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Lagrange’'s Equation
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Lagrange’'s Method

* Newton’s method of developing equations of
motion requires taking elements apart

 When forces at interconnections are not of
primary interest, more advantageous to derive
equations of motion by considering energies Iin
the system
e Lagrange’'s equations:
— Indirect approach that can be applied for other types
of systems (other than mechanical)

— Based on calculus of variations — finding extremums
of quantifies expressible as integrals
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Lagrange’'s Equations

dfoT )| o aR au 0
dt\ ag, | o 8q, aqi |
where:

g; - Independent coordinates necessary to
describe system's motion at any instant
Q, : corresponding loading in each coordinate

U = f,(q;) : potentialenergy In terms of coordinates
T = f,(q7): kinetic energy in terms of systemmasses,

mass Inertias, linear/ang ular velocities
R = f,(g’°) :energy dissipation due to viscous friction
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Deriving Equations of Motion via
Lagrange’s Method

1. Select a complete and independent set of
coordinates g;'s

2. ldentify loading Q, in each coordinate
. Derive T, U, R

4. Substitute the results from 1,2, and 3 into
the Lagrange’s equation.

w



Example 11: Spring-Mass-Damper
System

Independent coordinate: g = x

.. s 1 //l—‘““"
U= = kex R = = bx* e 4 7
£, s //) i
1= %m\ O f(l‘) ? N
2 Qf ni — (1)
i
fg =k ? h | ST
o X AT LA LT AP T AA T Z RS
olU
— kx
dx

Substitute into Lagrange’s equation:

mx + b+ kx = 1)
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Example 12: Pair-Share:
Restrained Plane Pendulum

« A plane pendulum (length L
| and mass m), restrained \
by a linear spring of ‘
spring constant k and a \
linear dashpot of dashpot |
constant c, is shown on ‘ |
the right. The upper end g
of the rigid massless link W=
IS supported by a
frictionless joint. Derive j« g
the equation of motion.
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Example 12: Pair-Share:

Restrained Plane Pendulum
1-0. 00 | .
Rzéc(aé?)2 \

1 1 :
T==-mv’==m(l6)’ ‘
2 ,m(19) ’ |

U :mgl—mglcosé?+%k(b6?)2 |

Y EU L FIMA—
dt 00" 06 o860 o6 |
m1%0 +ca’d +mglsin @ +kb’6 =0 l

Linearize sin@ = @ for small @
m1%0 +ca?6 + mglod + kb’0 =0
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Example 13: Bead on a Spinning Wire Hoop

* One degree of freedom, g,=angle @ as an independent coordinate
- Velocity of bead: Rf. ; Velocity of hoop: p@=Rsinf

* Kinetic energy: T _ % mv’ = % m[(Ré'?)2 +(Rawsin «9)2] =

» Potential energy relative to its position at the bottom of
the hoop (when the hoop is not rotating and 6= 0), is
U =mgR—-mgRcos &

- R=0,Q=0

« Substitute into Lagrange’s equation:

d, oT o oR odU
dt 06 o0 00 o060

mR?0 — mR*w? sin @cos & + mgRsin 8 =0

Solving for the angular acceleration: g = (wz cos@—gjsin 6.
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Example 14: Pair-Share: Copying machine

Use Lagrange’s equation to derive | " i i, e

. ; hinge (| Z e \ ? ny, n,
the equations of motion for the e | — 7 5
copying machine example, | s

assuming potential energy due to FA= ko y
gravity is negligible. Am :

Ly
d;=Y, 4,= 6 T/i

Since the bar mass is negligible, the kinetic energy is: T=—my

The potential energy is: U= %ﬁ:z(-ﬂﬁ'—y]j +%k. (a8)’

While the dissipation function is given by: R= —;b{ 31

0

Lagrange’s equation: d(ﬂ? T] _ar N &R U

—_— + =
dr Eﬂql {?gr' ﬁql 'I::?ql

Q=FKQ,=0
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™" Example 14: Pair-Share: Copying machine

The required derivatives are:

Thus

Sy 42 <=0
2y dr\ &y 28
_;ﬂf?:_kz{,{,g_}-} %: k, L(LE — y)+ k,a’8

k,L'@—k, Ly + ka*8=0 or (k, I + ka*)o=k,Ly

- kbl
(k, I* + k,a®)

