chp3

Modeling Mechanical Systems

1

Dr. Nhut Ho ME584

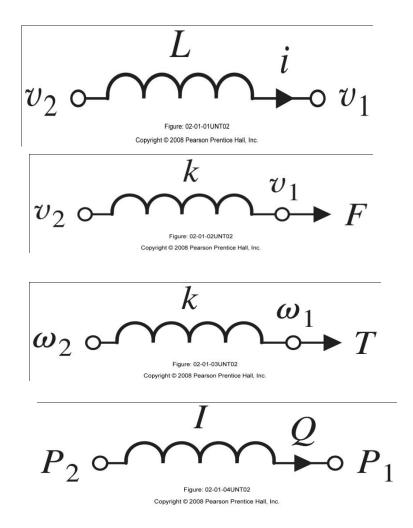
Agenda

- Idealized Modeling Elements
- Modeling Method and Examples
- Lagrange's Equation
- Case study: Feasibility Study of a Mobile Robot Design
- Matlab Simulation Example
- Active learning: Pair-share exercises, case study

chp3

Idealized Modeling Elements

Inductive storage



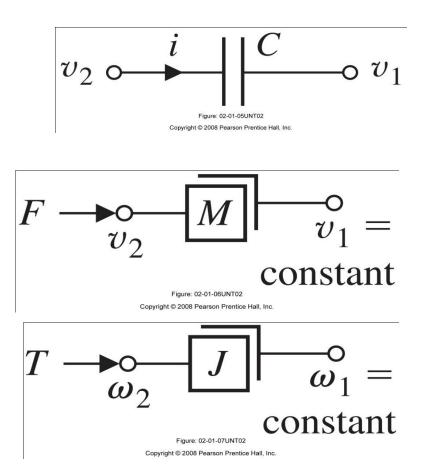
Electrical inductance

Translational spring

Rotational spring

Fluid inertia

Capacitive Storage

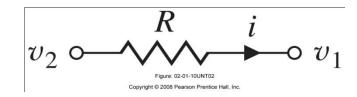


Electrical capacitance

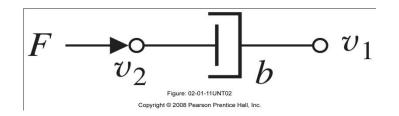
Translational mass

Rotational mass

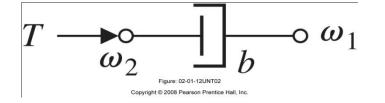
Energy dissipators



Electrical resistance



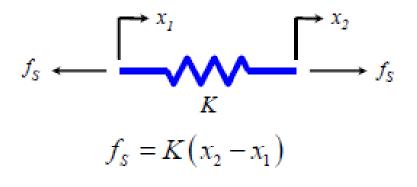
Translational damper



Rotational damper

Springs

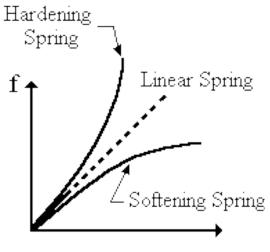
- Stiffness Element
- Stores potential energy



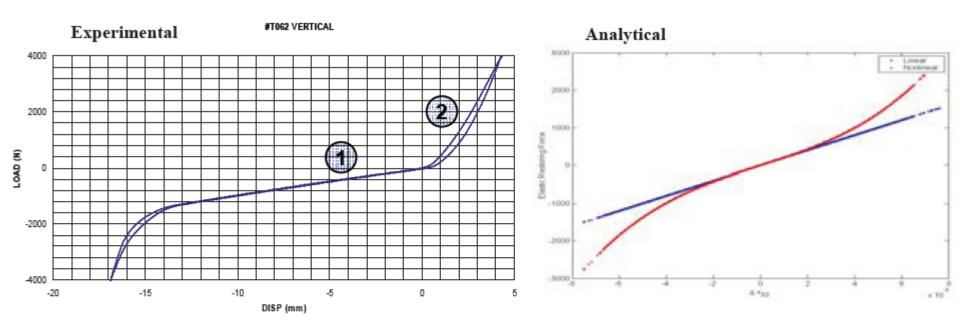
- Idealization
 - Massless
 - No Damping
 - Linear

- Reality

- 1/3 of the spring mass may be considered into the lumped model.
- In large displacement operation springs are *nonlinear*.

