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Agenda

* Electro-mechanical Systems
— DC Motor Speed Control
— DC Motor Position Control

* Fluid-Mechanical Systems
— Hydraulic Position Servo
— Electro-hydraulic Position Servo
— Pneumatic Position Servo

* Active Learning: Pair-share Exercises



Electro-mechanical Systems



DC Motor Speed Control (Open-Loop Control)

Without Feedback

Open-loop DC motor speed control



DC Motor Speed Control (Open-Loop Control)

The model for the motor is based on ideal permanent-
magnet DC motor _
Tm o Kt I m

Em:Kva)m
K, =K, =K

The motor is driven by an electronic power source,
modeled as ideal voltage source driving motor through
resistance R, . Assuming overall amplifier gain G:

E =GE,—RI_



DC Motor Speed Control (Open-Loop Control)

Torque balance:
T -Jo, —Bw —-T, =0
Solve this equation for speed

Joo, +Ba, =T —T = K{GEd _R(me)}—TL

0

2
{JD + B +K}a)m _GK E,—-T,
R

0

0

Transfer functionisa first —order function of input E, and disturbanceT,

2
G/I; E - Rollé T

1+ 1+

( KZIRO) ( KZIRO)
a):
m J

2
KETR, D+1
B
1+



DC Motor Speed Control (Open-Loop Control)

Static gain = O, __ GIK
B
dlo-0 I+ 5 )
K/R,
2
Disturbance sensitivity = Oy - _ R, /K
B
oo @)
K/R,
J
2
Time constant =7 = K /BRO

1+

KZ/RO)
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DC Motor Speed Control (Closed-Loop Control)

Y
4
¢
With Speed Feedback gos| R oy o
* Purpose of feedback control is E = /ﬁ \\ Ficton.
to allow output to track input | [ . g
and to compensate for any 'x‘
error from command input and > N
the actual output. \[}\ 7 § (’;\"\ sSS e
e Summing junction subtracts laummeﬁﬁ \, ;>?/>>/ ,x\/
feedback signal from input _/ g (f )
signal to obtain an error signal \3\ /
which is usually amplified to % /

drive actuator.
e Gain of tachometeris h



DC Motor Speed Control

E.=hw,

T =KI_

E =Ko,

The equation for amplifier
E =Ge—-RI_

where

e=E,—E, =error

E, =voltage representing the desired speed



DC Motor Speed Control

Torque balance equation
T —-Jo,—-Bw,—T, =0
Solving this equation for speed

Jir, +Ba, =T, —T, = K| S{Ee =) = (Kn)

RO

_ , _

JD+B+K +GKh @, = G—KE -1,
RO RO RO




DC Motor Speed Control

Transfer function is first-order function of input
and disturbance

2
1/hB _ RIK .
. .. B Gh
TKZIR K2R T K
1+ 0 0
Gh
K
C()m— J
K2/R,




DC Motor Speed Control

Static gain = (%‘E)m G/K h
d Ip=0 1+ B + G
K*/R, K
2
Disturbance sensitivity = 0w, R,/K
TL D=0 B Gh
1+ +
K?/R, K
JIK?IR,)
B Gh
1+ +
K?/R, K

Static gain, disturbance sensitivity, time constant of closed-loop system are
modified by

Time constant =7 =

L+ B/(K*/R)+(Gh)/K)

A reduction in static gain, not desirable, can be compensated by increasing
input. A reduction in disturbance sensitivity means motor speed will not vary
as much. A reduction in time constant means system will respond faster.
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DC Motor Position Control

The motor equations: g_ i

T =KI_ e

E =Ko, s

The equation for amplifier: \\ . NN

E =G(c6, —E,)-R|I Tra e/

Set point/desired position is 6, (with gain c) f;j;ifjm‘ | . 5—;&? _
Feed back position sensor is potentiometer, Ky// >/
output voltage linearly proportional to (’(-/ ,> |
angular position, 0, with sensitivity h \ ] //

