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Agenda

• Dynamic Systems

• Modeling of Dynamic Systems

• Introduction to Matlab

• Active learning: Pair-share questions, Exercises in class
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Dynamic Systems
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Static V. Dynamic Systems

• Static 

» Output does not change with time

» Output at any time depends on input at that 

time only

• Dynamic

» Output is not instantaneously proportional to 

input or disturbance, may continue after input 

held constant

» Present output depends on past inputs
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Dynamic Systems in Engineering 
Disciplines

• Mechanical systems

• Electrical systems

• Fluid systems

• Thermal systems

• Mixed systems
» Electro-Mechanical

» Fluid-Mechanical

» Thermo-Mechanical

» Electro-Thermal

Name an example and describe its dynamic response
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Modeling

• What is a model?
» Physical models (e.g., scale model)

» Graphs or plots (e.g., time-dependent 

behavior)

» Mathematical models

• Modeling
» Identifying physical dynamic effects

» Writing differential equations using 

conservation and property laws

» Expressing in differential equations 

forms 
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Modeling of Dynamic Systems
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Modeling Steps

• Inaccuracies 
propagate in each 
step (e.g., 
linearization, 
ignoring higher 
dynamics)

• Iterative 
modifications 
needed to get 
required output

• Example: 
modeling steps for 
your favorite sport 
device
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Representing Dynamic Systems
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Mathematical Representation 
and Solution Methods

Chap1 10

System Equations Solution 
Methods

Classical differential equation Analytical 
Solution

Transfer function Laplace 
Transform

State space Digital/Analog
Simulation

fxxx  32 

)()(3)(2)( 2 sFsXssXssX 

f
z

x

z

x





































1

0

23

10







Model Classification Tree
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Model Classification Tree
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Linear System

• Let u(t) be input and y(t) be output, the 
system is linear if
» Additivity: Response to u1+u2 is y1+y2

» Homogeneity: Response to au1 is ay1 

• Example: Show that y(t) = 2x(t) + 3 is 
not linear
» If x1=2 and x2 =3, then  

y1=2*2+3= 7, and y2 =2*3+3=9

» But for x3 = x1 + x2 = 5, then

y3 =2*5+3=13

And y3 ≠ y1 + y2 = 16

» System is not linear 
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Pair-share exercise: 
Linear System Example

• Consider this system: y(t) = t u(t)

• Is this system is linear?

• Consider two arbitrary inputs u1 and u2

» y1 = tu1

» y2 = tu2

• Let u3 = au1 + bu2, where a and b are arbitrary scalar 
constants

» y3 = tu3 = t (au1 + bu2) = atu1 + btu2 = ay1+by2

• System is linear
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Introduction to Matlab
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Outline

(1) Getting Started

(2) Scripts

(3) Making Variables

(4) Manipulating Variables

(5) Basic Plotting
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Getting Started

• Open up MATLAB for Windows

 Through the START Menu

Or Click on Matlab icon
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Command Window

Current directory

Workspace

Command History
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Making Folders

• Use folders to keep your programs organized

• To make a new folder, click the ‘Browse’ button next to ‘Current 
Directory’

• Click the ‘Make New Folder’ button, and change the name of the 
folder. Do NOT use spaces in folder names. In the MATLAB 
folder, make a new folder: ME584\MatlabIntro

• Highlight the folder you just made and click ‘OK’

• The current directory is now the folder you just created

• To see programs outside the current directory, they should be in 
the Path. Use File-> Set Path to add folders to the path
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Customization

• File  Preferences

 Allows you personalize your MATLAB experience
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MATLAB Basics

• MATLAB can be thought of as a super-powerful 
graphing calculator

 Remember the TI-83 from calculus? 

 With many more buttons (built-in functions)

• In addition it is a programming language

 MATLAB is an interpreted language, like Java

 Commands executed line by line
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Help/Docs

• help

The most important function for learning MATLAB on 
your own

• To get info on how to use a function:

» help sin

Help lists related functions at the bottom and links to 
the doc

• To get a nicer version of help with examples and easy-to-
read descriptions:

» doc sin

• To search for a function by specifying keywords:

» doc + Search tab
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(5) Basic Plotting
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Scripts: Overview

• Scripts are 

 collection of commands executed in sequence

written in the MATLAB editor

 saved as m-files (.m extension)

• To create an m-file from command-line

» edit helloWorld.m

• or click
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Scripts: the Editor

* Means that it's not saved

Line numbers

Comments

m-file path

Help file

Possible breakpoints

Debugging tools
Real-time 
error check
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Scripts: Some Notes

• COMMENT!
 Anything following a % is seen as a comment

 The first contiguous comment becomes the script's help file

Comment thoroughly to avoid wasting time later

• Note that scripts are somewhat static, since there is no 
input and no explicit output

• All variables created and modified in a script exist in the 
workspace even after it has stopped running
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Exercise: Scripts

Make a helloWorld script

• When run, the script should display the following text: 

• Hint: use disp to display strings. Strings are written 
between single quotes, like 'This is a string'

Hello World!

