations classified as “Mandatory (Re-
quired) Standards,” fourteen occurrences of four different vio-
lations classfied as “Checking (Mandatory/Required) Stan-
dards” and thirty-six occurrences of six different violations
againg standards consdered “Optional (Advisory).”

7.1.3. Object-Oriented. Coverage Report — Technica diffi-
culties with the tools prevented the generation of coverage data
for the object-oriented program.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

Metrics Report — The object-oriented program returned a
vaue of fifty-six knots and a cyclomatic complexity of forty-
seven. The fifty-six knots indicates thet the object-oriented
code is digoint and would require somebody trying to read the
code to jump back and forth between functions in order to un-
derstand what the code is attempting to accomplish. The cyc-
lomatic complexity of forty-seven indicates that the program
can be re-ordered to improve readability and reduce complex-
ity.

Qudity Report — The Quality Report gives an instant view
on the quality of the source code analyzed. Overall LDRA's
Testbed gave the object-oriented program a grade of fail. It
reported 401 occurrences of thirty-one different violations clas-
dfied as “Mandatory (Required) Standards,” 102 occurrences
of nine different violations classfied as “Checking (Manda-
tory/Required) Standards” and seventy-five occurrences of
nine different violations againg standards considered “ Optional
(Advisory).”

7.1.4. LDRA Tegtbed -Reporting Characteristics. LDRA'’s
Testbed has numerous report formats to support many different
decison processes. The gtatic cdl-graph displays the connec-
tions between methods with each method shown in a color that
sgnifiesthe status of that method’ stesting.

7.2. Parasoft Testbed

7.2.1. Procedural. Parasoft C++ (with integrated Code Wiz-
ard) detected 95 occurrences of eight different rule violations.

7.2.2. Functional. Parasoft C++ (with integrated Code Wiz-
ard) detected eighty-three occurrences of eight different rule
violations during static andysis of the functiona version of the
source code. Of the 328 test cases conducted, 321 passed and
seven reported time-out errors.

7.2.3. Object-Oriented. Parasoft C++ (with integrated Code
Wizard) detected 122 occurrences of 12 different rule viola
tions during static analysis of the object-oriented version of the
source code. Of the seventy-one test cases conducted, fifty
passed and twenty-one reported access violation exception er-
rors. Insuret++ reported thirty-nine outstanding memory refer-
ences.

7.2.4. Reporting Characteristics. C++Test, CodeWizard, and
Insure++ provide itemized reports of discovered errors, but do
not provide extensive summary reports. Thus, the reports gen-
erated by these toals are quite different than those provided by
LDRA.

During the execution of testing C++Test reports the progress
using bar graphs to indicate the number and percentage of
methods and tests conducted. Additiondly, if coverage is en-
abled the tools will highlight the lines of code which have been
tested.

Results of the static analysis conducted upon the source code
are reported under the “Static anadlyss’ tab under the “Results”
tab. The number in square braces next to the file name indi-
cates the total number of occurrences of coding rule violations
within thet file. The next line indicates the number of occur-
rences of violations of a specific coding rule. Expanding the
line revedls the location (i.e., source code line number) of esch
occurrence of the violation.

Results of the dynamic analysis conducted on the source
code are reported under the “Dynamic analyss’ tab under the
“Reaults’ tab. Each line indicates the gtatus of testing for an
individual method. The numbers in the square braces on the
first line indicate the following information:

e OK: The number of test cases that in which the method
returned and had the correct return value and/or post-con-
dition

e Failed: The number of test casesin which the test did not
have the correct return value or post-condition

e Error: The number of test cases in which the method
crashed

e Total: Thetotal number of test cases used

Clicking on atest case's results will cause its branch to ex-
pand. If atest case passes, it will display the number of timesit
was executed and its arguments, returns, preconditions, and
post-conditions.

If atest case had an error or failed, expanding its branch will
display the number of times it was executed, its arguments,
returns, preconditions, post-conditions, and details about the
type of exception or error found. It dso indicates the line num-
ber a which the exception or error occurred.

