
Orifice Flow Resistance
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Example 5: Tank with an Orifice

• The tank shown has an 
orifice in its side wall.  
The orifice area is A0 and 
the bottom area of the 
tank is A.  The liquid 
height above the orifice is 
h.  The volume inflow 
rate is Qv.  Develop a 
model of the height h 
with Qv as the input.
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Example 5: Tank with an Orifice
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Compressible Flow Resistance

• Similar to orifice flow, but considers density variation and has 
higher degree of nonlinearity and complex equations

• For compressible flow, mach number, Nm= v/c0,
– cannot exceed 1 at the throat

– equal 1 for air at Pt/Pu = .528 (flow is choked)

• Once choked, Nm at throat stays at 1-> Q= Atc0= constant

• Due to compressibility, density can vary -> mass flow rate 
(=ρtQ) can vary if upstream conditions change

Chp5 4



Compressible Flow Resistance
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Compressible Flow Resistance

• Approximation to compressible flow equation is possible by 
using incompressible flow equation                            

and gas law, and substituting throat pressure with upstream 
pressure.

• Can solve for Pt or Pu as a function of mass flow rate
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Case Study: 
Spring-Loaded Diaphragm Actuator
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Spring-Loaded Diaphragm Actuator

• Read handout

• Work in groups to answer parts a, b, and c
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Spring-Loaded Diaphragm Actuator
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Spring-Loaded Diaphragm Actuator
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Spring-Loaded Diaphragm Actuator
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Spring-Loaded Diaphragm Actuator
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Spring-Loaded Diaphragm Actuator
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Spring-Loaded Diaphragm Actuator
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Spring-Loaded Diaphragm Actuator
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Homework 5: Chapter 5

• 5.5, 5.11, 5.13, 5.15

• Two Interconnected Tanks Problem: Develop a model for the 
heights h1 and h2 in the liquid system shown in Figure below.  
The input volume flow rate qv is given.  Assume that laminar 
flow exists in the pipes.  The laminar resistances are R1 and R2, 
and the bottom areas of the tanks are A1 and A2.
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