
Introduction to
Modeling and Simulation

Dr. Nhut Ho

ME584

Chap1 1

Agenda

• Dynamic Systems

• Modeling of Dynamic Systems

• Introduction to Matlab

• Active learning: Pair-share questions, Exercises in class

Chap1 2

Dynamic Systems

Chap1 3

Static V. Dynamic Systems

• Static

» Output does not change with time

» Output at any time depends on input at that

time only

• Dynamic

» Output is not instantaneously proportional to

input or disturbance, may continue after input

held constant

» Present output depends on past inputs

Chap1 4

Dynamic Systems in Engineering
Disciplines

• Mechanical systems

• Electrical systems

• Fluid systems

• Thermal systems

• Mixed systems
» Electro-Mechanical

» Fluid-Mechanical

» Thermo-Mechanical

» Electro-Thermal

Name an example and describe its dynamic response

Chap1 5

Modeling

• What is a model?
» Physical models (e.g., scale model)

» Graphs or plots (e.g., time-dependent

behavior)

» Mathematical models

• Modeling
» Identifying physical dynamic effects

» Writing differential equations using

conservation and property laws

» Expressing in differential equations

forms

Chap1 6

Modeling of Dynamic Systems

Chap1 7

Modeling Steps

• Inaccuracies
propagate in each
step (e.g.,
linearization,
ignoring higher
dynamics)

• Iterative
modifications
needed to get
required output

• Example:
modeling steps for
your favorite sport
device

Chap1 8

Representing Dynamic Systems

Chap1 9

Mathematical Representation
and Solution Methods

Chap1 10

System Equations Solution
Methods

Classical differential equation Analytical
Solution

Transfer function Laplace
Transform

State space Digital/Analog
Simulation

fxxx  32 

)()(3)(2)(2 sFsXssXssX 

f
z

x

z

x





































1

0

23

10





Model Classification Tree

Chap1 11

0),,,,(
2

2

2

2

2

2


















z

T

y

T

x

T

t

T
Tf 0),(





t

T
Tf

Model Classification Tree

Chap1 12

Linear System

• Let u(t) be input and y(t) be output, the
system is linear if
» Additivity: Response to u1+u2 is y1+y2

» Homogeneity: Response to au1 is ay1

• Example: Show that y(t) = 2x(t) + 3 is
not linear
» If x1=2 and x2 =3, then

y1=2*2+3= 7, and y2 =2*3+3=9

» But for x3 = x1 + x2 = 5, then

y3 =2*5+3=13

And y3 ≠ y1 + y2 = 16

» System is not linear

Chap1 13

Pair-share exercise:
Linear System Example

• Consider this system: y(t) = t u(t)

• Is this system is linear?

• Consider two arbitrary inputs u1 and u2

» y1 = tu1

» y2 = tu2

• Let u3 = au1 + bu2, where a and b are arbitrary scalar
constants

» y3 = tu3 = t (au1 + bu2) = atu1 + btu2 = ay1+by2

• System is linear

Chap1 14

Introduction to Matlab

Chap1 15

Outline

(1) Getting Started

(2) Scripts

(3) Making Variables

(4) Manipulating Variables

(5) Basic Plotting

Chap1 16

Getting Started

• Open up MATLAB for Windows

 Through the START Menu

Or Click on Matlab icon

Chap1 17

Command Window

Current directory

Workspace

Command History

Chap1 18

Making Folders

• Use folders to keep your programs organized

• To make a new folder, click the ‘Browse’ button next to ‘Current
Directory’

• Click the ‘Make New Folder’ button, and change the name of the
folder. Do NOT use spaces in folder names. In the MATLAB
folder, make a new folder: ME584\MatlabIntro

• Highlight the folder you just made and click ‘OK’

• The current directory is now the folder you just created

• To see programs outside the current directory, they should be in
the Path. Use File-> Set Path to add folders to the path

Chap1 19

Customization

• File  Preferences

 Allows you personalize your MATLAB experience

Chap1 20

MATLAB Basics

• MATLAB can be thought of as a super-powerful
graphing calculator

 Remember the TI-83 from calculus?