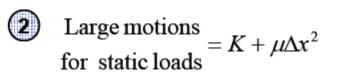


Actual Spring Behavior



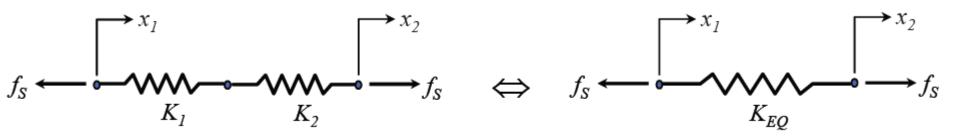
Restoring force = $(K + \mu \Delta x^2) \Delta x$

 $\frac{\text{Small motions}}{\text{for isolation}} \approx K$

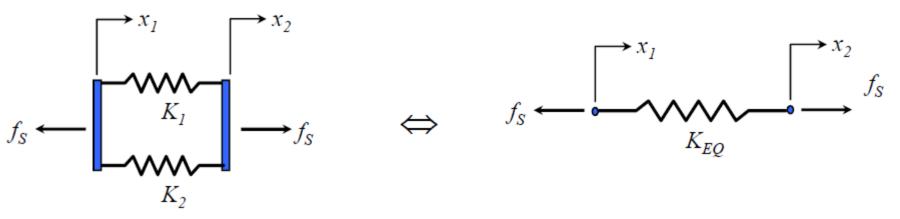


Spring Connections

• Spring in series: $K_{EQ} = K_1 K_2 / (K_1 + K_2)$

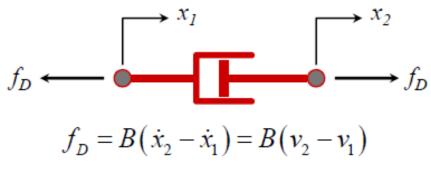


• Spring in parallel: $K_{EQ} = K_1 + K_2$



Dampers and Mass

- Friction Element



Dissipate Energy

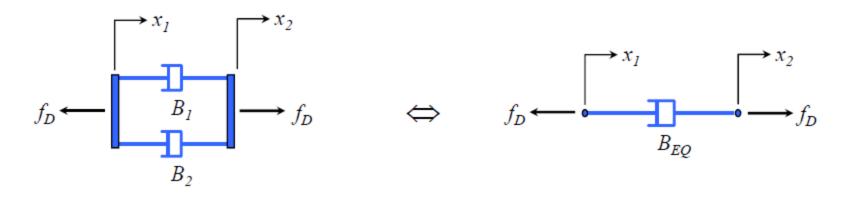
Inertia Element



Stores Kinetic Energy

Dampers Connections

- Dampers in series: $B_{EQ} = B_1 B_2 / (B_1 + B_2)$ $f_D \leftarrow \overbrace{B_1}^{x_1} \qquad \overbrace{B_2}^{x_2} \qquad \Leftrightarrow \qquad f_D \leftarrow \overbrace{B_{EQ}}^{x_1} \qquad \overbrace{B_{EQ}}^{x_2} \qquad \Leftrightarrow \qquad f_D \leftarrow \overbrace{B_{EQ}}^{x_1} \qquad \overbrace{B_{EQ}}^{x_2} \qquad \Leftrightarrow \qquad f_D$
- Dampers in parallel: B_{EQ}=B₁+B₂



chp3

Modeling Mechanical Systems

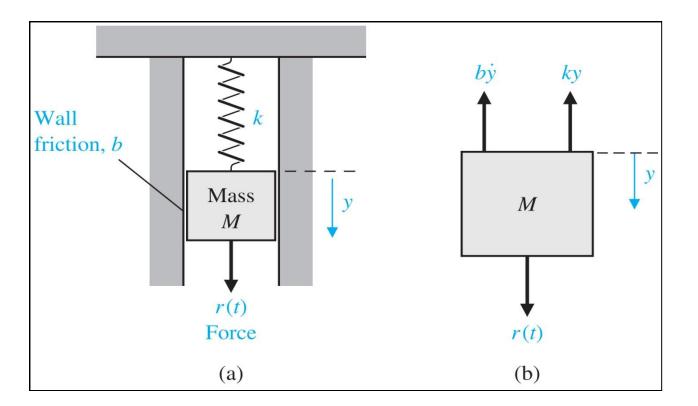
Modeling Methods

- State assumptions and their rationales
- Establish inertial coordinate system
- Identify and isolate discrete system elements (springs, dampers, masses)
- Determine the minimum number of variables needed to uniquely define the configuration of system (subtract constraints from number of equations)
- Free body diagram for each element
- Write equations relating loading to deformation in system elements
- Apply Newton's 2nd Law:
 - F = ma for translation motion
 - $\mathbf{T} = \mathbf{I} \boldsymbol{\alpha}$ for rotational motion

