Table 3.1 Classes of Interrupts

Program	Generated by some condition that occurs as a result of an instruction execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, or reference outside a user's allowed memory space.
Timer	Generated by a timer within the processor. This allows the operating system to perform certain functions on a regular basis.
I/O	Generated by an I/O controller, to signal normal completion of an operation or to signal a variety of error conditions.
Hardware failure	Generated by a failure such as power failure or memory parity error.

Туре	Bus Width
Dedicated	Address
Multiplexed	Data
Method of Arbitration	Data Transfer Type
Centralized	Read
Distributed	Write
Timing	Read-modify-write
Synchronous	Read-after-write
Asynchronous	Block

Table 3.2 Elements of Bus Design

Table 3.3	Mandatory	PCI Signal Lines
-----------	-----------	------------------

Designation	Туре	Description			
	System Pins				
CLK	in	Provides timing for all transactions and is sampled by all inputs on the rising			
		edge. Clock rates up to 33 MHz are supported.			
RST#	in	Forces all PCI-specific registers, sequencers, and signals to an initialized			
		state.			
		Address and Data Pins			
AD[31::0]	t/s	Multiplexed lines used for address and data			
C/BE[3::0]#	t/s	Multiplexed bus command and byte enable signals. During the data phase, the			
		lines indicate which of the four byte lanes carry meaningful data.			
PAR	t/s	Provides even parity across AD and C/BE lines one clock cycle later. The			
		master drives PAR for address and write data phases; the target drive PAR for			
		read data phases.			
	-	Interface Control Pins			
FRAME#	s/t/s	Driven by current master to indicate the start and duration of a transaction. It			
		is asserted at the start and deasserted when the initiator is ready to begin the			
		final data phase.			
IRDY#	s/t/s	Initiator Ready. Driven by current bus master (initiator of transaction). During			
		a read, indicates that the master is prepared to accept data; during a write,			
		indicates that valid data are present on AD.			
TRDY#	s/t/s	Target Ready. Driven by the target (selected device). During a read, indicates			
		that valid data are present on AD; during a write, indicates that target is ready			
		to accept data.			
STOP#	s/t/s	Indicates that current target wishes the initiator to stop the current transaction.			
IDSEL	in	Initialization Device Select. Used as a chip select during configuration read			
		and write transactions.			
DEVSEL#	in	Device Select. Asserted by target when it has recognized its address. Indicates			
		to current initiator whether any device has been selected.			
220 /	,	Arbitration Pins			
REQ#	t/s	Indicates to the arbiter that this device requires use of the bus. This is a			
()) IT //	,	device-specific point-to-point line.			
GNT#	t/s	Indicates to the device that the arbiter has granted bus access. This is a device-			
		specific point-to-point line.			
DEDD #	1.1	Error Reporting Pins			
PERR#	s/t/s	Parity Error. Indicates a data parity error is detected by a target during a write			
(CEDD #	(1	data phase or by an initiator during a read data phase.			
SERR#	o/d	System Error. May be pulsed by any device to report address parity errors and			
		critical errors other than parity.			

Designation	Туре	Description		
Interrupt Pins				
INTA#	o/d	Used to request an interrupt.		
INTB#	o/d	Used to request an interrupt; only has meaning on a multifunction device.		
INTC#	o/d	Used to request an interrupt; only has meaning on a multifunction device.		
INTD#	o/d	Used to request an interrupt; only has meaning on a multifunction device.		
		Cache Support Pins		
SBO#	in/out	Snoop Backoff. Indicates a hit to a modified line.		
SDONE	in/out	Snoop Done. Indicates the status of the snoop for the current access. Asserted		
		when snoop has been completed.		
		64-bit Bus Extension Pins		
AD[63::32]	t/s	Multiplexed lines used for address and data to extend bus to 64 bits.		
C/BE[7::4]#	t/s	Multiplexed bus command and byte enable signals. During the address phase,		
		the lines provide additional bus commands. During the data phase, the lines		
		indicate which of the four extended byte lanes carry meaningful data.		
REQ64#	s/t/s	Used to request 64-bit transfer.		
ACK64#	s/t/s	Indicates target is willing to perform 64-bit transfer.		
PAR64	t/s	Provides even parity across extended AD and C/BE lines one clock cycle		
		later.		
		JTAG/Boundary Scan Pins		
TCK	in	Test clock. Used to clock state information and test data into and out of the		
		device during boundary scan.		
TDI	in	Test input. Used to serially shift test data and instructions into the device.		
TDO	out	Test output. Used to serially shift test data and instructions out of the device.		
TMS	in	Test mode Select. Used to control state of test access port controller.		
TRST#	in	Test reset. Used to initialize test access port controller.		

Table 3.4 Optional PCI Signal Lines

in Input-only signal

out Output-only signal

- t/s Bidirectional, tri-state, I/O signal
- s/t/s Sustained tri-state signal driven by only one owner at a time
- o/d Open drain: allows multiple devices to share as a wire-OR
- # Signal's active state occurs at low voltage

Read Command Type	For Cachable Memory	For Noncachable Memory
Memory Read	Bursting one-half or less of a cache line	Bursting 2 data transfer cycles or less
Memory Read Line	Bursting more than one-half a cache line to three cache lines	Bursting 3 to 12 data transfers
Memory Read Multiple	Bursting more than three cache lines	Bursting more than 12 data transfers

 Table 3.5 Interpretation of PCI Read Commands