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Agenda
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• Properties of Fluid and Reynolds Number Effects

• Passive Components

• Case Study: Spring-Loaded Diaphragm Actuator

• Active Learning: Pair-share Exercises, Case Study
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Introduction

• Fluid Systems
– Operate through effects of either liquids or gases

– Have wide range of applications, e.g., vehicle suspension systems, 
hydraulic servomotors, and chemical processing systems

• Hydraulics (fluid is incompressible) and pneumatic (fluid is 
compressible) systems
– Common modeling principle is conservation of mass

– Key advantages relative to electro-mechanical systems

• Power density of pump/actuators (1 order of mag. higher 200 psi 
electromagnetic actuator vs. 3000-8000 psi hydraulic actuators)

• Circulating fluid removes heat generated by actuator (instead of free or 
forced convection)

– Have more nonlinearities -> challenging for modeling and simulation
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Properties of Fluid
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Fluid Density

• Incompressible: density of fluid (e.g., liquid) remains constant 
despite changes in fluid pressure (an approximation, but 
simpler modeling)

• Compressible:  density of fluid (e.g., gas) changes with 
pressure

• Liquids have higher density, absolute viscosity, bulk modulus, 
and exhibits surface tension effects

• Density of a fluid: mass m per unit volum V under pressure P0

and temperature T0
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Equation of State: Liquids

• Equation of state: relationship between ρ,P, and T :

• Substitute with Bulk modulus β and Coefficient of 
thermal expansion α
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Reference conditions: 
ρ0,P0, T0,



Equation of State: Liquids

• Isothermal bulk modulus: 
pressure changes occur at a 
slow enough rate during 
heat transfer to maintain 
constant temperature

• Adiabatic bulk modulus: 
pressure change is 
significant, preventing heat 
transfer. Specific heats ratio 
Cp/Cv ~ 1

• Thermal expansion 
coefficient: incremental 
change in volume with 
temperature changes ~ 
0.5x10-3/0F for most liquid
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(Cp and Cv specific heat at constant pressure and temperature)



Equation of State: Gases

• Ideal gas:

• Gas undergoing polytropic process:

• Bulk modulus:
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(βliquid ~ 5 to 15 Kbar >> β gas ~ 1 to 10 Bar)



Viscosity

• Absolute viscosity μ

• Kinematic viscosity: ν=μ/ρ

• Liquids: λL constant depends on liquid

• Gases: λG constant depends on gas
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Speed of Sound, Specific Heat Ratio, 
and Reynolds Number 

• Speed of sound or propagation

• Specific ratio

• Reynolds Number: inertial forces / viscous forces

Laminar: Nr < 1400, transition: 1400<Nr<3000, turbulent: Nr > 3000
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~ 1370 m/s in oil at 250 C, ~ 347  m/s in air at 250C

~ 1.4 for gases and 1.04 for liquids



Passive Components: 
Capacitance, Inductance, Resistance
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Fluid Capacitance
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Example 1: Spring-Loaded Piston 
Capacitance

• Find total capacitance for this system

• Accumulators: liquid capacitors
– Spring-loaded pistons, bellows, gas-filled bladders

– Use mechanical capacitors when β is large for incompressible fluids

– Use large V to get large compressibility capacitance
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Mechanical 
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(βliquid ~ 10 Kbar >> β gas ~ 10 Bar)
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Example 2: Capacitance of Thin-Walled Tube 

• A circular tube of length l is used to hold fluid 
pressure.  If the tube has an internal diameter 
di, a wall thickness t, and a Young’s modulus E, 

– Derive the capacitance of the tube, using an 
incompressible fluid, 

– Derive the total capacitance CT, which includes the 
volume capacitance of the fluid, CF (with a fluid of 
bulk modulus β), and the mechanical capacitance, 
CM.  
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Example 2: Capacitance of Thin-Walled Tube 
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Example 2: Capacitance of Thin-Walled Tube 
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Example 3: Pair-Share: Capacitance of a Balloon 

The radius expansion, R-R0, of a balloon filled 
with a gas is directly proportional to the 
internal pressure of the gas.  Let us write this 
proportionality as δP=K(R-R0).  Derive an 
expression for the total capacitance of the 
balloon that considers the change in volume 
of the balloon and the effect of 
compressibility of the gas.  (Volume = 4πR3/3)
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Example 3: Pair-Share: Capacitance of a Balloon 
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CV

Fluid Inductance
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Fluid Resistance

• Laminar flow: viscous-dominated flow
– Low enough flow rates or pressure drop in long capillary 

tubes -> viscous flow

– Viscous terms dominate -> Reynolds is low (Nr < 1000)

• Orifice-type or head loss resistance: inertia-dominated 
flow
– Orifice with short length in direction of flow

– Head loss with turbulent flow

• Compressible flow resistance
– Similar to orifice type,  but includes density variation of gas

– Flow equations have high degree of nonlinearity
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Laminar Flow Resistance
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Example 4: A Liquid-Level System

The tank shown has a mass  
inflow rate of      .  The liquid 
height above the orifice is h.    
Compute the time constant 
of the system, assuming that 
the flow is laminar.  The tank 
contains fuel oil at 700F with 
a mass density ρ of 1.82 
slug/ft3 and a viscosity μ = 
0.02 lb-sec/ft2.  The outlet 
pipe diameter D is 1 in., and 
its length L is 2 ft.  The tank is 
2 ft in diameter.
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Example 4: A Liquid-Level System
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Orifice Flow Resistance
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Example 5: Tank with an Orifice

• The tank shown has an 
orifice in its side wall.  
The orifice area is A0 and 
the bottom area of the 
tank is A.  The liquid 
height above the orifice is 
h.  The volume inflow 
rate is Qv.  Develop a 
model of the height h 
with Qv as the input.
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Example 5: Tank with an Orifice
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