Ef = h H Position control system using DC motor



DC Motor Position Control

The motor speed o,, is reduced to an output shaft mg4
by a gear speed ration R,

(06? — I:Qsa)m
1

TH — R—STm

w, =0

Neglecting inertia of gear train, assuming viscous
damping B in the drive train, torque balance gives

T,-J6-BO-T, =0



DC Motor Position Control

Combining preceding equations:
G(co, —he)—(K[;@)

J[9‘+B@'=T—m—TL=i<K s |+ =T,
RS RS R0
2
JD? + (B + K ~)D + GKh o= " 0, - T,
RORS RORS RORS
Transfer functionis a second —order functionof inputand disturbance
Cp_ 1 ¢

h™® (GKh) "
RORS
J N (B + KZ/(RORSZ))

D
GKh
RO Rs

D+1




DC Motor Position Control

oo
o0

d

C

h

D=0

Sensitivity of position to variation in torgue is inverse of stiffness:
effect of position feedback is to create artificial spring.
Static stiffness:

_9T| _GKh
Y R,R,

Dynamic characteristics :

GKh
R,R, = B+ K*/(R,R?)

O S

Static gain G, =

D=0




General Approach to Model
Electro-Mechanical Systems

1. Apply motor and amplifier equations
T =Ki
E.=Kw,,
E, =Ge-Ryi,,
2. Write force or torque balance equation
F=ma or T=Ja

3. Combine equations to obtain transfer function,
and compute static and dynamic characteristics



Example 1

A DC motor is connected to 125 volts DC and is used to
spin a grindstone. The diameter of the grindstone disk is
200 mm, and the thickness is 15 mm. The density of the
disk material is 3000 kg/m?3 . The free speed of the
motor (with maximum voltage applied and no torque
loading) is 1000 rpm. The voltage source that is used to
drive the motor has an output impedance R,of 2 Q
(i.e.,e,,=e,-Ryi,, ). Neglecting the inertia and friction of
the motor itself, derive a transfer function for the
dynamic response of the speed of the motor as a
function of the input voltage. Calculate the time
response using Laplace transform techniques for a step
input of 125 volts DC with zero initial conditions.
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Example 1

The torque from an ideal DC motor is r =K,i,

m

Speed of an ideal motor requires voltage. e

m Km wm
The torque balance on the motor shaft includes the torque generated by the motor and the

inertia of the grindstone.
T =Ja,

The voltage source driving the motor has an output impedance of R, and can be modeled as
follows.

e, = e —R i
Substituting the ideal motor equations into the above voltage equations, and using the
torque equation yields the following.

Solving for speed

" JR tD+1

19
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Example 1

C 1 + . J R
The static gainis G, = ra and the time constantis 7 = 2,

5 2
Jir{m

[}

The values for the static gain and the time constant can be calculated from the performance
information given. The mass of the grindstone is

2 2 2
m=pV = pZ% ¢ = 30008702 M (615 — 141kg
4 m
) ) o 2 .2?. 2 2
The rotational inertia is J= m%z 141kg 22 ™ _ 000707 Xe™
S
The motor constant is K, = Cny _ 12 v?:j = 7.5 Wzlt;:ad = 1.19 Joule
D ra 1000 — rev amp
60s rev

Using the output impedance as 2 ohms, we can calculate the time constant.

20
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Example 1

2
; 0.00707 kgm ) volt NmSz volt amp?
r=3 = sS4 _ (00992 2P
K, 1192 joule joule
. amp
7= 9.92ms
The static gain is G, = —1... = gﬂ
K volt

m

The general time response from the Laplace transform of a first-order system with a step
input is given by the following.