 With many more buttons (built-in functions)

• In addition it is a programming language

 MATLAB is an interpreted language, like Java

 Commands executed line by line

Chap1 21

Help/Docs

• help

The most important function for learning MATLAB on
your own

• To get info on how to use a function:

» help sin

Help lists related functions at the bottom and links to
the doc

• To get a nicer version of help with examples and easy-to-
read descriptions:

» doc sin

• To search for a function by specifying keywords:

» doc + Search tab

Chap1 22

Outline

(1) Getting Started

(2) Scripts

(3) Making Variables

(4) Manipulating Variables

(5) Basic Plotting

Chap1 23

Scripts: Overview

• Scripts are

 collection of commands executed in sequence

written in the MATLAB editor

 saved as m-files (.m extension)

• To create an m-file from command-line

» edit helloWorld.m

• or click

Chap1 24

Scripts: the Editor

* Means that it's not saved

Line numbers

Comments

m-file path

Help file

Possible breakpoints

Debugging tools
Real-time
error check

Chap1 25

Scripts: Some Notes

• COMMENT!
 Anything following a % is seen as a comment

 The first contiguous comment becomes the script's help file

Comment thoroughly to avoid wasting time later

• Note that scripts are somewhat static, since there is no
input and no explicit output

• All variables created and modified in a script exist in the
workspace even after it has stopped running

Chap1 26

Exercise: Scripts

Make a helloWorld script

• When run, the script should display the following text:

• Hint: use disp to display strings. Strings are written
between single quotes, like 'This is a string'

Hello World!

I am going to learn MATLAB!

Chap1 27

Exercise: Scripts

Make a helloWorld script

• When run, the script should display the following text:

• Hint: use disp to display strings. Strings are written
between single quotes, like 'This is a string'

• Open the editor and save a script as helloWorld.m. This is
an easy script, containing two lines of code:

» % helloWorld.m

» % my first hello world program in MATLAB

» disp('Hello World!');

» disp('I am going to learn MATLAB!');

Hello World!

I am going to learn MATLAB!

Chap1 28

Outline

(1) Getting Started

(2) Scripts

(3) Making Variables

(4) Manipulating Variables

(5) Basic Plotting

Chap1 29

Variable Types

• MATLAB is a weakly typed language

No need to initialize variables!

• MATLAB supports various types, the most often used are

» 3.84

64-bit double (default)

» ‘a’

16-bit char

• Most variables you’ll deal with will be vectors or matrices of
doubles or chars

• Other types are also supported: complex, symbolic, 16-bit
and 8 bit integers, etc. You will be exposed to all these
types through the homework

Chap1 30

Naming variables

• To create a variable, simply assign a value to a name:

» var1=3.14

» myString=‘hello world’

• Variable names

 first character must be a LETTER

 after that, any combination of letters, numbers and _

CASE SENSITIVE! (var1 is different from Var1)

• Built-in variables. Don’t use these names!

i and j can be used to indicate complex numbers

pi has the value 3.1415926…

ans stores the last unassigned value (like on a calculator)

Inf and -Inf are positive and negative infinity

NaN represents ‘Not a Number’

Chap1 31

Scalars

• A variable can be given a value explicitly

» a = 10

 shows up in workspace!

• Or as a function of explicit values and existing variables

» c = 1.3*45-2*a

• To suppress output, end the line with a semicolon

» cooldude = 13/3;

Chap1 32

Arrays

• Like other programming languages, arrays are an
important part of MATLAB

• Two types of arrays

(1) matrix of numbers (either double or complex)

(2) cell array of objects (more advanced data structure)

MATLAB makes vectors easy!
That’s its power!

