
MODIFYING ALGORITHMS: Generalizing, Extending, Foolproofing, Embedding

Algorithms often go through many changes in their "lifetimes." Sometimes they are made
more powerful, more useful, more convenient, more efficient, or more foolproof.
Sometimes they are used as parts of larger algorithms.

Generalizing algorithms is the process of making them apply to more cases. For example,
the previous pay algorithm, repeated in figure 1, applies only to people making the
same constant rate of 10 dollars an hour. This could be modified by allowing the input of
any rate, say r, in addition to the hours h. This modification, shown in figure 2, now
applies to more people, working at any rate, and is said to be more general. Actually
the overtime value of 40, which appears in three places, could be replaced by a
symbolic B (for break point), so becoming even more general. Also, the values are real
numbers, with decimals, as opposed to the previous whole or integer numbers.

Extending algorithms to include more cases is also very common. For example, the original
algorithm pays an overtime rate (time and a half) for any hours greater than 40. Often
after more hours are worked (usually 60) there is a greater overtime rate of twice the
regular rate. This extension of the original algorithm is shown in figure 3. Let us execute
or "trace" this algorithm for an input value of 100 hours. First h is input, then it is
compared to 60 and the rightmost path is taken out of the decision box into an action of
computing.

p = 700 + 20*(h - 60) = 700 + 20*40 = 700 + 800 = $1500.

This general formula (and others) can be derived from finding the area of various
rectangles under the graph of r vs h, an extension of the previous pay problem. Notice
that by doubling the number of hours worked (from 50 to 100) the resulting output more
than doubles (from $550 to $1500); in fact it almost triples.

Foolproofing is a process of making an algorithm more reliable, fail-safe, or robust, by
anticipating erroneous input or other difficulties. For example, if the hours input are
more than the number of hours in a week (7*24 = 168) then an error message should be
output. The resulting foolproofed, or robust, algorithm is given in figure 4. It may be
further modified to recognize the input of negative hours, and so output another error
message. Note that 168 is not shown in the algorithm, for it hides the two "components"
of the product. Also, humans shouldn't need to multiply this when computers can do it
easily.

Repeating is a very common process with algorithms. For example, the original pay
algorithm is shown embedded within a loop in figure 5. When the input values for
hours h are greater than or equal to zero, this algorithm computes the pay and keeps
repeating. When a negative value is input, the repetition or looping ends.

Embedding an algorithm is the process of re-using that algorithm within another
algorithm. Notice that the original algorithm, shown boxed, appears embedded in the
various extensions. This shows that when algorithms are structured properly they can
be modified without destroying already existing parts. When algorithms are structured
poorly, small modifications can cause great problems. Re-Use is also efficient and can
save time and effort.

Notice that each of these figures shows a single modification of the original algorithm. If
all four modifications were shown on one figure, the resulting algorithm would be much
more complex than the original algorithm. It is shown on a following page.

Modifying an already created system is not common in other disciplines. For example,
artists do not try to touch up anothers artistic work, and engineers do not add a few
extra lanes to an existing bridge; but algorithms are just too easy to modify. The
realization that algorithms can be modified throughout their lifetimes is important,
for it means that algorithms should be created so as to allow for modification. When
algorithms are structured properly their modification can lead to better algorithms;
otherwise the modification can be disastrous.