Example 1: Automobile Shock Absorber

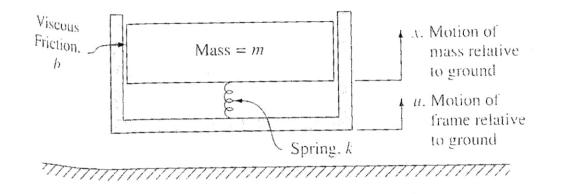
Spring-mass-damper

Free-body diagram



$$M\frac{d^2 y(t)}{dt^2} + b\frac{dy(t)}{dt} + ky(t) = r(t)$$

Example 2: Mechanical System



- Draw a free body diagram, showing all forces and their directions
- Write equation of motion and derive transfer function of response x to input u

Example 2: Mechanical System

a. - b. Free body:

c. Equation of: Using Newton's second law:

$$\sum F_x = m\ddot{x} \qquad -b(\dot{x}-\dot{u}) - k(x-u) = m\ddot{x}$$

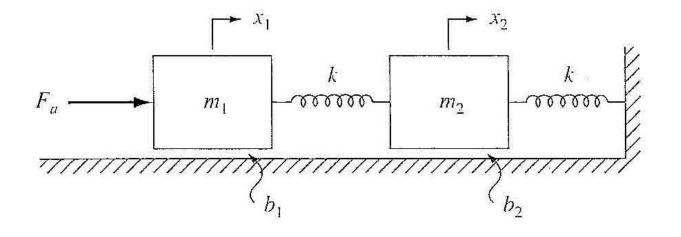
$$m\ddot{x} + b\dot{x} + kx = +b\dot{u} + ku$$

In D-operator notation:

$$[mD^2 + bD + k]x = [bD + k]u$$

The transfer function is: $\frac{x}{u} = \frac{bD + k}{mD^2 + bD + k}$

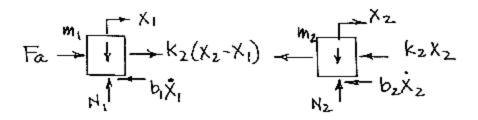
Example 3: Two-Mass System



Derive the equation of motion for x₂ as a function of F_a. The indicated damping is viscous.

chp3

Example 3: Two-Mass System



Equations of motion for the two masses:

 $F_a + k_2 (x_2 - x_1) - b_1 \dot{x}_1 = m_1 \ddot{x}_1$

 $-k_2(x_2 - x_1) - k_2 x_2 - b_2 \dot{x}_2 = m_2 \ddot{x}_2$

Or

$$m_1 x_1 + b_1 x_1 + k_2 x_1 - k_2 x_2 = F_a$$
$$[m_1 D^2 + b_1 D + k_2] x_1 - k_2 x_2 = F_a$$

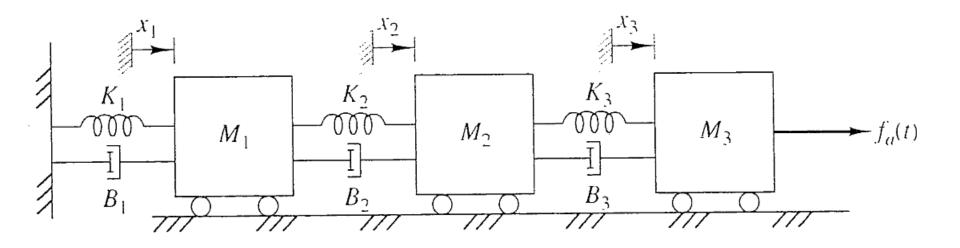
and

$$m_2 \ddot{x}_2 + b_2 \dot{x}_2 + 2k_2 x_2 - k_2 x_1 = 0$$
$$-k_2 x_1 + [m_2 D^2 + b_2 D + 2k_2] x_2 = 0$$

Use Cramer's rule to solve for x_2

$$x_{2} = \frac{k_{2}F_{a}}{[m_{1}D^{2} + b_{1}D + k_{2}][m_{2}D^{2} + b_{2}D + 2k_{2}] - k_{2}^{2}}$$