!
@, = G_?Hu|:1—€ f}

For this problem using u, = 125 volts,

!
@, = 1000 rpm [1 —e T} where 7=9.92 ms
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Example 2

Simulate the system with a step input of 125 V with zero initial condition

o = G.e, el rpm
D +1

Matlab code: 1200
num = [8*125];
den=[9.92e-3 1];
sys=tf(num,den);

%t="

t=[0:.0001:.06];
[y,t]=step(sys,t);

plot(t,y); xlabel(‘Time (s)’);
ylabel(‘Speed (rpm)’)

1000

Speed (rpm)
g g

8

G . =8——;7=9.92e—-3s
V

0.01

0.02

0.03
Time (s)

0.04

0.05

0.06

22



Pair-Share Exercise: Example 3

Shown is a DC torque motor Current
connected to a mechanical load )
through a gear reduction. The Sl
motor produces a torque in s T Fos kT
linear proportion to the current 1, 9
delivered from a constant- | 4 L\ Applied torque. T,
current source. The mechanical . RSN
load is a disk with inertia J, and a N S il \‘_/ i e &
translational spring and dashpot SN | inertia = J
connected to the edge of the ’@ 4 /
disk. Write the modeling \ /

] . Damper, W\ /" Spring.
equations for this system, and / 5\ W&
derive a transfer function for the f T— @ E_L
angular position of the disk as a " ) Mass. 7 | :

function of the input current.
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Example 3

The ideal torque of a DC motor is linearly proportional to the current.
T, =K, i

The torque balance on the motor shaft considers the torque provided by the torque motor,
the rotational inertia, and the torques due to the translational components.

T, -Ja, +§[ﬂ]= 0
The forces of the translational components at the edge of the disk are

F =-mi-bx—-kx

X

For small deflection angles, the translational motion can be related to the rotational motion.

The torque balance equation can be restated with the above substitutions.

2
T = JD19+%[mD2x+b Dx+kx| = JD29+(§] [mD*6+b DO+ k 6

24
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Example 3

I, = [J+(§Tm

With a current input, the transfer function for the angular position can be written as
follows.

2 2
D29+b(§J DQ+k[-§J =K, i

BOREPNG

Normalizing with respect to the lowest order coefficient yields

K

1]

k(df2) "

b
D’ +=D+1
k

J . m
k(dj2) &

25
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Pair-Share Exercise: Example 4

Simulate the step input of the system assuming zero initial

conditions: 0

2700

m

Matlab code:

num = [2700];

den=[1 1.25 2701];
sys=tf(num,den);
t=[0:.05:3];
[y,t]=step(sys,t);

plot(t,y); xlabel(‘Time (s)’);
ylabel(‘position (rad)’)

i s?+1.255+ 2701

2.0

[T

A
8?’ [

oal |}
0

o
o
W
&
W
i
-
P
W
W
=

26



Pair-Share: Example 5

A small DC motor is used to
spin a disk with an op-amp
as shown. In this application,
we do not want the disk to
spin up very fast, so a
dynamic filter is added to the
op-amp. The op-amp acts as
an ideal voltage source with
an output impedance R,,.
Write the modeling equation
for this system, and derive a |
state-space representation w
of the system using the op- =
amp output e, and the shaft

speed w as state variables. Is

this a stable system?
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Example 5

The op amp can be treated as an ideal isolated component; thus, the model for the op amp
can be stated as follows.

CD
R R
el kA
CD CDRI+1 R
eﬂ =—‘u€|" :—ef :—er
R R RCD+1

The output voltage of the op amp can be treated as an ideal voltage source, thus, the
voltage to the motor is given by

e, =e—R I

b

The model for the electric motor relates the torque and current, and the voltage and speed
with a motor constant K.

T =K1

m

e, = K, o,

m

A torque balance on the motor shaft yields the following.

28
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Example 5

By rearranging the above equation, and substituting all of the previous equations into it, we

arrive at the following.

2
JDm:Tm:KmIm:KmEO em:Km e_a_Kmm :Kmi_ﬂm
R R R

o [2)

Since we are interested in deriving a state-space representation, we can write the above
equation as follows.

Do = K e, — K
J R, J R,

Restating the op amp equation yields the following.

R
[RICD+1]€Q =L, or De, = ——e, ———e,
R R C R.C

i !

