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Frequency response

* Steady-state behavior of systems to harmonic
excitations over a range of input frequencies

 Determination of important behavioral
characteristics of dynamic systems by subjecting
them to harmonic inputs and observing the

response

— Experimentally,
— Analytically, or
— Numerically.



Preliminaries - ODE

Ordinary, linear, constant - coefficient differential equations

d"x d"*x
+a,,
dt” dt”
Solutions canbeexpressed
X(t) = X, (t) +x (1)

Homogeneous equation

a +....+a1%+aox=Gu(t)

adnx+a dHX+ +al%+ax—0
"dt" "tdt™t 0 tdt P
The solution canbe written inthe form
X, (t) =Ce*

aCle”+a CA7e"+..+aCAe”" +a,Ce” =0
al'+a A +.+al+a,=0
Thisexpression iscalled the characteristic equation(CE)



Preliminaries - Laplace transform

as"+a s +..+as+a,|X(s)=GU(s)
X(s) G
U(s) as"+a s +..+as+a,

TF(S) =

Ifderivativesare present in input,
L(f () =G(Bs + B8 +..+ Bs+ B)U(S)

X(s) _G(Bs" +B.s" +..+ fs+ B (s)
U(s) as'+a S +..+as+a,

where k <n




First Order Systems - Classical Solution

First — order equation For aharmonic excitation,

Gu(t) = Gu, cosat

Theclassical solution:

x(t) = Ae™ +Bcos(wt + @)

X+ X=Gu(t)
Homogeneousequationis

X+ X=0
solution homogeneous particular
X (t) = Ae™ (transient)  (steady state)
T where
Substitutioninto CE, G
B=_
A=t Mo
¢ =tan (—r)

and Ais found from initial conditions



Frequency Response

The amplitude and the phase of the steady - state response
Let z=RC and Gu, =E,

5 — E
V1+ 0’72

and

¢ =tan" (~wr)

Normalized output responseamplitude

E 1
1+ 0’ 1+ 0’c?
E

Represent response amplitude on base — 10 logarithm,
dB =20log,,(B/Gu,)
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Frequency Response

RCe, +e =¢e, = Ecoswt € .
Let 7 = RC, — Ip
#SE, (s) + E, (s) = EU(5) ® |- ¢
E(s) E i

U(s) sz+1

Phase angle (degrees)

Normalized response amplitude

0 | 2 3 4 5 6 7 8

Normalized [requency. 7

Normalized frequency. wr
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Frequency Response

corner frequency =wr =1

The resulting TF

T—F: El(Ja)) —_ E
U(jw) Jor+1
TF = MAG(TF) = MA_G(E)
MAG (jewr +1)
E
TF =
\/1+ o°T°
¢ =tan" (—wr)

Normalized frequency, o7

(a)

Normalized frequency, wr



Low-Pass Filter

L

n

VU

Input

System

(1)

i TS
(W

Output

Typical system response



Second-order Systems

IS TR

Spring-mass-damper system

/é " l—*l'(f)

B¢ [

2 m =k !
? E ()— o COS w
/I

b

mX + bx + kx = F, cos wt

m. b F,

— X+ —X+X=—C0S wt
K K

1 .. 20 .

—2x+—§x+x:xocoswt

W W

n n

where x, = F, /K
Theundamped natural frequency is
@, =~ K/m

damping ratio

b
“Th,



Second-Order Systems

Characteristic equation

—/12 2 141=0
a)n a)n
ﬁ" 2, (4 4
SN P
\ n n n/

Ao =a)n(—é’i\/§2 -1)



Second-Order Systems

If islessthanl

A, =0,(—¢ * j\/l—é’z)

X, COS(awt + @)

" Ja-a0) + (o)

o =wlo,

X(t) = Acos(awt + @)

A= %o
J-@2)? + (@)’
¢ =tan"'|-2¢@ I(1- &)]




Second-Order System

» The transfer function of a

2nd-grder system:

0)2

H(s) = "
%) s° + 24w S+’

* The frequency response of this
system can be modeled as:

H(ja))dB=—20|0g\/(1_a)zJ {@j
o, o,

* When o>>wm, :

2 2
H(jo)|,, ~—20log (%]

z—4OIog££]
a)n
/H(jw) =~ —tan” ( 50y )

~180°

20 log, [Hijes)|

appmxlmatlon C

~0.7 /
£=1
t=1.5

R T

L

100400,

—uid4

i

L Hijw)

-anfd |

Asymptotic
appraximation

3 g

)y

1000y,


http://stellar.mit.edu/S/course/6/sp08/6.003/courseMaterial/topics/topic1/lectureNotes/Lecture__18/Lecture__18.pdf

Poles and Zeroes

 Transfer function:

H(s) - 1000(s +2)
(s +10)(s +50)

* The critical frequencies
are w= 2 (zero), 10 (pole),
and 50 (pole).