7.3. Logiscope Testbed

7.3.1. Procedural. Teldogic's Logiscope reported 218 occur-
rences of fourteen different programming rule vidlations. If a
rule is violated, it is so annotated in red within the “ State” col-
umn followed by a listing of source code line numbers where
the rule violaion occurs in the “Lines’ column. If aruleis not
violated, it isso stated in green in the “ State” column.

7.3.2. Functional. Technicd difficulties were experienced in
trying to conduct tests on the functiond version of the software.
Test resultswereinconclusive.

7.3.3. Object-Oriented. Logiscope identified 372 occurrences
of twenty different rules violations in the object-oriented ver-
sion of the network simulation program. The reports are in the
same format as for procedurd with each fil€'s violations dis-
played in a separate table. Technical difficulties were encoun-
tered with the Quality Report. Function leve atributes were
measured to be in the “Excdlent” or “Good” range for more
than 90% of the functions.

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

7.3.4. Reporting Characteristics. Logiscope provides its re-
portsin HTML format, which alows for easy navigation within
the reports. The report includes a separate table for each rule
listing the occurrences of violations for each file. Thereis an
additional “Synthesis Table” which creates a matrix summea
rizing the number of violations of each rule per each file. Each
mention of aruleis hyperlinked to a detailed explanation of the
rule at the bottom of the report. File names are linked to the
table that lists the violations within that report. The reports dso
list the date and time the analysis was last conducted on each
file. This feature assists in the management of the testing re-
ports.

The Quadlity report is adso in HTML format and provides
similar hyperlink features as the Rules report. When analyzing
object-oriented programs, Logiscope provides reports on three
levels: gpplication, class, and function. At the application levd,
the project is given a Maintainability score of Excellent, Good,
Fair or Poor. The scoreis based on the project’s scoring in four
areas. Andyzability, Changeability, Stability, and Tegtahility.
All five areas are hyperlinked to the functions the tool uses to
calculate the scores. The scoring tables are followed by atable
listing over twenty application level metrics including Method
Inheritance Factor, Method Hiding Factor, Polymorphism Fac-
tor, Coupling Factor, and many others including cyclomatic
complexity measures.

The Class level section of the report displays the same at-
tributes as the Application Level with the addition of three met-
rics: reusability, usability, and specidizability. Again, each is
hyperlinked to explanaions of the methods for determining
each dtribute' svalues.

7.4. Computation of Metrics

During the application of the three testing-tool suites on the
three software versons, measurements were taken to caculate
the testing-tool metrics.

7.4.1. Human-Interface Design. To cdculate the human-in-
terface design (HID) metric, measurements were taken during
three operations. establishing test project, conducting test pro-
ject, and viewing testing results.

While conducting the operations with the LDRA toals, there
were six occasions that required the user to transfer from the
keyboard to the mouse or vice versa. Dividing this number by
the number of operations (three) results in an average of two
keyboard-to-mouse switches (KMS). There were fifteen input
fiddsresulting in five average input fields per functions (IFPF).
Eleven of the input fields required only mouse clicks and six
required entry of strings totaling eighty-three characters. The
average length of input fieds (ALIF) was caculated by divid-
ing the sum of these inputs (ninety-four) by the number of input
fields (sixteen) resulting in an ALIF of six. In attempting to
identify the functions of sixteen buttons, eleven were identified
correctly. The percentage of 68.75 was subtracted from 100,

divided by ten, and rounded to the nesrest integer to arrive at a
button recognition factor (BR) of three. The sum of KMS,
IFPF, ALIF, and BR earnsLDRA aHID score of sixteen.

The same operations were performed with the Telelogic
products. There were fifteen occasions that required the user to
transfer from the keyboard to the mouse or vice versa. Dividing
this number by the number of operations (three) results in an
average of five keyboard-to-mouse switches (KMS). There
were twenty-four input fields resulting in eight average input
fields per functions (IFPF). Seventeen of the input fieds re-
quired only mouse clicks and seven required entry of strings
totaling 146 characters. The average length of input fieds
(ALIF) weas calculated by dividing the sum of these inputs (163)
by the number of input fields (twenty-four) resulting in an ALIF
of seven. In attempting to identify the functions of ten buttons,
four were identified correctly. The percentage of forty was
subtracted from 100 and divided by ten to arrive a a button
recognition factor (BR) of six. The sum of KMS, IFPF, ALIF,
and BR earns LDRA aHID score of twenty-Six.