Chap1 33

Row Vectors

• Row vector: comma or space separated values between
brackets

» row = [1 2 5.4 -6.6]

» row = [1, 2, 5.4, -6.6];

• Command window:

• Workspace:

Chap1 34

Column Vectors

• Column vector: semicolon separated values between
brackets

» column = [4;2;7;4]

• Command window:

• Workspace:

Chap1 35

size & length

• You can tell the difference between a row and a column
vector by:

 Looking in the workspace

Displaying the variable in the command window

Using the size function

• To get a vector's length, use the length function

Chap1 36

Matrices

• Make matrices like vectors

• Element by element

» a= [1 2;3 4];

• By concatenating vectors or matrices (dimension matters)

» a = [1 2];

» b = [3 4];

» c = [5;6];

» d = [a;b];

» e = [d c];

» f = [[e e];[a b a]];

» str = ['Hello, I am ' 'John'];

 Strings are character vectors

1 2

3 4
a

 
  
 

Chap1 37

save/clear/load

• Use save to save variables to a file
» save myFile a b

 saves variables a and b to the file myfile.mat
 myfile.mat file is saved in the current directory
 Default working directory is

» \MATLAB

 Make sure you’re in the desired folder when saving files. Right
now, we should be in:

» MATLAB\ME584\MatlabIntro

• Use clear to remove variables from environment
» clear a b

 look at workspace, the variables a and b are gone

• Use load to load variable bindings into the environment
» load myFile

 look at workspace, the variables a and b are back

• Can do the same for entire environment
» save myenv; clear all; load myenv;

Chap1 38

Exercise: Variables

Get and save the current date and time

• Create a variable start using the function clock

• What is the size of start? Is it a row or column?

• What does start contain? See help clock

• Convert the vector start to a string. Use the function
datestr and name the new variable startString

• Save start and startString into a mat file named
startTime

Chap1 39

Exercise: Variables

Get and save the current date and time

• Create a variable start using the function clock

• What is the size of start? Is it a row or column?

• What does start contain? See help clock

• Convert the vector start to a string. Use the function
datestr and name the new variable startString

• Save start and startString into a mat file named
startTime

» help clock

» start=clock;

» size(start)

» help datestr

» startString=datestr(start);

» save startTime start startString

Chap1 40

Exercise: Variables

Read in and display the current date and time

• In helloWorld.m, read in the variables you just saved using
load

• Display the following text:

• Hint: use the disp command again, and remember that

strings are just vectors of characters so you can join two
strings by making a row vector with the two strings as sub-
vectors.

I started learning Matlab on *start date and time*

Chap1 41

Exercise: Variables

Read in and display the current date and time

• In helloWorld.m, read in the variables you just saved using
load

• Display the following text:

• Hint: use the disp command again, and remember that

strings are just vectors of characters so you can join two
strings by making a row vector with the two strings as sub-
vectors.

» load startTime

» disp(['I started learning Matlab on ' ...

startString]);

I started learning Matlab on *start date and time*

Chap1 42

Outline

(1) Getting Started

(2) Scripts

(3) Making Variables

(4) Manipulating Variables

(5) Basic Plotting

Chap1 43

Basic Scalar Operations

• Arithmetic operations (+,-,*,/)
» 7/45

» (1+i)*(2+i)

» 1 / 0

» 0 / 0

• Exponentiation (^)
» 4^2

» (3+4*j)^2

• Complicated expressions, use parentheses
» ((2+3)*3)^0.1

• Multiplication is NOT implicit given parentheses
» 3(1+0.7) gives an error

• To clear command window
» clc

Chap1 44

Built-in Functions

• MATLAB has an enormous library of built-in functions

• Call using parentheses – passing parameter to function

» sqrt(2)

» log(2), log10(0.23)

» cos(1.2), atan(-.8)

» exp(2+4*i)

» round(1.4), floor(3.3), ceil(4.23)

» angle(i); abs(1+i);

Chap1 45

Exercise: Scalars

You will learn MATLAB at an exponential rate! Add the
following to your helloWorld script:

• Your learning time constant is 1.5 days. Calculate the number of
seconds in 1.5 days and name this variable tau

• This class lasts 5 days. Calculate the number of seconds in 5 days
and name this variable endOfClass

• This equation describes your knowledge as a function of time t:

• How well will you know MATLAB at endOfClass? Name this
variable knowledgeAtEnd. (use exp)

• Using the value of knowledgeAtEnd, display the phrase:

• Hint: to convert a number to a string, use num2str

/1 tk e  

At the end of 6.094, I will know X% of Matlab

Chap1 46

Exercise: Scalars

» secPerDay=60*60*24;

» tau=1.5*secPerDay;

» endOfClass=5*secPerDay

» knowledgeAtEnd=1-exp(-endOfClass/tau);

» disp(['At the end of 6.094, I will know ' ...

num2str(knowledgeAtEnd*100) '% of Matlab'])

Chap1 47

Transpose

• The transpose operators turns a column vector into a row
vector and vice versa

» a = [1 2 3 4+i]

» transpose(a)

» a'

» a.'

• The ' gives the Hermitian-transpose, i.e. transposes and
conjugates all complex numbers

• For vectors of real numbers .' and ' give same result

Chap1 48

Addition and Subtraction

• Addition and subtraction are element-wise; sizes must
match (unless one is a scalar):

• The following would give an error

» c = row + column

• Use the transpose to make sizes compatible

» c = row’ + column

» c = row + column’

• Can sum up or multiply elements of vector

» s=sum(row);

» p=prod(row);

 

 

 

12 3 32 11

2 11 30 32

14 14 2 21



 



12 3 9

1 1 2

10 13 23

0 33 33

     
     


      
      
     

     

Chap1 49

Element-Wise Functions

• All the functions that work on scalars also work on vectors

» t = [1 2 3];

» f = exp(t);

 is the same as

» f = [exp(1) exp(2) exp(3)];

• If in doubt, check a function’s help file to see if it handles
vectors elementwise

• Operators (* / ^) have two modes of operation

 element-wise

 standard

Chap1 50

Operators: element-wise

• To do element-wise operations, use the dot: . (.*, ./, .^).

BOTH dimensions must match (unless one is scalar)!

» a=[1 2 3];b=[4;2;1];

» a.*b, a./b, a.^b  all errors

» a.*b', a./b’, a.^(b’)  all valid

 

4

1 2 3 2

1

1 4 4

2 2 4

3 1 3

3 1 3 1 3 1

.* ERROR

.*

.*

 
 


 
  

     
     


     
          

   

1 1 1 1 2 3 1 2 3

2 2 2 1 2 3 2 4 6

3 3 3 1 2 3 3 6 9

3 3 3 3 3 3

.*

.*

     
     


     
          

   

2 2

2 2

1 2 1 2
2

3 4 3 4
.^

Can be any dimension

  
   

   

Chap1 51

Operators: standard

• Multiplication can be done in a standard way or element-wise

• Standard multiplication (*) is either a dot-product or an outer-
product

 Remember from linear algebra: inner dimensions must MATCH!!

• Standard exponentiation (^) can only be done on square matrices
or scalars

• Left and right division (/ \) is same as multiplying by inverse

Our recommendation: just multiply by inverse (more on this
later)

 

4

1 2 3 2 11

1

1 3 3 1 1 1

*

*

 
 


 
  

   

1 1 1 1 2 3 3 6 9

2 2 2 1 2 3 6 12 18

3 3 3 1 2 3 9 18 27

3 3 3 3 3 3

*

*

     
     


     
          

   

1 2 1 2 1 2
2

3 4 3 4 3 4
^ *

Must be square to do powers

     
     

     

Chap1 52

Exercise: Vector Operations

Calculate how many seconds elapsed since the start of
class

• In helloWorld.m, make variables called secPerMin,
secPerHour, secPerDay, secPerMonth (assume 30.5 days
per month), and secPerYear (12 months in year), which

have the number of seconds in each time period.

• Assemble a row vector called secondConversion that has
elements in this order: secPerYear, secPerMonth,
secPerDay, secPerHour, secPerMinute, 1.