Example 4: Three-Mass System



 Draw the free-body-diagram for each mass and write the differential equations describing the system

Example 4: Three-Mass System

$$M_{i} \stackrel{\times}{\times}_{i} \stackrel{\leftarrow}{\leftarrow} M_{i} \stackrel{\leftarrow}{\to} K_{2}(x_{2} - x_{i})$$

$$K_{i} \stackrel{\times}{\times}_{i} \stackrel{\leftarrow}{\leftarrow} M_{i} \stackrel{\leftarrow}{\to} B_{2}(x_{2} - \dot{x})$$

.

$$M_2 \ddot{x}_2 \leftarrow - K_3 (x_3 - x_2)$$

$$K_2 (x_2 - x_i) \leftarrow M_2$$

$$B_2 (\dot{x}_2 - \dot{x}_i) \leftarrow M_2$$

$$B_3 (\dot{x}_3 - \dot{x}_2)$$

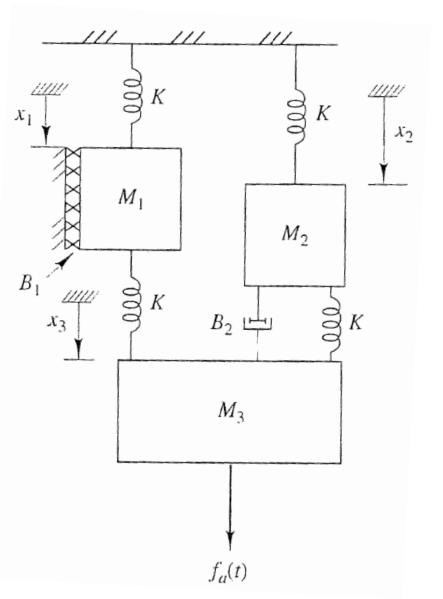
Summing the forces shown on each of the free-body diagrams and collecting terms, we get

$$\begin{array}{rcl} M_{1}\ddot{x}_{1} + (B_{1} + B_{2})\dot{x}_{1} + (K_{1} + K_{2})x_{1} - B_{2}\dot{x}_{2} - K_{2}x_{2} &= 0 & & & & & \\ -B_{2}\dot{x}_{1} - K_{2}x_{1} + M_{2}\ddot{x}_{2} + (B_{2} + B_{3})\dot{x}_{2} + (K_{2} + K_{3})x_{2} & & & & \\ -B_{3}\dot{x}_{3} - K_{3}x_{3} &= 0 & & & & \\ -B_{3}\dot{x}_{2} - K_{3}x_{2} + M_{3}\ddot{x}_{3} + B_{3}\dot{x}_{3} + K_{3}x_{3} &= & f_{a}(t) & & \\ \end{array}$$

.

Example 5: Pair-Share Exercise

- All springs are identical with constant K
- Spring forces are zero when x₁=x₂=x₃=0
- Draw FBDs and write equations
 of motion
- Determine the constant elongation of each spring caused by gravitational forces when the masses are stationary in a position of static equilibrium and when $f_a(t) = 0$.



Example 5: Pair-Share Exercise:

(a) Summing the forces shown on each of the free-body diagrams and collecting terms, we obtain

$$M_1 \ddot{x}_1 + B_1 \dot{x}_1 + 2Kx_1 - Kx_3 = M_1 g$$

$$M_2 \ddot{x}_2 + B_2 \dot{x}_2 + 2Kx_2 - B_2 \dot{x}_3 - Kx_3 = M_2 g$$

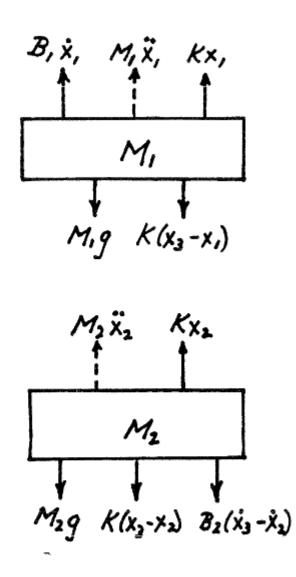
$$-Kx_1 - B_2 \dot{x}_2 - Kx_2 + M_3 \ddot{x}_3 + B_2 \dot{x}_3 + 2Kx_3 = M_3 g + f_a(t)$$