I am going to learn MATLAB!

Chap1 27



Exercise: Scripts

Make a helloWorld script

• When run, the script should display the following text: 

• Hint: use disp to display strings. Strings are written 
between single quotes, like 'This is a string'

• Open the editor and save a script as helloWorld.m. This is 
an easy script, containing two lines of code:

» % helloWorld.m

» % my first hello world program in MATLAB

» disp('Hello World!');

» disp('I am going to learn MATLAB!');

Hello World!

I am going to learn MATLAB!
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Variable Types

• MATLAB is a weakly typed language

No need to initialize variables!

• MATLAB supports various types, the most often used are

» 3.84

64-bit double (default)

» ‘a’

16-bit char

• Most variables you’ll deal with will be vectors or matrices of 
doubles or chars

• Other types are also supported: complex, symbolic, 16-bit 
and 8 bit integers, etc. You will be exposed to all these 
types through the homework
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Naming variables

• To create a variable, simply assign a value to a name:

» var1=3.14

» myString=‘hello world’

• Variable names

 first character must be a LETTER

 after that, any combination of letters, numbers and _

CASE SENSITIVE! (var1 is different from Var1) 

• Built-in variables. Don’t use these names!

i and j can be used to indicate complex numbers

pi has the value 3.1415926…

ans stores the last unassigned value (like on a calculator)

Inf and -Inf are positive and negative infinity 

NaN represents ‘Not a Number’
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Scalars

• A variable can be given a value explicitly

» a = 10

 shows up in workspace!

• Or as a function of explicit values and existing variables 

» c = 1.3*45-2*a

• To suppress output, end the line with a semicolon

» cooldude = 13/3;
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Arrays

• Like other programming languages, arrays are an 
important part of MATLAB

• Two types of arrays

(1) matrix of numbers (either double or complex)

(2) cell array of objects (more advanced data structure)

MATLAB makes vectors easy!
That’s its power!
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Row Vectors

• Row vector: comma or space separated values between 
brackets

» row = [1 2 5.4 -6.6]

» row = [1, 2, 5.4, -6.6]; 

• Command window:

• Workspace:
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Column Vectors

• Column vector: semicolon separated values between 
brackets 

» column = [4;2;7;4]

• Command window:

• Workspace:
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size & length

• You can tell the difference between a row and a column 
vector by:

 Looking in the workspace

Displaying the variable in the command window

Using the size function

• To get a vector's length, use the length function
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Matrices

• Make matrices like vectors

• Element by element

» a= [1 2;3 4];

• By concatenating vectors or matrices (dimension matters)

» a = [1 2];

» b = [3 4];

» c = [5;6];

» d = [a;b];

» e = [d c];

» f = [[e e];[a b a]];

» str = ['Hello, I am ' 'John'];

 Strings are character vectors

1 2

3 4
a

 
  
 
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save/clear/load

• Use save to save variables to a file
» save myFile a b

 saves variables a and b to the file myfile.mat
 myfile.mat file is saved in the current directory
 Default working directory is 

» \MATLAB

 Make sure you’re in the desired folder when saving files. Right 
now, we should be in:

» MATLAB\ME584\MatlabIntro

• Use clear to remove variables from environment
» clear a b

 look at workspace, the variables a and b are gone

• Use load to load variable bindings into the environment
» load myFile

 look at workspace, the variables a  and b are back

• Can do the same for entire environment
» save myenv; clear all; load myenv;
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Exercise: Variables

Get and save the current date and time

• Create a variable start using the function clock

• What is the size of start? Is it a row or column?

• What does start contain? See help clock

• Convert the vector start to a string. Use the function 
datestr and name the new variable startString

• Save start and startString into a mat file named 
startTime
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Exercise: Variables

Get and save the current date and time

• Create a variable start using the function clock

• What is the size of start? Is it a row or column?

