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ldealized Modeling Elements
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Inductive storage

Uy O_Nm_,_o v Electrical inductance

Copyright © 2008 Pearson Prentice Hall, Inc.

U1 Translational spring

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

k
W Rotational spring
OF) Om0—> T

ooooooooooooooooooooooooooooooooooooo

Q Fluid inerti
Figure: 02-01-04UNT02
Copyright © 2008 Pearson Prentice Hall, Inc.
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Capacitive Storage

l | | C . .
Uy O—Pp | | o U1 Electrical capacitance
F M O Translational mass
—P»O— _
Z};Z Z}], T
constant

T —»o J—Ow:

Rotational mass

~ constant

Copyright © 2008 Pearson Prentice Hall, , Inc.
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Energy dissipators

Electrical resistance

|_ Translational damper
Us — b
T »O I O W Rotational damper




Springs

- Stiffness Element

: — Reality
- Stores potential energy | _
» 1/3 of the spring mass may be
considered into the lumped
I—- X, |—- X, model.
* In large displacement operation

fS — W— —_— fE- , Ji
© E.pl"ﬂlgs are HoRnLinedar.
fi =K(x,—x)

— Idealization
» Massless
+ No Damping

+ Linear

>
X
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Experimental FTO%2 VERTICAL Analytical
4000 7
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s f}f
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Restoring force = (K + pAx )&x

Small motions A K Large motions B

for isolation for static loads

K + puAx?
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Spring Connections

* Spring in series: Kgo=K;Ky/(K+K))

= = SR

fy e=— " \VWWN——"VWN——f & fie——" NN \NN——f
K, K, Kro

* Spring in parallel: Kgo=K;+K,

X X5
T
f:: o 0 >
fs‘i— —bfg N S KEO
K,




Dampers and Mass

— Friction Element

|—).T_lr |—).T_;|

— Inertia Element

Sr

Jse—

f}.}“_.—E — /b

fo=B(%,—%)=B(v,—v)

M

SIOMOSNONNNNY

—ff

S S S
— Dissipate Energy

S

Mi=3 fi=fi-f,- 1

— Stores Kinetic Energy

10
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Dampers Connections

» Dampers in series: Bgy=B,B,/(B;+B))

r xX; |—> X5 |—‘ X; |—> X>
fe—r—dF——"JqF——f < S o — /)
B, Bro

b

» Dampers in parallel: Bgo=B,+B,

o e

T
1]
fp‘_l B, | > /o = Jp— —
T
1)
B

11
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Modeling Mechanical Systems

12
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Modeling Methods

State assumptions and their rationales
Establish inertial coordinate system

ldentify and isolate discrete system elements (springs,
dampers, masses)

Determine the minimum number of variables needed to
uniquely define the configuration of system (subtract
constraints from number of equations)

Free body diagram for each element

Write equations relating loading to deformation in system
elements

Apply Newton’s 2" Law:
— F = ma for translation motion
— T = la for rotational motion

13
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Example 1: Automobile Shock Absorber

Spring-mass-damper Free-body diagram

Wall
friction, b

N v |V
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Example 2: Mechanical System

F\"r]'-,\-u.lm | ‘ll— - 7‘ A Motion ul'.
clon. Mass = m l ‘ mass relative
' !L o ground
| = 1 L. Motion ol
“ ;;4\\\ \ : } i}'. -
\ | [rame relative
L Spriny. 4 1o eround

* Draw a free body diagram, showing all
forces and their directions

« Write equation of motion and derive
transfer function of response x to input u

15
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Example 2: Mechanical System

a. - b. Free body:

K
T,
Kixary | DO

c. Equation of Using Newton’s second law:
2F =mi -bx—#)-kix—u)y=mx

mi+bx+hkc= +hua+ku

In D-operator notation: [mD* +bD + klx =[bD + k]u

The transfer function is: * 6D + k

i mD® 4D+ k
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Example 3: Two-Mass System

l—"V X | l_' .7’\-2

4

K TR

F, ——r n, — T — 1y ~47ﬂf6333\—3;
/

C//?CK/VCC/VQCK/VOCK?y/C4/79C//7C(/Vﬂﬁ//VﬂﬁinCﬁ/VOf/VQC//
b, b,

 Derive the equation of motion for x, as a

function of F,. The indicated damping Is
VISCOUS.
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Example 3: Two-Mass System

My - a M, !_ah?{.L
Fo —| § | K %) < § | kaXo
SRR Wi o

Equations of motion for the two masses:

F +& (x, -x, )=b % =m %

-k (x, -x)~kx, - b, %, =m, ¥
Or

m X +bx thx -kx =F

fr]

D +b,D+k,|x, ~ k,x, = F,

o

and
my, X, +b,%, +2k,x, —k,x, =0
—k,x, +[m, D% +b,D+2k,]x, =0
Use Cramer’s rule to solve for x,

kF
X, = =
 mD? +b D+ k[m,D* +b,D+2k,] - k!