(b) Letting $f_a(t) = 0$, replacing x_1, x_2 , and x_3 by the constant displacements x_{1_0}, x_{2_0} , and x_{3_0} , and noting that all the derivatives of these constant displacements are zero, we have the following three algebraic equations.

$$2x_{1_0} - x_{3_0} = \frac{M_1g}{K}$$
, $2x_{2_0} - x_{3_0} = \frac{M_2g}{K}$,
and $-x_{1_0} - x_{2_0} + 2x_{3_0} = \frac{M_3g}{K}$

Solving these equations simultaneously gives

$$\begin{aligned} x_{1_0} &= (3M_1 + M_2 + 2M_3) \frac{g}{4K} \\ x_{2_0} &= (M_1 + 3M_2 + 2M_3) \frac{g}{4K} \\ x_{3_0} &= (M_1 + M_2 + 2M_3) \frac{g}{2K} \end{aligned}$$

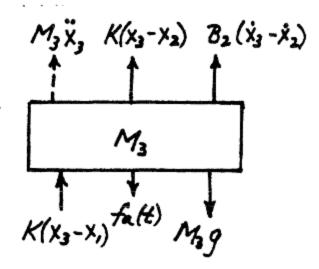


Example 5: Pair-Share Exercise:

The four spring elongations are x_{1_0}, x_{2_0} , and

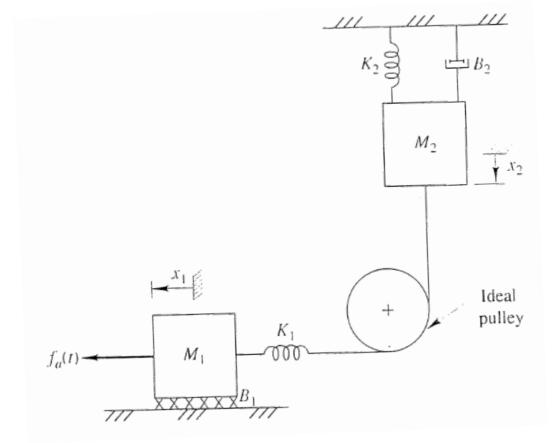
$$\begin{aligned} x_{3_0} - x_{1_0} &= (-M_1 + M_2 + 2M_3) \frac{g}{4K} \\ x_{3_0} - x_{2_0} &= (M_1 - M_2 + 2M_3) \frac{g}{4K} \end{aligned}$$

Note that the elongations are not affected by the vicous damping coefficients B_1 and B_2 .



Example 6: Pair-Share Exercise

- Assume that the pulley is ideal
 - No mass and no friction
 - No slippage between cable and surface of cylinder (i.e., both move with same velocity)
 - Cable is in tension but does not stretch
- Draw FBDs and write equations of motion
- If pulley is not ideal, discuss modeling modifications

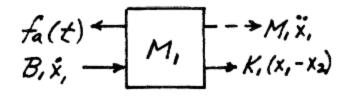


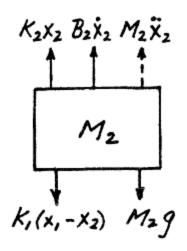
Example 6: Pair-Share Exercise

When drawing the free-body diagrams, note that the downward force of the cable on M_2 is the same as the force of the cable to the right on M_1 because of the pulley. Summing the forces shown on each of the diagrams and collecting terms, we get

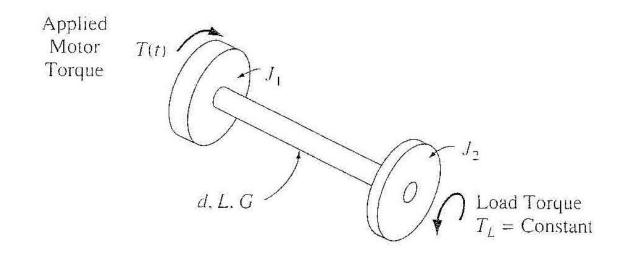
$$M_1 \ddot{x}_1 + B_1 \dot{x}_1 + K_1 x_1 - K_1 x_2 = f_a(t)$$

-K_1 x_1 + M_2 \ddot{x}_2 + B_2 \dot{x}_2 + (K_1 + K_2) x_2 = M_2 g



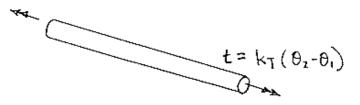


- Pulley is not ideal
 - Add rotation mass and friction
 - Model the slippage behaviors
 - Add spring to model cable