• What does start contain? See help clock

• Convert the vector start to a string. Use the function 
datestr and name the new variable startString

• Save start and startString into a mat file named 
startTime

» help clock

» start=clock;

» size(start)

» help datestr

» startString=datestr(start);

» save startTime start startString
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Exercise: Variables

Read in and display the current date and time

• In helloWorld.m, read in the variables you just saved using 
load

• Display the following text:

• Hint: use the disp command again, and remember that 

strings are just vectors of characters so you can join two 
strings by making a row vector with the two strings as sub-
vectors.

I started learning Matlab on *start date and time*
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Exercise: Variables

Read in and display the current date and time

• In helloWorld.m, read in the variables you just saved using 
load

• Display the following text:

• Hint: use the disp command again, and remember that 

strings are just vectors of characters so you can join two 
strings by making a row vector with the two strings as sub-
vectors.

» load startTime

» disp(['I started learning Matlab on ' ... 

startString]);

I started learning Matlab on *start date and time*
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Basic Scalar Operations

• Arithmetic operations (+,-,*,/)
» 7/45

» (1+i)*(2+i)

» 1 / 0

» 0 / 0

• Exponentiation (^)
» 4^2

» (3+4*j)^2

• Complicated expressions, use parentheses
» ((2+3)*3)^0.1

• Multiplication is NOT implicit given parentheses
» 3(1+0.7) gives an error

• To clear command window
» clc
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Built-in Functions

• MATLAB has an enormous library of built-in functions

• Call using parentheses – passing parameter to function

» sqrt(2)

» log(2), log10(0.23)

» cos(1.2), atan(-.8)

» exp(2+4*i)

» round(1.4), floor(3.3), ceil(4.23)

» angle(i); abs(1+i);
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Exercise: Scalars

You will learn MATLAB at an exponential rate! Add the 
following to your helloWorld script:

• Your learning time constant is 1.5 days. Calculate the number of 
seconds in 1.5 days and name this variable tau

• This class lasts 5 days. Calculate the number of seconds in 5 days 
and name this variable endOfClass

• This equation describes your knowledge as a function of time t:

• How well will you know MATLAB at endOfClass? Name this 
variable knowledgeAtEnd. (use exp)

• Using the value of knowledgeAtEnd, display the phrase: 

• Hint: to convert a number to a string, use num2str

/1 tk e  

At the end of 6.094, I will know X% of Matlab
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Exercise: Scalars

» secPerDay=60*60*24;

» tau=1.5*secPerDay;

» endOfClass=5*secPerDay

» knowledgeAtEnd=1-exp(-endOfClass/tau);

» disp(['At the end of 6.094, I will know ' ... 

num2str(knowledgeAtEnd*100) '% of Matlab'])
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Transpose

• The transpose operators turns a column vector into a row 
vector and vice versa

» a = [1 2 3 4+i]

» transpose(a)

» a' 

» a.'

• The ' gives the Hermitian-transpose, i.e. transposes and 
conjugates all complex numbers

• For vectors of real numbers .' and ' give same result
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Addition and Subtraction

• Addition and subtraction are element-wise; sizes must 
match (unless one is a scalar):

• The following would give an error

» c = row + column

• Use the transpose to make sizes compatible

» c = row’ + column

» c = row + column’

• Can sum up or multiply elements of vector

» s=sum(row);

» p=prod(row);

 

 

 

12 3 32 11

2 11 30 32

14 14 2 21   



 



12 3 9

1 1 2

10 13 23

0 33 33

     
     


      
      
     

     
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Element-Wise Functions

• All the functions that work on scalars also work on vectors

» t = [1 2 3];

» f = exp(t);

 is the same as

» f = [exp(1) exp(2) exp(3)];

• If in doubt, check a function’s help file to see if it handles 
vectors elementwise

• Operators (* / ^) have two modes of operation

 element-wise

 standard
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Operators: element-wise

• To do element-wise operations, use the dot: . (.*, ./, .^). 

BOTH dimensions must match (unless one is scalar)!

» a=[1 2 3];b=[4;2;1];

» a.*b, a./b, a.^b  all errors

» a.*b', a./b’, a.^(b’)  all valid

 

4

1 2 3 2

1

1 4 4

2 2 4

3 1 3

3 1 3 1 3 1

.* ERROR

.*

.*

 
 


 
  

     
     


     
          

   

1 1 1 1 2 3 1 2 3

2 2 2 1 2 3 2 4 6

3 3 3 1 2 3 3 6 9

3 3 3 3 3 3

.*

.*

     
     


     
          

   

2 2

2 2

1 2 1 2
2

3 4 3 4
.^

Can be any dimension

  
   

   
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Operators: standard

• Multiplication can be done in a standard way or element-wise

• Standard multiplication (*) is either a dot-product or an outer-
product

 Remember from linear algebra: inner dimensions must MATCH!!