Substitution gives:

m,V+by—k,(L8-y)=F

k. L
L 7 Ty =
(k, I’ + k,a’)

my+byp+k,y—k,



Example 15: Mass Spring Dashpot
Subsystem in Falling Container

« A mass spring dashpot subsystem
In a falling container of mass m, is |
shown. The system is subject to Container—_ 4
constraints (not shown) that
confine its motion to the vertical
direction only. The mass m,,
linear spring of undeformed length
|, and spring constant k, and the Z; N
linear dashpot of dashpot constant ]
c of the internal subsystem are
also shown.

« Derive equation(s) of motion for
the system using
— X, and x, as independent coordinates
— Yy, andy, as independent coordinates




Example 15: Mass Spring Dashpot
Subsystem in Falling Container

Let g, = X;,0, = X, be positions of m, and m, with respect to horizontal ground.

Q1,2 =0

T :%mle +%m2>'<§

e
-

1 2
U= > K(X, —X,)" +mMgX, +M,gX, Container ——

R = %c(x1 —X,)?

Substitute into Lagrange's Equation : B
d oT oT OoR oU
atl o T o Tax T
1 1 1 1 :};‘2
m X, +c(X, —X,)+k(x,—%X,)+mg=0
ﬂ:l

d oT,_ or R _au

- + + = |
dt 8)'(2) OX, OX, OX, Q

m, X, +c(X, — X ) +K(X, = x,)+m,g =0
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Example 15: Mass Spring Dashpot
Subsystem in Falling Container

Let g, =y, beinertial position of m, with respect to horizontal ground
d, =Y, be position of m, relativetom, and fromunstretched length of spring

Q1,2 =0
1 . 1 ) )

T =§m1yf+§m2(y1 +Y,)°
1

U =§ky22 +mlgy1+ng(y1+y2)
1 .

Rzicyz2

Substitute into Lagrange's Equation :

d oT or oR oU
)— +

oy Ty,

dt ~ oy,

(M, +m,)y, +m,y, +mg+m,g =0

d, oT Jof oR oU
() o =,
dt oy, oy, ¥, o

m, ¥, +m, ¥, +cy, +ky, +m,g =0

Container ——_

13
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Example 16: A Block Sliding on a Wedge

Block mass m sliding down a wedge mass M
Independent coordinates, g, and g, are shown, g, is along the plane and

IS measured relative to the (moving) wedge. q
Velocity of the wedge is G, , but //\{
velocity of the block has components from both

g, and ¢ Az

Vblock2 — Vf + V>2/ — (qz + ql COS 0[)2 + (ql Sin a)z

Total kinetic energy is | _ % M2 +%m[(q2 +0, cos ) + (g, sin 05)2]

The potential energy of the wedge can be taken as zero, and the block is

U =-mgg, sinx
Substitute into Lagrange’s equations and differentiate wrt to q, and q,
O, = gsina b, = b, cos o
1= - 2 = 1 :
1-— M cos?q M +m

M +m

14




chp3

Example 17: Pair-Share:
Mass Pendulum Dynamic System

« A simple plane pendulum of mass m, and v
length | is suspended from a cart of mass m as \
sketched in the figure. The motion of the cart
IS restrained by a spring of spring constant k
and a dashpot constant c; and the angle of the
pendulum is restrained by a torsional spring of
spring constant k, and a torsional dashpot of
dashpot constant c,. Note that the constitutive
relations for the torsional spring and torsional
dashpot are linear expressions 1=k.0 and 1=c0, \
respectively, where T1is the torque and 8 is the
change in the angle across the element from its
undeformed configuration.

F(t)=F,smwi

« The torsional spring is undeformed when the pendulum is in its downward-
hanging equilibrium position. Also, m, is acted upon by a known dynamic
force Fysinwt, which remains horizontal, regardless of the angle 6 and the
motion of the cart. The system is constrained to remain in the plane of the
sketch and the cart remains on the bed throughout its motion. Derive the
equation(s) of motion for the system.