- An electric motor is attached to a load inertia through a flexible shaft as shown. Develop a model and associated differential equations (in classical and state space forms) describing the motion of the two disks J1 and J2.
- Torsional stiffness is given in Appendix B

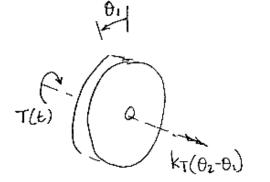
The torsional stiffness of the shaft is given by:

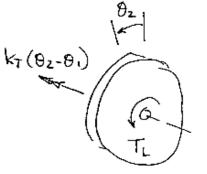


And torque in the shaft by:

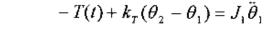
 $k_{\scriptscriptstyle T}(\theta_2-\theta_1)$

 $k_T = \frac{GJ}{I}$





For disk 1: $\sum M_x = J_1 \ddot{\theta}_1$



or
$$J_1\ddot{\theta}_1 + k_T\theta_1 - k_T\theta_2 = -T(t)$$

For disk 2
$$\sum M_x = J_2 \ddot{\theta}_2$$
 $T_L - k_T (\theta_2 - \theta_1) = J_2 \ddot{\theta}_2$

or
$$J_2 \ddot{\theta}_2 + k_T \theta_2 - k_T \theta_1 = T_L$$

Classical form: Convert the two second-order equations into a single fourth-order equation. Using the *D*-operator notation: From the second equation:

$$\theta_2 = \frac{T_L + k_T \theta_1}{J_2 D^2 + k_T}$$

Substitute into the first:

$$[J_2D^2 + k_T][J_1D^2 + k_T]\theta_1 - k_T^2\theta_1 = -[J_2D^2 + k_T]T(t) + k_TT_T$$

For the state-space form, let:

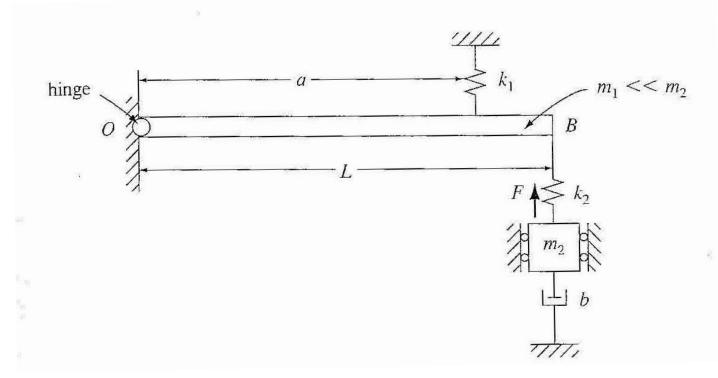
$$x_1 = \dot{\theta}_1$$
 $\dot{x}_1 = \ddot{\theta}_1$ and $x_2 = \theta_1$ $\dot{x}_2 = \dot{\theta}_1 = x_1$
 $x_3 = \dot{\theta}_2$ $\dot{x}_3 = \ddot{\theta}_2$ and $x_4 = \theta_2$ $\dot{x}_4 = \dot{\theta}_2 = x_3$

Substituting gives:

$$\dot{x}_{1} = \frac{\left[-T(t) - k_{T} x_{2} + k_{T} x_{4}\right]}{J_{1}}$$
$$\dot{x}_{2} = x_{1}$$
$$\dot{x}_{3} = \frac{\left(T_{L} - k_{T} x_{4} + k_{T} x_{2}\right)}{J_{2}}$$