Repesating the operations with the Parasoft tools, there were
sx occasons that required the user to transfer from the key-
board to the mouse or vice versa. Dividing this number by the
number of operations (three) results in an average of two key-
board-to-mouse switches (KMS). There were twenty-two input
fidds resulting in eight average input fields per functions
(IFPF). Sixteen of the input fields required only mouse clicks
and six required entry of gtrings totaling sixty-nine characters.
The average length of input fields (ALIF) was caculated by
dividing the sum of these inputs (eighty-seven) by the number
of input fields (twenty-two) resulting in an ALIF of four. In
atempting to identify the functions of sixteen buttons, fourteen
were identified correctly. The percentage of seventy-five was
subtracted from 100, divided by ten and rounded to the nearest
integer to arrive at a button recognition factor (BR) of three.
The sum of KMS, IFPF, ALIF, and BR earns LDRA a HID
score of seventeen. The HID scoresfor the three tool suitesare
showninTable 1.

Parasoft | Telelogic | LDRA
KMS 2 5 2
|FPF 8 8 5
ALIF 4 7 6
BR 3 6 3
HID 17 26 16

Table 1. Human-Interface Design Scores

74.2. Test Case Generation. Test case generation (TCG)
measurements were also obtained for each group of tools.
LDRA does not automatically generate test cases but does pro-
vide user-friendly features such as pull-down menus for created
test cases therefore it was assigned an eight for its level of
automated test case generation (ATG). LDRA offers user-
friendly features to alow for modifying existing test cases so it

TEEE .2

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

earned a score of ten for itslevel of test case reuse functionadity
(TRF). Teldogic does provide automatic test case generetion
0 it earned an ATG score of ten. However, authors were un-
ableto find reference to test case modification within the testing
tool gpplication or documentation. Therefore, it was not as
sgned a TRF vaue. Parasoft also provides automatic test case
generation and user-friendly test-case-reuse functions, resulting
in scoring ten in both ATG and TRF. The sums of the ATG
and TRF aregivenin Table 2.

Parasoft | Telelogic | LDRA
ATG 10 10 8
TRF 10 0 10
TCG 20 10 18

Table 2. Test-Case Generation Scores

7.4.3. Reporting Features. The Reporting Features (RF) met-
ric is determined by one point for automatically generating
summary reports and one point for producing reports in a for-
mat (e.g., HTML or ASCII text documents) that are viewable
outside the gpplication. LDRA and Teleogic automaticaly
generate summary reports formatted in HTML earning a RF
measure of two for each vendor. Parasoft aso automaticaly
produces summary reports, but they must be viewed within the
Parasoft testing application. Therefore, Parasoft's RF measure
isone.

7.4.4. Response Time. Each tool performed well with re-
gards to response time. LDRA averaged twenty-five min-
utes in performing its tests. Telelogic averaged approxi-
mately thirty-five minutes. Parasoft averaged forty-three
minutes.

7.4.5. Feature Support. The Feature Support (FS) isthe count
of the following features that are supported: tool supports user-
written functions extending tool functiondity, stores informa:
tion in a database open to the user, and integrates itsdf into
software development tools. LDRA supports dl these features
resulting in a FS of three. Telelogic supports an open database
and integration, but the authors were unable to determine its
extendibility support. Telelogic earned a FS score of two.
Parasoft integrates itsalf with software development tools, but
no information regarding the two other features was available.
Therefore, Parasoft’ s FS value was assigned avalue of one.

7.4.6. Metric Suites Supported. The Metric Suites Supported
(MSS) metric is based on the tool’s support of three different
software qudity metric suites: McCabe, function points, and
Halstead. Parasoft does not report on any of these metrics, and
hence, it is assigned a vaue of zero. Teldogic and LDRA re-
port on McCabe and Halstead, but not function points, earning
each a MSS value of two. LDRA is developing the capability
to report function-point metrics.