chp3 19

Example 4: Three-Mass System

X R X
4 K, K, | K
0 M, 0 M _i: My 0
s .
g 3 ) Q)
4 | ./??;) 52%/ VI - /V?EJ /S 4 Y4

* Draw the free-body-diagram for each
mass and write the differential equations
describing the system
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Example 4: Three-Mass System

M’;;""" M """"‘(’1(1';'?‘{)
;’i; . "B (% X)
A |

sz;-ﬂ- -

Ka(xz-X;) €~ Mz

By (%, -X)*

Summing the forces shown on each of the free-body diagrams and

collecting terms, we get

ME, + (By + Ba)z; + (K + Ka)zy — Bozo — Koz
—Boiy — Koy + Mais + (B + Ba)ia + (Ko + K3)za
—Bji3 — Kjz3

—Baie — Kaxo + Myig + Byxs + Er:.;ﬂ?g

> K3 (x, ~X2)
> By (% -1;)

Mg <= -
k_';(XJ‘.XI)"_

—> £, (2)

fa(?)
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Example 5: Pair-Share Exercise

LS L LS

« All springs are identical with x|
constant K

« Spring forces are zero when
X1=X5=X5=0

 Draw FBDs and write equations
of motion B,

« Determine the constant x|
elongation of each spring caused AR
by gravitational forces when the
masses are stationary in a | M I
position of static equilibrium and l
when f_(t) = 0. !

I
L:; .-_’:,.l_f/.:':’_-’ g K
[

Jult)



chp3

22

Example 5: Pair-Share Exercise:

(a) Summing the forces shown on each of the free-body diagrams and
collecting terms, we obtain

ﬂ-f]i'.'l + B1.‘1:T'1 + 2K.’L“1 - f{il.'g = ﬂrftrlg
Mois + Bots + 2Kxy — Boty — Kzg = Mag
~Kx, — Bsis — Kxo + MsZs + Botg + 2Kx3 = Mag + fﬂ,f:t]'

(b) Letting fo(t) = 0, replacing z,, 72, and z3 by the constant dis-
placements z,,Ts,, and x3,, and noting that all the derivatives of
these constant displacements are zero, we have the following three
algebraic equations.

Jﬂ"f J.MIE

2Ly, — T3, = P:rg , 2T, — T3, = “'““}%E ;
. ﬂ/fgg
and — ), — T, +2T3, = A

Solving these equations simultaneously gives

)

Iy, = {3_&11 + Ms + 211{_;)4—};:
, o axe s 9

To, = (My+IMz+ Kiﬂg)—‘i—f{-

25, = {ﬂ,fﬁﬂaﬁzMg)fﬁ

e

B‘.’ f }ff I kﬂ,
4 A
P
|

%
A
l

M,

B

Mg KlexD 3305 -4)
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Example 5: Pair-Share Exercise:

LT [ ]
Myx, Kika-Xa) Bz (% =R3)
. ‘ A
The four spring elongations are x,,, T2,, and 1
1
0 _ .
Iz, — L1, = (—11{{1 ‘E‘_.!?L{‘g +2wfg)—,
g-cm M
L3, — L2, = (_"Hrl — i'lffg + 241’!3)3};; T + l
Note that the elongations are not affected by the vicous damping A/(x X 7;.&)
coefficients B, and Bs. 3 »') %
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Example 6: Pair-Share Exercise

« Assume that the pulley is 3 |
i Kag = By
ideal =

— No mass and no friction ‘

— No slippage between \ My | o
cable and surface of | B

cylinder (i.e., both move
with same velocity)

— Cable is in tension but T TN
does not stretch g \ o deal
) ) Ja0 pulley
- Draw FBDs and write K, | g
- - }r f,?"\ fW| I {ﬂ]—“——“&_'/
equations of motion ‘ | |
« If pulley is not ideal, N o.0.0:0.0 B

discuss modeling
modifications
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Example 6: Pair-Share Exercise

When drawing the free-body diagrams, note that the downward
force of the cable on M, is the same as the force of the cable to
the right on M; because of the pulley. Summing the forces shown
on each of the diagrams and collecting terms, we get
Mii,+ By + Koy — Koy, = f,-,,(t}
—~Kiz1 + Mozs + Bazo + {ffl -+ Ifz}:!:j = Mooy

* Pulley is not ideal
— Add rotation mass and friction
— Model the slippage behaviors
— Add spring to model cable

A (?) <

. M
G x — !

>
K(X,'XJJ

KXz Baky MyX,

P

4
'
J

M2

!

KF (X, ")fi} Mlj
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Example 7: Electric Motor

Applied

Motor T(t) /-&

Torque

Load Torque
T, = Constant

« An electric motor is attached to a load inertia through a
flexible shaft as shown. Develop a model and
associated differential equations (in classical and state

space forms) describing the motion of the two disks J1
and J2.