15
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Example 16: Pair-Share:
Mass Pendulum Dynamic System

Twoindependent coordinates: g, = x,q, =6
Q, =F,sinwt and Q, =(F,sinwt)lcosd "‘"96 ~
'p.‘ —h;.
1 ) 1 =9 ; x
RX = —CX and R9 - — Ctg ‘scfi
/.
6" T :
1 1 '/’/ tosing =+
U=> kx® + > k.8% + m,gl (1 - cos 6) SN -
— Tcart + pendulum ' &
£
VI
.2 . Y
Tcart — E mx v .

2+ ¢6cosd
T pendutum = % m, (()‘( +16cos0)* + (16sin 9)2):% m0(>'<2 +(160)? + 2x10 cos 9)
Substituteinto Lagrange' s Equations :
(M +m,) X +cX + kx+m,l (6 cos @ — 67 sin 6) = F, sin wt

m,l6 + ¢80 + k.6 + m gl sin & + m Xl cos @ = (F, sin wt)l cos &
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Comparison of Newton’s and
Lagrange's Methods

Newton’s (Direct Approach) Lagrange’s (Indirect Approach)

Accelerations required Velocities required

Generally vectors required Generally scalars required

Free-body Diagrams useful Free-body diagrams not useful

All forces considered Workless forces (constraints) forces
not considered

All forces handled via same Conservative and non-conservative

expression forces handled separately

Intermediate forces more readily Intermediate forces less readily

available available
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Case Study:
Feasibility Study of a
Mobile Robot Design

18
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Preliminary Design Model

* Read Handout 1

* Develop a simplified model of the base
and the arm by neglecting the reaction
forces that occur at the pivot

* When do the reaction forces become
significant?

=> at high accelerations and speeds of the
base and the arm

19



e Preliminary Design Model

We will develop simplified models of the base and the arm by neglecting the reaction
forces that occur at the pivot. These reaction forces become more significant at higher
accelerations and speeds of the base and arm. Thus the following models assume that
these speeds and accelerations are small. We will later develop more complex models
that account for these reactions.

A simple model of the base is shown in Figure 2.6-2a. The base motor force f

must accelerate the base mass M. the arm mass #1;. and the hand mass m». Thus,
applying Newton's law, we obtain

(M +my +m)x =140 = f (2.6-1)

A simple model of the arm-hand combination i1s shown in Figure 2.6-2b. where
m is the combined arm-hand mass: m = m; + m> = 30 4+ 10 = 40 kg. The center of

—_—— X

=M +my+my

(a) (b)

Figure 2.6-2 A robot mode] that neglects reaction forces. () Model of
the base. (b) Model of the arm.

20
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Preliminary Design Model

mass 1s a distance L from the pivot point P. Thus

my Dy +mp(re + Dy) 7 .

m, -+ o 8

l.=

The moment of inertia /p about the pivot is
Ip =my Dy +my (Dy +r2)° = 30(0.5)> + 10(2 + 0)° = 47.5 ke-m°

Note that the pivot is accelerating horizontally with an acceleration ¥. From Figure
2.6-2b and the moment equation (2.5-4), we find that the arm’s equation of motion is

Ip¢p + mr.a py—mryap, = Mp =T+ mglsing

where r, = — /L sin ¢, ry = Lcos¢, ap, = X, apy, = 0. Thus the equation of motion
for the arm is

Ip¢p —mLicos¢p = T + mgL sin ¢ (2.6-2)
or

4756 — 355 cosd = T + 343 4 sin ¢ (2.6-3)

21
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Motion Profiles

« Read Handout 2

* Plot the motor force versus time, and
motor torque versus time, and determine
whether the motor is powerful enough

22
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Motion Profiles

From (2.6-4) we see that the maximum magnitude of the base acceleration occurs
at 1 = O and at 1 = 4, and is A = 1.875 m/s*. Using model (2.6-1) with ¥ = A we
find that the maximum motor force f requiredis f = 140A = 262.5 N, which 1s less
than the motor’s maximum of 300 N. Thus the base motor appears to be sufficient
for the application. The motor force as a function of time is obtained by substituting
¥ from (2.6-4) into (2.6-1) to obtain f = 140(1.875) (1 —t/2). The curve 1s labeled
f1 in Figure 2.6-4. The curve labeled f> will be discussed shortly.

