COMP 222 Quiz #2 Solutions

Problem 1: General Size Parameters
Express these values as powers of 2.

e RAM: 4GB = 4X1G=22X2%0=2%
e Block/Line: 64B = 64X1=25
e Cache: 2MB = 2X1M=2x2%0=722"

Several of you wrote that 4 GB = 23’ X 230 X 230 X 230 = 212, Unfortunately, multiply by 4
and raise to the 4" power are different operations. Multiplication is repeated addition, and
exponentiation is repeated multiplication. It is true that 4 GB = 230 + 230 + 230 + 230 (where
+ means addition), but this expression doesn’t really get you any closer to the answer.

Example #1: Multiply 1 GB by 4

4X230 — 22X230 — 230+2 — 232
If we multiply together several terms with same base and different exponents, we add the
exponents. More generally, a® X a¢ = a®*¢

Example #2: Raise 1GB to the 4" Power

(1 G 4 — (230)4 = 230X230X230X230 = 230X4 = 2120
If we have a base raised to an exponent and we raise that expression to another exponent,
then we multiply the exponents. More generally, (a®)¢ = a®X¢

Example #3: How big is 2'%?

Using the approximation 21 = [(P, 2120 = 210X12 =] (3X12 =] (¢ or 1 followed by 36 zeros,
1,000,000,000,000,000,000,000,000,000,000,000,000. According to the Wikipedia article
“Names of Large Numbers,” 1036 = 1 undecillion. More exactly, 2%’ =
1,329,227,995,784,915,872,903,807,060,280,344,576. Many existing boards have a 32-bit
or 64-bit address bus, but 120-bit bus processors are not common at the present time.

Problem 2. Refer to sizes in Problem 1.

e # of bits in a full RAM address: 32
e #of RAM blocks: 2% bytes / 2° bytes per block = 232 = 22 blocks
e # of Cache lines: 22! bytes / 26 bytes per line = 22" =215 lines

e RAM address breakdown: _26_bits block index | 6 _ bits byte index

Problem 3. Use sizes from Problems 1 and 2 and assume Direct Mapped Cache
e # of RAM blocks that map to each cache line: 226/215 =211
e Address breakdown: 11 bitstag| 15 bits line index | 6 bits byte index

e Associative search: when looking up an address tag, how many stored tags must it be
compared to? 1

Address lookup for direct mapped:

o CPU issues a 32-bit address = 26 bits RAM block index + 6 bits byte index.
Before fetching the data from RAM, we check to see if a copy is in cache.
The 26 bit block index is divided into 11 bit tag and 15 bit cache line index.
We use the 15 bit cache line index to select that single cache line.
We compare the address’s 11 bit tag with the tag stored at the selected cache line.
If the tags match, the cache line contains the data we are looking for.

Problem 4. Use sizes from Problems 1 and 2 and assume Fully Associative Cache
e #of RAM blocks that map to each cache line: 22¢
e Address breakdown: 26 bitstag| 0 bits line index | 6 bits byte index

e Associative search: when looking up an address tag, how many stored tags must it be
compared to? 215

Address lookup for fully associative:

e CPU issues a 32-bit address = 26 bits RAM block index + 6 bits byte index.

o Before fetching the data from RAM, we check to see if a copy is in cache.

e The 26 bit block index becomes a 26 bit tag with 0 bits used for cache line index.
There is no preferred cache line to check, the RAM block we’re looking for could
be stored in any line in the entire cache.

e Since there is no single cache line to check, we must compare the address’s 11 bit
tag with every tag in every cache line — all 23 of them. This search is done
associatively (in parallel) for performance reasons.

o Ifthe address tag matches any of the 2’ stored tags, the associative search will
report that a match was detected for cache line x. The line with the matching tag
will contain the data we are looking for.

Problem 5. Use sizes from Problems 1 and 2 and assume 16-Way Set Associative Cache
of Cache sets: 2'° lines / 24 lines per set = 2!! sets

of lines per Cache set: 2*=16_

of RAM blocks that map to each cache set: 226211 =215

Address breakdown: 15 bitstag| 11 bits setindex | 6 bits byte index
Associative search: when looking up an address tag, how many stored tags must it be
compared to? 2*=16_

Address lookup for 16-way set associative:

CPU issues a 32-bit address = 26 bits RAM block index + 6 bits byte index.

Before fetching the data from RAM, we check to see if a copy is in cache.

The 26 bit block index is divided into 15 bit tag and 11 bit cache set index.

We use the 11 bit set index to select that set. Like all sets, it contains 16 lines.

The RAM block we are looking for must be in this set, but within the set it could be
in any one of the 16 lines.

We compare the 15 bit address tag with the 16 stored tags in the set. This search is
done associatively (in parallel) for performance reasons.

If the address tag matches any of the stored tags in the set, the associative search
will report that a tag match was detected on line x. A copy of the RAM block we are
looking for is in that line with the matching tag.