7.4.7. Maximum Number of Classes. No tool reported alimit
on the number of classes it could support when testing object-
oriented programs. Even so, this metric should remain within
the testing tool metric. It could be detrimental to a software
development project’s success if a tool were selected and im+-
plemented only to discover it could not support the number of
classes contained in the project.

7.4.8. Object-Oriented Software Quality Metrics. The Ob-
ject-oriented Software Qudity Metrics is the count of various
object-oriented software metrics including those from the met-
rics suites created by Chidamber & Kemerer, Lie & Henry,
Lorenz & Kidd, and Henry & Kafura. Parasoft does not report
any of these metrics, resulting in no score. Telelogic supports
the Chidamber & Kemerer suite, the Le & Henry suite, as well
as severd from the Lorenz & Kidd suite, thus earning an
OOSWM value of twelve. LDRA aso supports metrics from
severd of the suiteswarranting a score of leven. Measurement
of this metric is complicated through tools referring to meas-
urements by titles not matching those listed in the suites. Pro-
ject managers should consult tool documentation or vendor
representatives if a desired metric does not appear to be sup-
ported.

7.4.9. Tool Management. None of the three testing tool suites
provide different access levels or other information control
methods. Tool management must be controlled via computer
policies implemented in the operating system and other appli-
cations outside of the suite of testing toals.

7.4.10. User Control. All tools offered extensive user control
of which portions of the code would be tested by a specified test
case. Each dlowed the user to specify afunction, class, or pro-
ject, or any combination of the three, to be tested.

7.4.11. Other Tegting Tool Metrics. The remaining testing
tool metrics require execution of extensive experiments or input
from tool vendors. The scope of our research prevents con-
ducting detailed experiments. Along with insufficient input
from the vendors, this prevents andyss of the remaining met-
rics.

8. Analysisof Results

The three suites of testing tools provided interesting re-
sults on the relative quality of the three versions of the
software under test. LDRA'’s Testbed reported an increas-
ing number of programming-standard violations as the pro-
cedural version was first converted to the functional design
then trandated into the object-oriented version. The num-
ber of standards violations aso increased as the design
moved away from procedural design. Although the quantity
of violations and the quantity of types of violations in-
creased, the cyclomatic complexity decreased at each in-

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

crement. Statement and branch coverage did not signifi-
cantly differ across the three versions. While the other tools
reported different information, their results were consistent
with an increasing number of errors discovered in the non-
procedural version yet increased levels of quality. Table 3
summarizes the findings.

The tools offer differing views of the quality of the software
under test. When testing the procedural program, LDRA re-
ported 200 occurrences of twenty-seven different coding stan-
dards, Telelogic reported a similar 218 occurrences but of only
fourteen different rule violations, and Perasoft reported only
ninety-five occurrences of only eight different rule violations.
These differences can be attributed to the different standards
and rules that are tested for by each tool. LDRA appends sev-
era industrid standards such as the Motor Industry Software
Reliability Association (MISRA) C Standard and the Federd
Aviation Authority’s DO-178B standard. Likewise, the set of
standards tested for by Telelogic and Parasoft intersect but are
not identical.

Similar results occur when comparing tool results for the
functiona and object-oriented versons. Project managers
should compare these differences to determine whether they
would have an affect on the tool selection decision. If the addi-
tional standards used by LDRA do not pose an issue for current
or progpective customers, the impact will be minimal.

After developing the proposed testing-tool metrics, we ap-
plied them to the three testing tool suites. During the process of
applying the metrics, we discovered that severa of the metrics
are quite difficult, if not impossible, to caculate without having
additional information supplied by the tool vendor. For exam-
ple, if a vendor has not conducted a study on the tool’s opera-
tional retainability by its users, experiments would need to be
designed and conducted to evaluate the performance of usersin
applying the tools. If a vendor does not have dtetigtics on its
average response time to customer support requests, calculating
the measure would beimpossible.