29
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30

Example 5

A state-space representation of this system can be obtained by noting that the op amp
equation gives us one state variable, and the torque equation above gives us another. The

input to the system is the voltage input signal e, and the state variables are the op amp
output and the shaft speed.

u = e,
: 1 1 :

X, =e, X, = ﬁu, - R.C X, with  x,(0) = ¢,(0)
. K K’ :

X, = @ X, = —E-x ——2X, with  x,(0) = w(0)



Fluid-Mechanical Systems



Fluid-Mechanical Systems

* Wide range of applications in precision motional
control at high power levels

— Flight controls (ailerons, rudder, stabilizer)

— Automotive (power steering) and industrial

* Provide high power actuation in small volume,
high responsiveness

e Configuration

— Servo valve capable of controlling pressure and flow
— Mechanical/Electrical feedback with actuator output



Hydraulic Position Servo

* Servo valve provides
metered AP, and Q, in 5P,
response to position x of 0 J'
spool valve

* Actuator moves M and Servovalve ) —
experiences load F, | |

* Mechanical level feedback:
input u and actuator == |
position z change, causing 7. —| = S -t
servo valve to modulate A
AP, and Q, to reduce error
X of servo system

1o
]




Hydraulic Position Servo

Servovalvehaslinear characteristics forsmall
signal operations around null position(x = AP, =Q, =0)
AR, =G X—RQ,
Assume compressib ilityis small (i.e.bulk modulusislarge),
areas equal onboth sides of piston, flowenters one side equal
flows pushed ontheother side, fromcontinuity equation,
Q,=V = Az
Forcebalance,
MZ = AAP, — F,
Kinematics of feedbacklever,

b —a

X = u, X= Z
a+b a+b
letb'= t’,a: a
a+b a+b

X=Db'u—a'z



Hydraulic Position Servo

Substituteinto forcebalanceequation and formTF,

b.u o i FL
L a K,
- 2
M D? + RA D+1
kS S
Static gain,
0z b' b .. .
G, =—| =—=— (indep.of characteristics of other components)
ol,, a a

Static stiffnessk, = L
oz

Second order system,

w_\rg 2RA

Sizing valve actuator, feedbackto get responsive, stiff servo

=GpAa'

D=0




Electro-Hydraulic Position servo
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Electro-Hydraulic Position Servo

P,
| |
e !
Z( —opd ,(+ ) . fXIﬂ - lZ-— ff
: Vi 2 servovalve
¢
AP,
10,
Position [ ]
Sensor, A ,{_]

n

< [

Electro-hydraulic position servo control system

37



Electro-Hydraulic Position Servo

AP, =G | —RQ, (D+ jczd—lﬁ
VoA L @, h K,
Q=V=~A M . (B+RA 1)
MZ+B2=AAP, - F i P
S d
E, =hz k, =G,G, Ah
| :Ga(l“l_B)(CZd - E/) G _°
W, S h
kS
@ =,
M
~ B+RA*+k /o,

- 2 Jk M



Pneumatic Position Servo
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Pneumatic Position Servo

Input =
Servo made of three- position
way valve connected " ..

[
\ / Pressurc

to spring-loaded N o _ Feedbuch
_{ 1 S’Jr}pl}’ 3 cvel

aCtuatOr Wlth crifice
. | Fiapper N
mechanical lever %Y
| b
feedback __ Nozdle —% i

Pistor
actuator
A
‘\-: .
00QQ |r_‘—"
o 1 |t— F,
At ‘
0000
}

S — Quipui
T - — o
MPRnE position



Pneumatic Position Servo

* Decreasing y causes
increase in 6P, and
output position 6z

* |If 6u held constant,
feedback lever causes
valve to return to steady-
state position

* If F, causes decrease in z,
valve will be actuated,
pressure to actuator will
increase a force to
oppose F,

Uncompressed

spring posilion

|

\"\
a,

Ol
7N
[I 51‘13 I'
NS
H d.
57,
A K
- { h
i [ A T ==
| L | ™ loooo
g Q

oy

L {:'; -'}:



Pneumatic Position Servo

* |n this system, actuator stroke starts at an
unactuated position (z,,y,,uU,) Wwhen supply
pressure is off and increases to null position
when supply pressure is activated

 Examine small variations 6z,0y,0z in positions
around null operation:
2= 2,+62
Y= Yo +0Y
u=u,+o6u

* Nonlinear system difficult to analyze, linearization
to obtain transfer function
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Pneumatic Position Servo

|

'SP,

0.5

5P

0 ‘ N
~1 0 ]

Q./0.