We can plot the motor torque 7 versus time using (2.6-4), (2.6-7), and (2.6-8) in
the arm model (2.6-3). The plot is shown in Figure 2.6-4. It shows that the maximum
required torque magnitude is 371 N-m at r = (. Because the torque magnitude 18
always less than the motor’s maximum of 400 N m, the arm motor appears to be
powerful enough.

Figure 2.6-4 Predicted
base force f and arm
torque 7 as functions of
fime.

Force (N)
Tarque {N-m)
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A More Detailed Model

* The simplified model appears feasible

* Develop a detailed model, including the
reaction forces to see whether they
significantly change the results

24
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A More Detailed Model

)1
H{—H_“_PI«V T Lﬁ
f}i f —— TM
! ) l @
—
Mg T
R, R
(a) (b)

Figure 2.6-5 A robot model that includes reaction forces. (a) Model
of the arm. (b) Model of the base.

The free body diagrarﬁs are shown in Figure 2.6-5. First consider the arm. The ver-
tical and horizontal components of the arm’s mass center are L cos ¢ and x + L sin ¢,
respectively. For the horizontal direction Newton’s law gives

s(x — Lsing) = H (2.6-9)

where H is the horizontal component of the reaction force at the pivot. The moment
equation (2.6-4) about the arm’s pivot point P gives:

Ip¢p —mlLicosp =T + mglsing (2.6-10)

25
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A More Detailed Model

where /p 1s the arm’s moment of inertia about the pivot point.
Now consider the base. Newton’s law 1n the horizontal direction gives

Mi= f—H (2.6-11)

Because we are assuming that the base does not rotate or move vertically, we need

not consider the moments and vertical forces on the base, uniess we need to compute
the reaction forces V, Ry, and R;.

This completes the equations of motion for the system. These equations can

be put into a more useful form, as follows. Evaluate the derivative in (2.6-9) to
obtain

mx — ng;(COS O @) = mi — mL(—sin ¢ qi)z +cosp ) = H (2.6-12)

Solve (2.6-11) for the reaction force H: H = f — Mx. Substitute this into (2.6-12)
and collect terms to obtain:

(m+ M)¥ —mL(cos¢ ¢ —sing d) = f (2.6-13)

26
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A More Detailed Model

The equations of motion are (2.6-10) and (2.6-13). Equation (2.6-10) is identical to
(2.6-2). Because m = m; +m». the model (2.6-13) reduces to the simpler model (2.6-1)
when the arm’s speed and acceleration are small (p ~ ¢ =~ 0). In this case, the reaction
forces are small and can be neglected. as was done in deriving the simpler model.

Because (2.6-10) 1s identical to (2.6-2), the torque 7 required is the same as that
shown in Figure 2.6-4. The motor force f is obtained by substituting X, ¢. ¢. ¢ from
(2.6-4), (2.6-8) and their derivatives into (2.6-13). The plotislabeled f in Figure 2.6-
4. This model predicts that the required force magnitude will be 283.5 N at r = 4.
This 1s 8% greater than the force of 262.5 N predicted by the simpler model, but is
still less than the available force of 300 N.

Thus the proposed design appears to be feasible so far. Further analysis would
depend on the specifics of the intended application, and might include a study of the
effects of allowing the hand to move while the arm 1s in motion. This would require

that the equations of motion be derived for the case where 7> 1s a specified function
of time.

27
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Matlab Simulation Example:
Solving Systems of Equations

From Matlab website: http://www.mathworks.com/support/tech-notes/1500/1510.html#time

Consider the second-order system

u''(®)+ e 3u(x) =™
V() + cos(x'(X) + u(x) = sin(x)

First reduce this system of second-order ODEs to a first-order differential equation by
introducing the vector

=T T = g

Mext, rewrite the above system of equations as

u 0 1 0 0 u 0
4dlul |-3 0 0 -e* u' el
— = @ +
dx| v 0 0 0 v 0
v 1 -cos(x) 0 O v SIN(X)

28
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Matlab Simulation Example:
Solving Systems of Equations

. From Matlab website: http://www.mathworks.com/support/tech-notes/1500/1510.html#time

Enter this into MATLAE in the following format:

function dy = secondode (x, y)
% function to be integrated

dy = zeros(4,1);

dy (1) = y(2);

dy(2) = -3*y(1l) —exp(x)*y(4) + exp(2¥x);
dy(3) = y(4);
dy(4) = -y{l) -cos(x)*y(2) + =in(x);

Mote the change of variable from x to ¢ (it is simply the independent variable).