Procedural Functional Object-Oriented

LDRA 88% statement coverage 90% statement coverage Not available
83% branch coverage 86% branch coverage Not available
130 knots 109 knots 56 knots
61 cyclomatic complexity 55 cyclomatic complexity 47 cyclomatic complexity
109 occurrences of 18 different | 115 occurrences of 18 different 401 occurrences of 31 different
mandatory standards mandatory standards mandatory standards
11 occurrences of 3 different 14 occurrences of 4 different check- | 102 occurrences of 9 different
checking standards ing standards checking standards
80 occurrences of 6 different 36 occurrences of 6 different op- 75 occurrences of 9 different op-
optiona standards tiona standards tiona standards

Parasoft | 95 occurrences of 8 different 83 occurrences of 8 different rules 122 occurrences of 12 different
rules violations violations rulesviolations

Telelogic | 218 occurrences of 14 different | Not available 372 occurrences of 20 different
rules violations rules violations

Table 3. Summary of Tool Findings

Success was achieved in applying severa of the metricsin-
cluding HID, TCG, and RF. HID measurements were calcu-
lated for each testing tool based on the sub-metrics of average
KMS, IFPF, ALIF, and BR when gpplicable. The sub-met-
rics demonstrated non-coarseness (different vaues were
measured), finiteness (no metric was the same for dl toals),
and non-uniqueness (some equa values were obtained). The
HID measurements were dl unique, indicating that the meas-
urement could be useful in comparing tools during the eval ua
tion and selection process.

TCG measurements also provided unique measurements
for each tool. Sub-metrics measuring levels of ATG and TRF
demonstrated non-coarseness, finiteness, and non-uniqueness.

RF measurements were also successful. It issmpleto de-
termine whether a tool automaticaly generates summary re-
ports (SR) that are viewable without the tool application run-

ning (eg., HTML document) (ER). The RF metric is non-
coarse, finite, and non-unique. However, because each tool
earned a SR score of one, additiond testing should be con-
ducted to determine SR’slevel of non-uniqueness.

RT measurements for the three tools were dl different, in-
dicating that RT isnon-coarse and finite. Although not shown
in the vaidation results, it appears that if two tools were to
complete atest run in the same amount time, then they would
receive a non-unique score.

No tools shared the same FS and OOSWM measurements.
Therefore, they are non-coarse and finite, but an expanded
study group of toolsis required to verify their non-uniqueness.
Two tools earned the same metric-suite-supported score in-
dicating non-uniqueness, while the third earned a different
score showing the metric's non-coarseness and finiteness.

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02)
1071-9458/02 $17.00 © 2002 IEEE

YF]',F.

COMPUTER

SOCIETY

All three tools earned the same score in the TM and UC
metrics, further research must be conducted to determine the
validity and usefulness of this metric.

The Maturity & Customer Base, Ease of Use, Tool Support,
Edimated Return on Investment, Reigbility, and Maximum
Number of Parameters metrics were not completed. In order to
do so would involve conducting more experiments or obtaining
tool-vendor input, the latter of which isnot readily available.

9. Conclusion

Our metrics captured differences in the three suites of
software-testing tools, relative to the software system under
tet; the software-testing tools vary in their underlying ap-
proach, quality, and ease-of-use, among other characterigtics.
However, confirming evidence is needed to support our theo-
ries about the effectiveness of the tool metrics for improving
the evauation and selection of software-testing toals.

10. Future Directions

10.1. Theoretical Basisfor Tool Metrics

All three anonymous reviewers commented on the lack of
a theoretical foundation for our tools metrics. For instance,
we express MCB as alinearly additive relationship among the
variables M, CB, and P. However, the relaionship could be
nonlinear, there could be some degree of correlation anong
the three variables, and it may be necessary to normalize the
vauesfor each of the variables before computing MCB.

We view the development of atheoretical basisfor the tool
metrics as long-term research. In addition to establishing the
theory for each of the metrics, it is also necessary to develop a
theory of the relationship amongst the tool metrics. Two of
the products of this research might be the discovery of addi-
tiona types of metrics, such as time-dependent metrics for
capturing the availability of software-testing tools, and what
might be termed “meta metrics,” that would provide informa-
tion about how to interpret or apply the tool metrics.