Nonlinear characteristics of three-way flapper-nozzle valve

43



Pneumatic Position Servo

Linear Analysis

&P, =P, -G 8 -R,Q,
d:)S

P = =0.671P

0 m S
G, = Yo __04su%:

P { a* +a*2} y

1+ 0
2
20P.

R Q . =0.770 ok

° a*\/1+0(*2[1+a*_2J Qs



Chp7

Pneumatic Position Servo

I

SF, /6P,

Qu / Q\

Linearized pressure-flow characteristics of three-way
flapper-nozzle valve

45



Pneumatic Position Servo

Q, =!5150 +V
p

V =V, + Az =V"
V = AS
ﬂ:n(épo_l_ atm)Nn(éP + atm) IB
M&Z+K(z, +2,,+0L)= AP, - F,
o, =a'oz—(1-a")au
B P, -G, 0y —R Ad
o V*

null —




Pneumatic Position Servo

*

(ROV* D+1j
G0+ 82, — p F

OL = ks

*

2 * *
ROV*M Do+ Mz ReAT (Y 2/'8 D+1
Bk K K AZ [k

k. =k+G,Aa
. AéPo* _k(zp T Znull) —0
S ks o

_ (1-a')/a’

L

OL




Example 7

In what follows, use the basic models for flows in
the flapper-nozzle valve to derive the normalized
model for the flapper-nozzle valve. Plot the output
pressure 0P, versus the normalized valve
clearance a with no output flow. Show that the
point a = 0.7 is a good trade-off from among the
maximum gain, the minimum mean output
pressure, and the maximum linear modulation of
the output pressure. Show that the null output
pressure is 0.671 6P.. Linearize this model. The
parameters for flow in the flapper-nozzle valve are:



Example 7

Supply flow : Q, = CO,SAS\/Z(a:)S — )

Maximum supply flow: Q. =C,.A

Output flow :

Nozzle flow : Q, CdnAm/

Supply orifice flowarea: A =Zd§

Nozzle circumferential flowarea:A =zd vy



Example 7

In your derivation of the output flow normalized
to the maximum supply flow, you should find a
natural grouping of terms such as the following:

Normalized valvestroke: a =4 Can (3” )? Y

d

CS S n

For symmetric operation, the null position of the
valve is y,, and the valve can stroke = dy



Example 7

Valve position : y =Y, +0

Thus, the null value of ¢: o :4Cdn (dn)z Yo
Ccs ds dn

For this model to be correct, the circumferential
(or curtain) flow area A, of the nozzle should be
smaller than the area A, of the supply orifice;

that is, y
d—0<o.125

n
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Example 7: Solution

The net output flow can be stated as a function of the supply flow and the leakage flow out
the nozzle.

0, =0 -0,
The supply flow is
2\0P. — P,
0. =C, Aﬁ\/ (67, - oF,) where A = fa'f
o

The leakage flow out the nozzle is

52
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Example 7: Solution

24P,
Jo,

Q =C, A, where A =nd,y

In order to help the normalization, we can define the maximum possible supply flow (when
oP, is equal to zero).

2 6P,
0

Q.: = Cds As

Substituting these flow equations into the first equation for the output flow and
normalizing by the maximum flow yields the following.

Qa = Qs_Qﬂ or QH = (5R'_éRJJ_CahAn 5‘3}
o o O o oP, C, A, \ P,

Using the area equations yields

Qa = 1_5’&_4Cd:‘iﬁdny é‘PD
) P C,md’ \|OP

g &

53
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Example 7: Solution

It is convenient to define the grouping of terms in the above equation as the normalized
valve stroke a.

a=04—0n? _ gl |
C, d c,\d | d

5 h

C,d,y cd.,(dnf y

If we consider that the flapper is normally at some null position y, and that flapper motion
is defined as some Jy from that null position, we can arrive at the following.

Yy =Yty
c,(d\ c (aY
then a= o +4—-&|= Q where @ = 4—%| = Yo
C‘if d—‘ d" Cds dﬁ dn

Thus, the full nonlinear model can be stated as follows.