• Standard exponentiation (^) can only be done on square matrices 
or scalars

• Left and right division (/ \)  is same as multiplying by inverse

Our recommendation: just multiply by inverse (more on this 
later)

 

4

1 2 3 2 11

1

1 3 3 1 1 1

*

*

 
 


 
  

   

1 1 1 1 2 3 3 6 9

2 2 2 1 2 3 6 12 18

3 3 3 1 2 3 9 18 27

3 3 3 3 3 3

*

*

     
     


     
          

   

1 2 1 2 1 2
2

3 4 3 4 3 4
^ *

Must be square to do powers

     
     

     
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Exercise: Vector Operations

Calculate how many seconds elapsed since the start of 
class

• In helloWorld.m, make variables called secPerMin, 
secPerHour, secPerDay, secPerMonth (assume 30.5 days 
per month), and secPerYear (12 months in year), which 

have the number of seconds in each time period.

• Assemble a row vector called secondConversion that has 
elements in this order: secPerYear, secPerMonth, 
secPerDay, secPerHour, secPerMinute, 1.

• Make a currentTime vector by using clock

• Compute elapsedTime by subtracting currentTime from 
start

• Compute t (the elapsed time in seconds) by taking the dot 
product of secondConversion and elapsedTime (transpose 

one of them to get the dimensions right)
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Exercise: Vector Operations

» secPerMin=60;

» secPerHour=60*secPerMin;

» secPerDay=24*secPerHour;

» secPerMonth=30.5*secPerDay;

» secPerYear=12*secPerMonth;

» secondConversion=[secPerYear secPerMonth ... 

secPerDay secPerHour secPerMin 1];

» currentTime=clock;

» elapsedTime=currentTime-start;

» t=secondConversion*elapsedTime';

Chap1 54



Exercise: Vector Operations

Display the current state of your knowledge

• Calculate currentKnowledge using the same relationship as 
before, and the t we just calculated:

• Display the following text:

/1 tk e  

At this time, I know X% of Matlab
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Exercise: Vector Operations

Display the current state of your knowledge

• Calculate currentKnowledge using the same relationship as 
before, and the t we just calculated:

• Display the following text:

» currentKnowledge=1-exp(-t/tau);

» disp(['At this time, I know ' ... 

num2str(currentKnowledge*100) '% of Matlab']);

/1 tk e  

At this time, I know X% of Matlab
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Automatic Initialization

• Initialize a vector of ones, zeros, or random numbers

» o=ones(1,10)

 row vector with 10 elements, all 1

» z=zeros(23,1)

 column vector with 23 elements, all 0

» r=rand(1,45)

 row vector with 45 elements (uniform [0,1])

» n=nan(1,69)

 row vector of NaNs (useful for representing uninitialized 
variables)

The general function call is:
var=zeros(M,N);

Number of rows Number of columns
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Automatic Initialization

• To initialize a linear vector of values use linspace

» a=linspace(0,10,5) 

 starts at 0, ends at 10 (inclusive), 5 values

• Can also use colon operator (:)

» b=0:2:10 

 starts at 0, increments by 2, and ends at or before 10

 increment can be decimal or negative

» c=1:5

 if increment isn’t specified, default is 1

• To initialize logarithmically spaced values use logspace

 similar to linspace, but see help
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Exercise: Vector Functions

Calculate your learning trajectory

• In helloWorld.m, make a linear time vector tVec that has 
10,000 samples between 0 and endOfClass

• Calculate the value of your knowledge (call it 
knowledgeVec) at each of these time points using the same 

equation as before:

/1 tk e  
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Exercise: Vector Functions

Calculate your learning trajectory

• In helloWorld.m, make a linear time vector tVec that has 
10,000 samples between 0 and endOfClass

• Calculate the value of your knowledge (call it 
knowledgeVec) at each of these time points using the same 

equation as before:

» tVec = linspace(0,endOfClass,10000);

» knowledgeVec=1-exp(-tVec/tau);

/1 tk e  
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Vector Indexing

• Matlab indexing starts with 1, not 0

We will not respond to any emails where this is the 
problem.