• Make a currentTime vector by using clock

• Compute elapsedTime by subtracting currentTime from
start

• Compute t (the elapsed time in seconds) by taking the dot
product of secondConversion and elapsedTime (transpose

one of them to get the dimensions right)

Chap1 53

Exercise: Vector Operations

» secPerMin=60;

» secPerHour=60*secPerMin;

» secPerDay=24*secPerHour;

» secPerMonth=30.5*secPerDay;

» secPerYear=12*secPerMonth;

» secondConversion=[secPerYear secPerMonth ...

secPerDay secPerHour secPerMin 1];

» currentTime=clock;

» elapsedTime=currentTime-start;

» t=secondConversion*elapsedTime';

Chap1 54

Exercise: Vector Operations

Display the current state of your knowledge

• Calculate currentKnowledge using the same relationship as
before, and the t we just calculated:

• Display the following text:

/1 tk e  

At this time, I know X% of Matlab

Chap1 55

Exercise: Vector Operations

Display the current state of your knowledge

• Calculate currentKnowledge using the same relationship as
before, and the t we just calculated:

• Display the following text:

» currentKnowledge=1-exp(-t/tau);

» disp(['At this time, I know ' ...

num2str(currentKnowledge*100) '% of Matlab']);

/1 tk e  

At this time, I know X% of Matlab

Chap1 56

Automatic Initialization

• Initialize a vector of ones, zeros, or random numbers

» o=ones(1,10)

 row vector with 10 elements, all 1

» z=zeros(23,1)

 column vector with 23 elements, all 0

» r=rand(1,45)

 row vector with 45 elements (uniform [0,1])

» n=nan(1,69)

 row vector of NaNs (useful for representing uninitialized
variables)

The general function call is:
var=zeros(M,N);

Number of rows Number of columns

Chap1 57

Automatic Initialization

• To initialize a linear vector of values use linspace

» a=linspace(0,10,5)

 starts at 0, ends at 10 (inclusive), 5 values

• Can also use colon operator (:)

» b=0:2:10

 starts at 0, increments by 2, and ends at or before 10

 increment can be decimal or negative

» c=1:5

 if increment isn’t specified, default is 1

• To initialize logarithmically spaced values use logspace

 similar to linspace, but see help

Chap1 58

Exercise: Vector Functions

Calculate your learning trajectory

• In helloWorld.m, make a linear time vector tVec that has
10,000 samples between 0 and endOfClass

• Calculate the value of your knowledge (call it
knowledgeVec) at each of these time points using the same

equation as before:

/1 tk e  

Chap1 59

Exercise: Vector Functions

Calculate your learning trajectory

• In helloWorld.m, make a linear time vector tVec that has
10,000 samples between 0 and endOfClass

• Calculate the value of your knowledge (call it
knowledgeVec) at each of these time points using the same

equation as before:

» tVec = linspace(0,endOfClass,10000);

» knowledgeVec=1-exp(-tVec/tau);

/1 tk e  

Chap1 60

Vector Indexing

• Matlab indexing starts with 1, not 0

We will not respond to any emails where this is the
problem.

• a(n) returns the nth element

• The index argument can be a vector. In this case, each
element is looked up individually, and returned as a vector
of the same size as the index vector.

» x=[12 13 5 8];

» a=x(2:3); a=[13 5];

» b=x(1:end-1); b=[12 13 5];

 13 5 9 10a 

a(1) a(2) a(3) a(4)

Chap1 61

Matrix Indexing

• Matrices can be indexed in two ways

 using subscripts (row and column)

 using linear indices (as if matrix is a vector)

• Matrix indexing: subscripts or linear indices

• Picking submatrices

» A = rand(5) % shorthand for 5x5 matrix

» A(1:3,1:2) % specify contiguous submatrix

» A([1 5 3], [1 4]) % specify rows and columns

14 33

9 8

 
 
 

b(1)

b(2)

b(3)

b(4)

14 33

9 8

 
 
 

b(1,1)

b(2,1)

b(1,2)

b(2,2)

Chap1 62

Advanced Indexing 1

• To select rows or columns of a matrix, use the :

» d=c(1,:); d=[12 5];

» e=c(:,2); e=[5;13];

» c(2,:)=[3 6]; %replaces second row of c

12 5

2 13
c

 
  

 

Chap1 63

Advanced Indexing 2

• MATLAB contains functions to help you find desired values
within a vector or matrix

» vec = [5 3 1 9 7]

• To get the minimum value and its index:

» [minVal,minInd] = min(vec);

max works the same way

• To find any the indices of specific values or ranges

» ind = find(vec == 9);

» ind = find(vec > 2 & vec < 6);

 find expressions can be very complex, more on this later

• To convert between subscripts and indices, use ind2sub,
and sub2ind. Look up help to see how to use them.