2
Q _ [ % | yi4lald| &) [
%) &P, C,\d, ) d |\|ep

5

54
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Example 7: Solution

The next thing that we need to do is to determine the optimum value for a*. What we have
to do is set the flow to zero and resolve for the pressure as a function of a.

6P, 1 1

a

P 1+(a +5a) T l+d

This pressure response function is graphed below.

Flapper-Nozzle Valve

Problem 7-8
1.0

09 - \\"
0.8 . \\
N

07 a

Po/Ps
o
n

0.3

0.2

0.1

0.0 t } t + + 1 t
0.0 0.2 0.4 0.8 0.8 1.0 1.2 1.4
Alpha
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Example 7: Solution

From this pressure function, we can determine the gain, the mean pressure, and the
pressure range. The gain is the slope of the pressure versus alpha. The slope is negative,
so we will acknowledge this fact by a minus sign.

oF,
- ﬁc?ﬂ __2a
e (1+a?)

Since our motion will be defined as a variation da from some null position a*, we need to

find the optimum null position with £« from that null position. Thus, in the following,
we will find the effect of the characteristics as a function of the null position.

2a

—galn = ———
¢ (1+a?)

56
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Example 7: Solution

The mean pressure represents the average of the pressures with the maximum and the
minimum input strokes toa. It is desirable to keep the mean pressure low.

oF, oF, 14—
p|. TP 1+(2a’)
mean = § lg"=da 5 la'+6a —
2 2

The range of pressure from the maximum output to the minimum output represents the
largest pressure signal that could be generated. We want the range to be as large as
possible.

o]

oP

5

range =

P, 1+(2¢' )

a -8a
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58

Example 7: Solution

All of these performance factors are plotted below. From this graph, we can see that the
gain reaches a maximum around a* = 0.6. Actually, we can mathematically find the

: : : 1 )
optimum of the gain function to be \E =(.577. The mean value starts at 1 (with a*=0)

and decreases; but after a* = 0.8, the decrease is small. Therefore, we are motivated to
have a* larger. The range of pressure increases from zero (with a* = 0), and starts to
flatten out with large a*; therefore, our motivation is to make a* large again.

With these considerations in mind, we select a®* = 0.7 as a good trade-off between
maximum gain, maximum range, and minimum mean pressure.

With a*= 0.7, the output pressure at null can be found to be

2 ! 1 = 0.671

P 1+ 1+0.7

5
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Example 7: Solution

Flapper-Nozzle Valve
Problem 7-8

1.0

o
w

o
»

Po/Ps and other characteristics

=
[N

0.0 %

Alpha

59
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Example 7: Solution

The next task is to linearize the complete equation for the pressure and flow as a function
of alpha given previously.

'7 2
gf=\/l_5ﬂ_[a-+4ci{ﬂ] @) o,
o\ @ Co\d,) 4, |\

5 &

We can use symbols for the normalized flow and pressure variables and simplify to the
following.

0=\1-P-aiP

Now, we are hunting for a linearized model of this equation around the null operating point
of a= a*=0.7 (thus a=0)and P = P*=0.671.

if we use a—a = o

< (F | 77
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61

Example 7: Solution

Rearranging this equation for P as a function of Q and « (note that P* and & are constants)

= = 1 ox 2 —
P=P - - - - — Q
1+M a  ogAl+a® [1+a’"2]
2
If we reuse the ratio notation and unnormalize, we can get the following.
2 oF,
5P, = &P - ok o _ 4 0

° ’ {Ha'uaf"z]ﬂt a'm[ua"z]
2

&

o
— = ——_ We can
24 Yo

Since we are interested in the actual flapper motion, and by noting that

state the final result.
6P, = 6P} -G, & - R, 0,
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Example 7: Solution

where the null output pressure is

the static pressure gain is

and the output impedance is

OP, = o = 0.671 6P,
1+’
OF,
(; — }h 5?1
? ] a’+a? Vs
2
),
R — __Qj CS‘PJ
’ a1+ [1+r:z ] 0,