« Torsional stiffness is given in Appendix B

26
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Example 7: Electric Motor

The torsional stiffness of the shaft is given by: ky = %{
N
t = i{'(_'[ (61 8‘.
And torque in the shaft by: k. (8, -6
B
;/{ 8:..
@ ks (9,-8 .)
) ™
—~— (e
= kT('S':.‘E'J T

For disk 1: YM_=J 8 ~T()+ k, (8, — 8,) = J, 9,
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Example 7: Electric Motor

or J,0, +k 0, — k.8, =-T()
For disk 2 SM, =J,8, 7, —k (6, - 6,)= J, 6,
or 5,0, + k0, -k, 0, =T,

Classical form: Convert the two second-order equations into a single fourth-order
equation. Using the D-operator notation:
From the second equation:
T, +k.8,
P LD vk,

Substitute into the first:

[/, D* + b )[/,D* + k.10, - k,°0, = -[J,D* + k. JT() + k. T,
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Example 7: Electric Motor

For the state-space form, let:

x, =68, X, =6, and x, =6, X, =6,=x

Substituting gives:
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Example 8: Pair-Share Exercise: Copy Machine

hinge ; . % Ky py L

\\\L\\
h

L

I

* The device from a copying machine is shown. It moves in a
horizontal plane. Develop the dynamic model, assuming that mass
of bar is negligible compared to attached mass m, and angular
motions are small. The mass is subjected to a step input F, find an

expression for the displacement of point B after the transient
motions have died out.

30
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Example 8: Pair-Share Exercise: Copy Machine

k00 k, (LE-4)

N l F, 1‘5 T

My

. C Tkluem

T f by

For a massless bar: SM,=J0=0 ka0 -k, IL(LO-3y)=0
For the mass XF =m, ¥ F+k,(LE8—y)-by=m,§
kyLy

From the first equation:

T (kal+ kL7

k2D

Substituting into the second: my+by+k, v—
& T T 1)

y=£



Example 9: Mass-Pulley System

* A mechanical system with a rotating
wheel of mass m,, (uniform mass
distribution). Springs and dampers are
connected to wheel using a flexible cable
without skip on wheel.

« Write all the modeling equations for
translational and rotational motion, and
derive the translational motion of x as a
function of input motion u

« Find expression for natural frequency k)
and damping ratio B e

Input

7 B

u(t)

32
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Example 9: Mass-Pulley System

8.
d T‘Cj‘ﬂ 1 od
M h -
' - d + -
For the mass: 2F . =m % f-kyx—bi=m¥
For the pulley: >M,=J,6 gkl(u—gﬁ)—fgz J, 8
[Jﬂé-gk,(u_gaﬂ
Solving for the force f; f=- g
2

Variables x &#& are not independent:

X = %5 or 8= 2(5]
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Example 9: Mass-Pulley System

Thus f=-

2 2
f:_JU[Ej P-ku+kx

Substitute finto the equation of motion for the mass.

2
—JU[E] ¥+ku—kx—kx-bx=M,%
. .

2
|imL + J{%} }f+bx‘+(k1 +k)x=ku

34
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Example 9: Mass-Pulley System

One standard second-order system formis: #+2{w, f+win=20

Thus
o, = k]+fc24 2’eo, - b :

mL +JD_2 mL +"'ID_2'
d o
1
—b JmL+JU 3

(= —2

m, *..)"E,i2 by + ky
bil2
é’:

35
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Example 10: Pair-Share Exercise:
Double Pendulum

e The disk shown in the figure
rolls without slipping on a
horizontal plane. Attached to
the disk through a frictionless
hinge is a massless pendulum
of length L that carries another
disk. The disk at the bottom of
the pendulum cannot rotation
relative to the pendulum arm.

* Draw free-body diagrams and
derive equations of motion for
this system.

iy, J
No ¢ / 1» Y cpl
Friction
No
Shp
AT TV, ~
v
1y
J a?

36
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Example 10: Pair-Share Exercise:

4} (]
1_5 ]
&
*
T £
N
Using the free body of the wheel:
2E, =m¥ -f-P =mk (a)
XF,=my ~-N-P =0 (b)
LMy, = ch]& ~fr = J@Eﬁ (c)

Using the free body of the pendulum:
2F =m¥ P =m3i (d)

2FE, =my P, —mg=mj (e)

M, =J.,.8 P Lcos@— P Lsin@=J,,0 0y
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Example 10: Pair-Share Exercise:
Double Pendulum

The position of the center of mass of the pendulum is given by
D=(-rg—Lsin@7 —(Lcos®)j
Thus the acceleration components of the mass center of the pendulum are:
¥=-—r¢— LBcosO@+ LA sinf and  y=LBsind+ L& cosB
From (d) and (e)
P =m,(-r¢— LBcos@+ L& sinb) and P, =m,(LOsin@+ L cosb)

Substituting these results into () gives:

38
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Example 10: Pair-Share Exercise:
Double Pendulum

For the free body of the wheel:

-

g+

m,rLcost 5. mglsing

6+ . —=0
gy tmy L oo+, L
X=-~r¢ Eqn. (a) becomes:
f=-P +mr¢ Substitute into {c) to obtain:

T +0m +m)r’

—@%tanf =0
m,rlcos@ ¢

39