• a(n) returns the nth element

• The index argument can be a vector. In this case, each 
element is looked up individually, and returned as a vector 
of the same size as the index vector.

» x=[12 13 5 8];

» a=x(2:3); a=[13 5];

» b=x(1:end-1); b=[12 13 5];

 13 5 9 10a 

a(1)    a(2)    a(3)   a(4)
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Matrix Indexing

• Matrices can be indexed in two ways

 using subscripts (row and column)

 using linear indices (as if matrix is a vector)

• Matrix indexing: subscripts or linear indices

• Picking submatrices

» A = rand(5) % shorthand for 5x5 matrix

» A(1:3,1:2) % specify contiguous submatrix

» A([1 5 3], [1 4]) % specify rows and columns

14 33

9 8

 
 
 

b(1)

b(2)

b(3)

b(4)

14 33

9 8

 
 
 

b(1,1)

b(2,1)

b(1,2)

b(2,2)
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Advanced Indexing 1

• To select rows or columns of a matrix, use the :

» d=c(1,:); d=[12 5];

» e=c(:,2); e=[5;13];

» c(2,:)=[3 6];  %replaces second row of c

12 5

2 13
c

 
  

 
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Advanced Indexing 2

• MATLAB contains functions to help you find desired values 
within a vector or matrix

» vec = [5 3 1 9 7]

• To get the minimum value and its index:

» [minVal,minInd] = min(vec);

max works the same way

• To find any the indices of specific values or ranges

» ind = find(vec == 9);

» ind = find(vec > 2 & vec < 6);

 find expressions can be very complex, more on this later

• To convert between subscripts and indices, use ind2sub, 
and sub2ind. Look up help to see how to use them.
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Exercise: Indexing

When will you know 50% of Matlab?

• First, find the index where knowledgeVec is closest to 0.5. 

Mathematically, what you want is the index where the value 
of                            is at a minimum (use abs and min).

• Next, use that index to look up the corresponding time in 
tVec and name this time halfTime.

• Finally, display the string:                                              
Convert halfTime to days by using secPerDay

0.5knowledgeVec 

I will know half of Matlab after X days
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Exercise: Indexing

When will you know 50% of Matlab?

• First, find the index where knowledgeVec is closest to 0.5. 

Mathematically, what you want is the index where the value 
of                            is at a minimum (use abs and min).

• Next, use that index to look up the corresponding time in 
tVec and name this time halfTime.

• Finally, display the string:                                              
Convert halfTime to days by using secPerDay

» [val,ind]=min(abs(knowledgeVec-0.5));

» halfTime=tVec(ind);

» disp(['I will know half of Matlab after ' ... 

num2str(halfTime/secPerDay) ' days']);

0.5knowledgeVec 

I will know half of Matlab after X days
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Outline

(1) Getting Started

(2) Scripts 

(3) Making Variables

(4) Manipulating Variables

(5) Basic Plotting
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Plotting

• Example

» x=linspace(0,4*pi,10);

» y=sin(x);

• Plot values against their index

» plot(y);

• Usually we want to plot y versus x

» plot(x,y);

MATLAB makes visualizing data 
fun and easy! 
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What does plot do?

• plot generates dots at each (x,y) pair and then connects the dots 
with a line

• To make plot of a function look smoother, evaluate at more points  

» x=linspace(0,4*pi,1000);

» plot(x,sin(x));

• x and y vectors must be same size or else you’ll get an error

» plot([1 2], [1 2 3])

 error!!
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1000 x values:
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Exercise: Plotting

Plot the learning trajectory

• In helloWorld.m, open a new figure (use figure)

• Plot the knowledge trajectory using tVec and 
knowledgeVec. When plotting, convert tVec to days by 
using secPerDay

• Zoom in on the plot to verify that halfTime was calculated 

correctly
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Exercise: Plotting

Plot the learning trajectory

• In helloWorld.m, open a new figure (use figure)

• Plot the knowledge trajectory using tVec and 
knowledgeVec. When plotting, convert tVec to days by 
using secPerDay

• Zoom in on the plot to verify that halfTime was calculated 

correctly

» figure

» plot(tVec/secPerDay, knowledgeVec);
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Matlab Tutorial

• Matlab tutorials

» http://www.engin.umich.edu/group/ctm/basic/basi

c.html

» http://www.engin.umich.edu/group/ctm/model/mode

l.html

• Tutorials included in Matlab
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Homework 1: chapter 1

• 1.1

• 1.3

• 1.7

• 1.10
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