« MATLAB (exact resp.):
w = logspace(-1,3,300);
S = J*w;
H = 1000*(s+2)./(s+10)./(s+50);
magdB = 20*log10(abs(H));
phase = angle(H)*180/pi;

- MATLAB (Bode):

num = [1000 2000];
den = conv([1 1o0], [1 50]);
bode(num, den);

IHl dB

—
=2
R

Angle(H), degrees

 Bode plots are useful as an
analytic tool.

H(Jo)=

1000( jw+ 2)

" (jo+10)(jo+50) (j(wjﬂoj(j(
10

40
101

Frequency (rad/sec)
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http://users.ece.gatech.edu/~bonnie/book3/

Examples 1

Find the time constant for the following RC circuit

that has parameters R=8200 Q and C=2.2uf. Sketch the
amplitude frequency response and determine the
corner frequency. Approximately how long does it take

the transient part of the solution to this system to die
out?
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Solution

Given parameters:  R=8200Q0 (C=22uf
Find the time constant, corner frequency, and transient time.

The time constant is given by Eq. (8.23) 7= RC =8200 ohm (2.2x 10°sec/ohm) =
0.018 sec

From Figures 8.2 & 8.3, the corner frequency isw 7 = 1.0

Thus the corner frequency is

m5=1= 1 —~ =554 rad / sec
r (8200 ohm) (22 x 10 sec / ohm)
All transients die out in about 4 time constants = 4 x : =0.07sec

554rad / sec

17



Example 2

A harmonic signal of amplitude 1 and frequency
70 Hz is the input to a linear first-order system
whose time constant is 0.5 second. What is the
amplitude of the output? What is the phase of
the output with respect to the input? Does the
output lag behind the input or lead it?
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Solution

Given parameters: 7 =05sec @ = 70Hz = (70)(2x)rad / sec
Find the response amplitude and phase.

Governing equation X + x = Gu(t) = Gu,coswt

Response amplitude, Eq. (8.21), and phase, Eq. (8.22)
Gu,

wt = (70)(27)rad / sec(0.5sec) = 70z rad = 2199 rad

B= ¢ = tan™' (-w1)

Gu, 1

= =~ =455 x 10" units
JI+@’c? {1+ (2199)°

Response amplitude: B

Phase: ¢ = tan”' (—w?) = tan™' (-219.9) = —89.7 deg

19



Pair-Share: Example 3

Answer the same questions as in the previous
problem, except that now the system is a
second-order linear system with a natural

frequency of 21 rad/sec and a damping ratio of
0.25
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21

Solution

Given parameters:
Excitation frequency: @ = (70)( 27) rad / sec; Natural frequency @, =21 rad /sec

Damping ratio ¢ =025

Find the response amplitude and phase.

Eq. (8.58) Response amplitude A = %o
JA-2°) +(2¢B)’
-2
Eq. (8.59) Phase angle ¢ =tan™ 1 C_Ez
-
. — 27(70 /
Frequency ratio &= w= 7(70)rad / sec =209
@, 21rad / sec
Substitution gives:
1 1

Response: A = =229 x 10~ units

J(1 - (209)*)? +(2(025)209)° " 4359

Phase: E tan"[mz(ﬂ'zs)(mf)} = tan™' (- 002398) = 137 deg
1-(209)



Pair-Share - Example 4

It is proposed to attach an additional spring-mass-damper system to a
primary spring-mass-damper system as shown in figure below. Find the
steady-state amplitude of the displacement response of the primary mass,
and plot it with respect to the input frequency for the cases with an without
the attached system. Such attached systems can be used to absorb unwanted
vibrations. Comment on the effectiveness of reducing vibration for this
system. The parameters of the problem are:

w, = 200Ibf w, = 50Ibf

Fycos wt

k, =18,5001Ibf /in  k, =4600Ibf /in / — Fy
b, = 201bf sec/in b, =5Ibf sec/in é k, L, -

/ \/\/\ —\N\_ Attached

? W W, l— mass

M-

o B

4 5 b, ,

/] - - 3 7777,

T T I TE I T TITHE
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Solution

Given the system shown in the figure with the parameters:

wy = 200 Ibf ky = 18,500 Ibf/in b, = 20 Ibf sec/in
wy = 50 Ibf k> = 4600 Ibf/in b, =5 Ibf sec/in

m; = 200 1bf/386 in/sec’ m = 50 1bf/386 in/sec?