Mow solve the system using ODE45 and the initial conditions w(0) = 1, u"(0) = 2, v(0) =
3, v'"(0) = 4 over theinterval fromx = 0 to x = 3. The commands you will need to use are:

xspan = [0 32];
y0 = [1; 2; 3; 4];
[, ¥] = oded5(@zecondode, xspan, y0);

The values in the first column of y correspond to the values of u for the x values in x. The
values in the second column of y correspond to the values of u', and so on.

*  More on ode45 commands: http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ode45.html


http://www.mathworks.com/support/tech-notes/1500/1510.html
http://www.mathworks.com/support/tech-notes/1500/1510.html
http://www.mathworks.com/support/tech-notes/1500/1510.html
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Homework 3: chapter 3

« 3.14, 3.21,3.24,3.25,3.31,3.33,3.36

« Case study simulation:

— Simulate the detailed model for 10 seconds with initial
conditions x,=0,%, =0, ¢, =10°, ¢, =0 and for three
cases:

1. T=0,f=0
2. T=370Nm,f=0
3. T=0,f=263N

— For each case, plot state vector versus time

— Describe the behavior of the system for each case
and discuss the stability of the system

30
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Case Study Simulation Model

| ;@ —mLXcosg =T +mglsing¢

or

ag+bx=c

where

a=1,;b=-mLcosg;c=T +mglsing

(M + M )X —mLcos ¢p + mLsin gpp” = f

or

d¥+e¢d =g

whered = (m+M); e=—mLcos¢; g =—mLsin¢gp® + f

Solve for X and ¢
g 29 —¢€c _ Ip(—mLsin dp° + f)+ mL cos ¢(T +mglsin @)
~ad—eb | (m+M )+mLcosg(—mLcos ¢)

&_E_E{ag —ec}_T +mg|3in¢+ mL cos ¢ Ip<—mLsin¢¢52 + f)+ mLcos ¢(T +mglsin ¢)
ad—eb |

a a " 1 | ,(m+M )+mLcos ¢(—mLcos ¢)

31
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tspan =[0 3]; %simulation time vector

%State vector =y =[xX ¢ 4]’
yO=[0 010* pi/180 0]';
[t, y] = ode45(@ secondode, tspan, y0);

x =y(:,1); xdot = y(;,2); phi=y(:;,3); phidot = y(;,4);
%Plot state vector against time

figure

subplot(221)

plot(t, x)

ylabel (' x,[m]")

xlabel ('t,[s]')

subplot(222)

plot(t, xdot)

ylabel (' xdot,[m/s]')
xlabel ('t,[s]")

subplot(223)
plot(t, phi)
ylabel (" phi,[m]")
xlabel ('t,[s]")

subplot(224)

plot(t, phidot)

ylabel (" phidot,[rad /s]’)
xlabel ('t,[s]")

Matlab Simulation

% function to be integrated
function dy = secondode(t, y)
dy = zeros(4,1);

% Define parameters
I, =47.5; %kg—m"2

L=7/8; %m

m = 40; %Kkg

M =100; %Kkg

g =9.81; %m/s"2
T =0;

f =0;

a=1,

b=-—-m*L*cos(y(3));
c=T+m*g*Il*sin(y(3));
d=(M+M);

e=—m>*L*cos(y(3));
g=—m>*L*sin(y(3))*y(4)*y(4)+ f;

%State vector =y =[xx ¢ ¢1'=[y(@D y(2) y(3) y(4I

dy(@) = y(2);

dy(2)=(a*g—e*c)/(a*d —e*h);

dy(3) = y(4);
dy(4)=c/a—(b/a)*(a*g—e*c)/(a*d —e*Dh);

32
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