Chap1 64

Exercise: Indexing

When will you know 50% of Matlab?

• First, find the index where knowledgeVec is closest to 0.5.

Mathematically, what you want is the index where the value
of is at a minimum (use abs and min).

• Next, use that index to look up the corresponding time in
tVec and name this time halfTime.

• Finally, display the string:
Convert halfTime to days by using secPerDay

0.5knowledgeVec 

I will know half of Matlab after X days

Chap1 65

Exercise: Indexing

When will you know 50% of Matlab?

• First, find the index where knowledgeVec is closest to 0.5.

Mathematically, what you want is the index where the value
of is at a minimum (use abs and min).

• Next, use that index to look up the corresponding time in
tVec and name this time halfTime.

• Finally, display the string:
Convert halfTime to days by using secPerDay

» [val,ind]=min(abs(knowledgeVec-0.5));

» halfTime=tVec(ind);

» disp(['I will know half of Matlab after ' ...

num2str(halfTime/secPerDay) ' days']);

0.5knowledgeVec 

I will know half of Matlab after X days

Chap1 66

Outline

(1) Getting Started

(2) Scripts

(3) Making Variables

(4) Manipulating Variables

(5) Basic Plotting

Chap1 67

Plotting

• Example

» x=linspace(0,4*pi,10);

» y=sin(x);

• Plot values against their index

» plot(y);

• Usually we want to plot y versus x

» plot(x,y);

MATLAB makes visualizing data
fun and easy!

Chap1 68

What does plot do?

• plot generates dots at each (x,y) pair and then connects the dots
with a line

• To make plot of a function look smoother, evaluate at more points

» x=linspace(0,4*pi,1000);

» plot(x,sin(x));

• x and y vectors must be same size or else you’ll get an error

» plot([1 2], [1 2 3])

 error!!

10 x values:

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1000 x values:

Chap1 69

Exercise: Plotting

Plot the learning trajectory

• In helloWorld.m, open a new figure (use figure)

• Plot the knowledge trajectory using tVec and
knowledgeVec. When plotting, convert tVec to days by
using secPerDay

• Zoom in on the plot to verify that halfTime was calculated

correctly

Chap1 70

Exercise: Plotting

Plot the learning trajectory

• In helloWorld.m, open a new figure (use figure)

• Plot the knowledge trajectory using tVec and
knowledgeVec. When plotting, convert tVec to days by
using secPerDay

• Zoom in on the plot to verify that halfTime was calculated

correctly

» figure

» plot(tVec/secPerDay, knowledgeVec);

Chap1 71

Matlab Tutorial

• Matlab tutorials

» http://www.engin.umich.edu/group/ctm/basic/basi

c.html

» http://www.engin.umich.edu/group/ctm/model/mode

l.html

• Tutorials included in Matlab

Chap1 72

http://www.engin.umich.edu/group/ctm/basic/basic.html
http://www.engin.umich.edu/group/ctm/basic/basic.html

Homework 1: chapter 1

• 1.1

• 1.3

• 1.7

• 1.10

Chap1 73

References

• Woods, R. L., and Lawrence, K., Modeling and Simulation of
Dynamic Systems, Prentice Hall, 1997.

• Palm, W. J., Modeling, Analysis, and Control of Dynamic
Systems

• Matlab slides are from: Lecture 1: Variables, Scripts, and
Operations, by Danilo Šćepanović, IAP 2010 Course, MIT

Chap1 74