Find the frequency response plot of x, with & without m,. The equations of motion are:

mx, =-kx —k,(x, —x,)=bx -b,(x —x,)+ F,coswt
m2f2 =_k2(x2 - xl)_bz(iz - JEI)

Converting to state-space form
2, =% ,%,=%,2,=X,2,=%,,2, =X,

) 1
Z, =m_[_k122 _kz(zz "'24)_5121 _bz(zl —23)+FDCGSEH]
1

Z, =4

23 :;1_[_ kz(z4 _zz) - bz(zs - z])]

23
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Solution (cont.)

T4 = 243
ﬂz‘ H _“(E’l +bz) —(k] +kz} E’z kz F £
! m m m m g Fy
) 1 1 1 1 ; 0
z 1 0 0 0 2
J 2L = = = 4
j b, I3 bk . 1o [0S
? m, m, m, m |z, 0
z) | 0 0 1 o |V T
Or
X = Ax + Bu
y=Cx +Du
Without the added mass , use
4 - ﬂ‘ - i Z) F,
= m, m, + 0 cosm !
Z, 1 0 |\&
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Solution (cont.)

Using the MATLAB function bode (a, b, ¢, d) for the two systems described above:

The added mass shifts the peak response point down in frequency, adds an additional peak
response point to the system at a higher frequency, and dramatically reduces the response at
the natural frequency of the original system (without the added mass). This comparison
shows how addition of a secondary mass can be used to eliminate a troublesome resonance
condition. This approach is effective when the excitation frequency is constant or nearly so.



Example 5

Determine the transfer function relating the output
voltage €,to the input voltage €, for the following RLC
circuit: o R oo L

Wy L —

ik 7

€y

() ’ l:: it

Ic

Develop the corresponding Bode plot using data from
Example 4.3. What is the natural frequency of the
system? Redesign the circuit so as to increase its
natural frequency by 30 percent, but keep the damping
ratio at 0.707.
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Solution (cont.)

Natural frequency: w? = L—IC =10° @, = 10,000 = 10° rad/sec
. . RC 1R |LC 1 C
Damping ratio: 2w, =—— =—— [ — =—R,.|—=0707
pins c@n =T =2V 28T

New design with increased frequency:

. =13 x 10,000 rad / sec = 13,000 rad / sec = |——

LC,

Thus =169 x 10°(1/ sec?)

1
Ll Cl

If we keep C unchanged:
. 1 . I
' (169 x 10° / sec?)(C, sec/ohm) (169 x 10° / sec®)(10 x 107 sec / ohm)

= — ohmsec = 0.00059 ochm sec
(169 x 10%)

Which gives: L, =059mh; use 0.6 mh

27
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Solution

Given parameters: L=1mh, C=10puf, R=1414Q

From Eq. (4.110) [J:::?D2 +RCD +1e, =e,

LC = (107 ohm sec)(107*sec / ohm) = 107* sec?
RC = (14.14 ohm)(10~° sec / ohm) = 1.414 x 10~ sec

E, 1

The transfer function is: =—= 3
E, 107s" +1414x107" s +1

With Bode plot

as shown below

28
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Solution (cont.)

Then 1R, S o707 . R =4(0707) L
2 "I, C

0.6 x 10 ohmsec
10 x 10°sec / ohm

Or R = 2(0.?0?)\/ = (1414),/0.06 x 10° ohm> = 10950

The final design, of course, will normally need to incorporate commercially available
components.

29



Example 6

Find the roots of the characteristic equation of the
following systems. What are the time constants and/or
natural frequencies? What are the damping ratios?
Comment on the stability of each. Solve by and check
by digital computation.

a. 2X +8x+32x =15u(t)
b. X+ 20X + 25=134u(t)
C.77+57+27+37=25f(t) <=Pair-Share
d.7+27+47+52=41 (1) <= Palr — Share
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Solution

a. 2%+ 8% +32x =15u(t)

Letx, = Ce" Substituting gives: (24’ +84 +32)Ce* =0

From which: 2, = i(—s + \/82 - 4(2)(32)) =-21 j%\/@ =a+ jb

Using Eqs. (8.94) (8.95):  Natural frequency: @, =ya’ +b* =4rad/sec;
Damping ratio ¢ = 405
»

n

D. X+ 20X+ 25 =134u(t)

A =-134 Ay =-186 7, =0.746 sec 7, =0.0538 sec

31
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Solution (cont.)