10.2. Experimental Validation of Tool Metrics

Another avenue of future research is to conduct more in-
tendve testing with the candidate tools by creating additional
test cases and modifying default test settings to improve test
coverage and conducting regression testing. (N.B.: We used
the default test settings of each toal to provide a basdline for
measuring tool characteristics) One could also compare the
testing tools under various operating system configurations
and tool settings, or measure a tool’ s capability and efficiency
in both measuring and improving testing coverage through
modifying default settings and incorporating additional test
cases. Research could dso be conducted to measure atool’s
ability to conduct and manage regression testing.

Moreover, one could incorporate a larger number of tool
auites from different vendors with a wider spectrum of pro-
gramming-language support; this would reduce the likelihood
of language-specific factors affecting the research findings.

Lagtly, the discrete-event smulation software program
could be supplemented by case studies for which the target
software has a higher degree of encapsulation, inheritance,
and polymorphism. These case studies should include soft-
ware systems used in real-world operational environments.

Acknowledgements

We thank LDRA Ltd. of Wirral, United Kingdom, Para-
soft Corporation of Monrovia, California, and Telelogic AB
of Mamd, Sweden for their technical assistance.

References

[1] Poston, R. M. and Sexton, M. P. Evauating and selecting
testing tools. |EEE Software 9, 3 (May 1992), 33-42.

[2] Youngblut, C. and Brykczynski B. An examination of
selected software testing tools: 1992. IDA Paper P-27609,
Inst. for Defense Analyses, Alexandria, Va., Dec. 1992.

[3] Youngblut, C. and Brykczynski, B. An examination of
selected software testing tools: 1993 Supp. IDA Paper P-
2925, Inst. for Defense Analyses, Alexandria, Va., Oct.
1993.

[4] Daich, G. T., Price, G., Ragland, B., and Dawood, M.
Software test technologies report. Software Technology
Support Center, Hill AFB, Utah, Aug. 1994.

[5] McCabe, T.J. A complexity measure. |EEE Trans. Soft-
ware Eng. SE-2, 4 (Dec. 1976), 308-320.

[6] Dekkers, C. Demydtifying function points: Let's under-
stand some terminology. I T Metrics Strategies, Oct. 1998.

[7] Halstead, M. H. Elements of Software Science. New Y ork:
Elsevier Science, 1977.

[8] Chidamber, S. R. and Kemerer, R. F. A metrics suite for
object-oriented design. |EEE Trans. Software Eng. 20, 6
(June 1994), 476-493.

[9] Li, W. and Henry, S. Object-oriented metrics that predict
maintainability. J. Systems and Software 23, 2 (Nov.
1993), 111-122.

[10] Henry, S. and Kafura, D. Software structure metrics based
on information flow. IEEE Trans. Software Eng., SE-7, 5
(Sept. 1981), 510.

[11] Churcher, N., Shepperd, M. J, Chidamber, S., and
Kemerer, C. F. Comments on “a metrics suite for object
oriented design.” |EEE Trans. Software Eng. 21, 3 (Mar.
1995), 263-265.

[12] Lorenz, M. and Kidd, J. Object-Oriented Software Met-
rics. Englewood Cliffs, N.J.: Prentice Hall, 1994.

[13] Weyuker, E. J. Evaluating software complexity measures.
|EEE Trans. Software Eng. 14, 9 (Sept. 1988), 1357-1365.

[14] QA Quest. The New Quality Assurance Inst., Nov. 1995.

[15] Basili, V. R, Briand, L., and Melo, W. L. A validation of
object-oriented design metrics as quality indicators. Tech-
nica Report CS-TR-3443, Univ. of Md., College Park,
Md., May 1995.

[16] Sadiku, M. and llyas, M. Smulation of Local Area Net-
works. BocaRaton, Flaa CRC Press, 1994.

Proceedings of the 13 th International Symposium on Software Reliability Engineering (ISSRE’02) C ‘”“

OMPUTER
1071-9458/02 $17.00 © 2002 IEEE SOCIETY

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