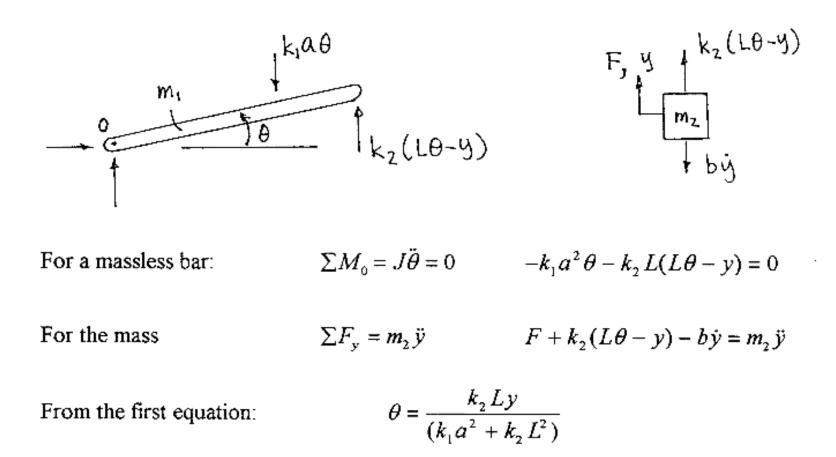
$$\dot{x}_4 = x_3$$

Example 8: Pair-Share Exercise: Copy Machine



 The device from a copying machine is shown. It moves in a horizontal plane. Develop the dynamic model, assuming that mass of bar is negligible compared to attached mass m₂ and angular motions are small. The mass is subjected to a step input F, find an expression for the displacement of point B after the transient motions have died out.

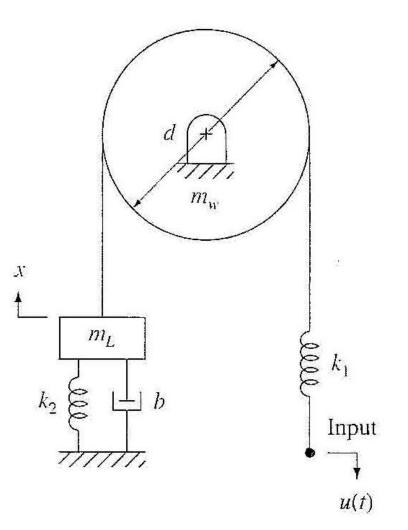
Example 8: Pair-Share Exercise: Copy Machine

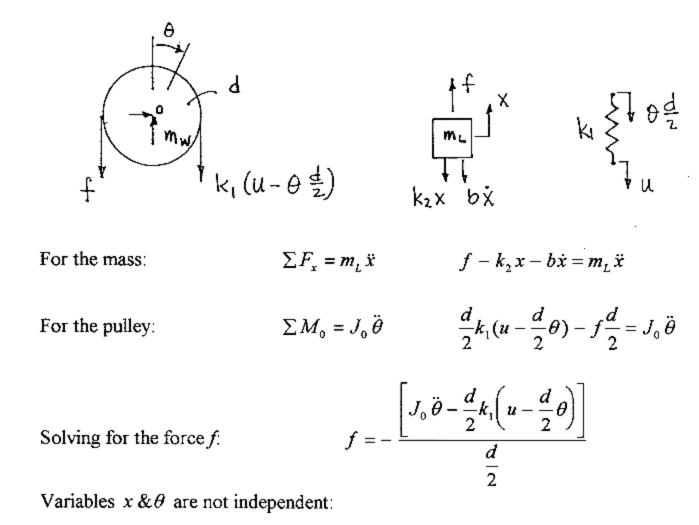


Substituting into the second:

$$m_2 \ddot{y} + b \dot{y} + k_2 y - \frac{k_2^2 L^2}{(k_1 a^2 + k_2 L^2)} y = F$$

- A mechanical system with a rotating wheel of mass m_w (uniform mass distribution). Springs and dampers are connected to wheel using a flexible cable without skip on wheel.
- Write all the modeling equations for translational and rotational motion, and derive the translational motion of x as a function of input motion u
- Find expression for natural frequency and damping ratio





 $x = \frac{d}{2}\theta$ or $\theta = 2\left(\frac{x}{d}\right)$

Thus
$$f = -\frac{\left[J_0\frac{2}{d}\ddot{x} - \frac{d}{2}k_1u + \left(\frac{d}{2}\right)^2k_1\frac{2}{d}x\right]}{\left(\frac{d}{2}\right)}$$
$$f = -J_0\left(\frac{2}{d}\right)^2\ddot{x} - k_1u + k_1x$$

Substitute f into the equation of motion for the mass.

$$-J_0\left(\frac{2}{d}\right)^2\ddot{x}+k_1u-k_1x-k_2x-b\,\dot{x}=M_L\,\ddot{x}$$

Or

$$\left[m_{L} + J_{0}\left(\frac{2}{d}\right)^{2}\right]\ddot{x} + b\dot{x} + (k_{1} + k_{2})x = k_{1}u$$