C. [7+57+27+32=25f(t)

A, = +01% jO677 (=-0146 o, = 0685

A; =-09144 7, = 1094 sec
This system is unstable.

d.7+27+472+52=41(t)

Ay, ==0237 £ j1795 (=0131 o, =181rad/sec
Ay =-1526 7, = 0655 sec

32



Example 7 Problem 8.12 a,c,e,g

Find the transfer function for each of the
systems below, relating the output x or z to the
input u or f.

a. 2X+8x+32x =15u(t)

b. X+ 20X+ 25=134u(t)

c. 100X +400x +1=u(t) <= Pair — Share

d.57+22+4z-3v-4v=81 (1) <= Palir — Share

V+3v+12v—-3z=0



Solution

Take Laplace transform of each equation and solve for
the response variable divided by the input variable. For
d, first put into classical form.

a. 2X+8x+32x =15u(t) c. 100X +400x+1=u(t)
15 1
76> + 85 + 32 100s* + 400s + 1
b. X+ 20X+ 25 =134u(t) d. 57+27+4z—-3v—-4v=8f(t)
V+3v+12v—-3z2=0
134
s +20s + 25 8s” + 245 + 96

5s* +17s° + 70s* +27s + 36



Example 8

Find the set of state-space equations for each of
the below systems:

a. 2X+8x+32x =15u(t)

b. X+ 20X+ 25=134u(t)

c. 100X +400x +1=u(t)

d. 57+272+4z-3v—-4v=81(t)
V+3v+12v—-3z=0
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Solution

For a linear, constant coefficient, second order equation we have:

ax + bx + cx = Gu(t)
let x, =x then x =X and x,=x Xx,=Xx
Substitution gives:

ax, +bx, +cx, = Gu(t)
Or

_ [Gu(@®) - bx, —cx,]

36
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Solution (cont.)

Using this procedure

a. a=2, b=8, ¢c=32, G=15
_ [15u(t) — 8x, —32x,]
X =
2
X, = [75u(t) — 4x, — 16x, ]

X, =X,

X, -4 -16](x, 75
' = - u(r)
X, 1 0 |\x, 0
Alternatively use the MATLAB procedure t £2ss to convert from transfer function form

to the following state-space form.
X = Ax + Bu

y = Cx + Du

Using t£2ss for this example gives:

a=| IO B—m C=[0 75 D=0
L1 oo o =10 73] -

37
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Solution (Cont)

The remaining problems are solved using the MATLAB function t £2ss.

D. X+ 20X+ 25=134u(t)

{-20 —25] [1)
A= B-= C=[0 134] D
1 0 0

0

c. 100X +400x +1=u(t)

A=[_14 -?.}01} Bz((j c=[0 001] D=0

38



Solution (Cont)

d. 57+22+4z2-3v—-4v =81 (t)
V+3v+12v—-3z=0

o o o~

10 1 0 0

(34 -140 -54 -72]
1 0 0 0

B =
0 0 1 0 |

J C=[0 16 48 192]

o



Example 9

Determine the transfer function coefficients for the
circuit :

If: R, =100 R, =100Q
C, =1uf C, =22 uf
L =10mh

Find the eigen values, and check the stability of the
system. If the system is stable, determine its Bode plot.
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Solution

From Problem 4.14, the transfer function can be stated as follows.

e, 1

“ RCLC,D’ + (ch, +%L61)D2 +(R,C, +R,C, +%)D + (l-ﬁ-%)

Or, in normalized form,

1

23 (1+R/R,)

“ RCLC [LCZ+%LC,) (R1C1+R2C2+£]
wr/R). TRR) DT wRR) P

: R 100h
Using the component values stated, — = om 0.1

R,  1000hm

R C, = 100hm><1><10*5% = 10x 10 sec
QO

41
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Solution (cont.)

R, C, = 100 ohm x 10 x 10 =— = 1000 x 10 sec

ohm

L _ 000 ohm sec = 50 x 107° sec
R, 100 ohm

LC, = 00050hm secx1x10° = = 0005 x 10 sec?

ohm

L C, = 00050hmsec x10x10™° — = 0050 x10°° sec?

ohm

Thus the transfer function becomes

e, 0.9091

e, 0.45455x1072 D’ +0.0459091 x 10°D? +963.636 x 10°D + 1

42
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Solution (cont.)

The Bode plot is

43