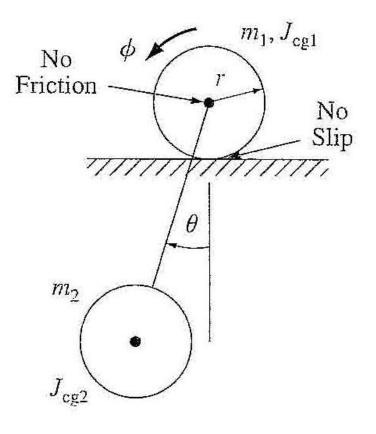
One standard second-order system form is: $\ddot{\eta} + 2\zeta \omega_n \dot{\eta} + \omega_n^2 \eta = 0$

Thus

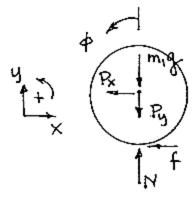
 $\omega_n = \sqrt{\frac{\kappa_1 + \kappa_2}{m_L + J_0 \frac{4}{r^2}}}$ $2\zeta \omega_n = \frac{b}{m_L + J_0 \frac{4}{d^2}}$ $\zeta = \left| \frac{\frac{1}{2}b}{m_{L} + J_{0}\frac{4}{d^{2}}} \right| \sqrt{\frac{m_{L} + J_{0}\frac{4}{d^{2}}}{k_{1} + k_{2}}}$ $\zeta = \frac{b/2}{\sqrt{(k_1 + k_2)(m_L + J_0 \frac{4}{d^2})}}$

Example 10: Pair-Share Exercise: Double Pendulum

- The disk shown in the figure rolls without slipping on a horizontal plane. Attached to the disk through a frictionless hinge is a massless pendulum of length L that carries another disk. The disk at the bottom of the pendulum cannot rotation relative to the pendulum arm.
- Draw free-body diagrams and derive equations of motion for this system.



Example 10: Pair-Share Exercise:



Using the free body of the wheel:

$$\sum F_x = m_1 \ddot{x} \qquad -f - P_x = m_1 \ddot{x} \qquad (a)$$

$$\sum F_y = m_1 \ddot{y} \qquad -N - P_y = 0 \tag{b}$$

$$\sum M_{cg1} = J_{cg1}\ddot{\phi} \qquad -fr_x = J_{cg1}\ddot{\phi} \qquad (c)$$

Using the free body of the pendulum:

$$\sum F_x = m_2 \ddot{x} \qquad P_x = m_2 \ddot{x} \qquad (d)$$

$$\sum F_{y} = m_{2} \ddot{y} \qquad P_{y} - m_{2} g = m_{2} \ddot{y} \qquad (e)$$

$$\sum M_{cg^2} = J_{cg^2} \ddot{\theta} \qquad P_x L \cos \theta - P_y L \sin \theta = J_{cg^2} \ddot{\theta} \qquad (f)$$

ГIJ

+ }

Px

Example 10: Pair-Share Exercise: Double Pendulum

The position of the center of mass of the pendulum is given by

$$\vec{p} = (-r\varphi - L\sin\theta)\vec{i} - (L\cos\theta)\vec{j}$$

Thus the acceleration components of the mass center of the pendulum are:

 $\ddot{x} = -r\ddot{\phi} - L\ddot{\theta}\cos\theta + L\dot{\theta}^{2}\sin\theta$ and $\ddot{y} = L\ddot{\theta}\sin\theta + L\dot{\theta}^{2}\cos\theta$

From (d) and (e)

$$P_x = m_2(-r\ddot{\phi} - L\ddot{\theta}\cos\theta + L\dot{\theta}^2\sin\theta)$$
 and $P_y = m_2(L\ddot{\theta}\sin\theta + L\dot{\theta}^2\cos\theta)$

Substituting these results into (f) gives:

$$\ddot{\theta} + \frac{m_2 r L \cos \theta}{J_{cg2} + m_2 L^2} \ddot{\phi} + \frac{m_2 g L \sin \theta}{J_{cg2} + m_2 L^2} = 0$$

For the free body of the wheel:

.

$$\ddot{x} = -r\phi$$
 Eqr

Eqn. (a) becomes:

 $f = -P_x + m_1 r \ddot{\phi}$ Substitute into (c) to obtain:

$$\ddot{\theta} + \frac{J_{cg1} + (m_1 + m_2)r^2}{m_2 r L \cos\theta} \ddot{\phi} - \dot{\theta}^2 \tan\theta = 0$$