
COMP 222 Quiz #2 Solutions

Problem 1: General Size Parameters

Express these values as powers of 2.

• RAM: 4 GB = _4 X 1 G = 22 X 230 = 232_

• Block/Line: 64 B = _64 X 1 = 26_

• Cache: 2 MB = _2 X 1 M = 21 X 220 = 221_

Several of you wrote that 4 GB = 230 X 230 X 230 X 230 = 2120. Unfortunately, multiply by 4

and raise to the 4th power are different operations. Multiplication is repeated addition, and

exponentiation is repeated multiplication. It is true that 4 GB = 230 + 230 + 230 + 230 (where

+ means addition), but this expression doesn’t really get you any closer to the answer.

Example #1: Multiply 1 GB by 4

 4 X 230 = 22 X 230 = 230+2 = 232

If we multiply together several terms with same base and different exponents, we add the

exponents. More generally, ab X ac = ab+c

Example #2: Raise 1GB to the 4th Power

 (1 G)4 = (230)4 = 230 X 230 X 230 X 230 = 230 X 4 = 2120

If we have a base raised to an exponent and we raise that expression to another exponent,

then we multiply the exponents. More generally, (ab)c = ab X c

Example #3: How big is 2120?

Using the approximation 210x = 103x, 2120 = 210X12 = 103X12 = 1036 or 1 followed by 36 zeros,

1,000,000,000,000,000,000,000,000,000,000,000,000. According to the Wikipedia article

“Names of Large Numbers,” 1036 = 1 undecillion. More exactly, 2120 =

1,329,227,995,784,915,872,903,807,060,280,344,576. Many existing boards have a 32-bit

or 64-bit address bus, but 120-bit bus processors are not common at the present time.

Problem 2. Refer to sizes in Problem 1.

• # of bits in a full RAM address: _32_

• # of RAM blocks: _232 bytes / 26 bytes per block = 232-6 = 226 blocks_

• # of Cache lines: _221 bytes / 26 bytes per line = 221-6 = 215 lines___

• RAM address breakdown: _26_ bits block index | _6_ bits byte index

Problem 3. Use sizes from Problems 1 and 2 and assume Direct Mapped Cache

• # of RAM blocks that map to each cache line: _226/215 = 211_

• Address breakdown: _11_ bits tag | _15_ bits line index | _6_ bits byte index

• Associative search: when looking up an address tag, how many stored tags must it be

compared to? _1_

Address lookup for direct mapped:

• CPU issues a 32-bit address = 26 bits RAM block index + 6 bits byte index.

• Before fetching the data from RAM, we check to see if a copy is in cache.

• The 26 bit block index is divided into 11 bit tag and 15 bit cache line index.

• We use the 15 bit cache line index to select that single cache line.

• We compare the address’s 11 bit tag with the tag stored at the selected cache line.

• If the tags match, the cache line contains the data we are looking for.

Problem 4. Use sizes from Problems 1 and 2 and assume Fully Associative Cache

• # of RAM blocks that map to each cache line: _226_

• Address breakdown: _26_ bits tag | _0_ bits line index | _6_ bits byte index

• Associative search: when looking up an address tag, how many stored tags must it be

compared to? _215_

Address lookup for fully associative:

• CPU issues a 32-bit address = 26 bits RAM block index + 6 bits byte index.

• Before fetching the data from RAM, we check to see if a copy is in cache.

• The 26 bit block index becomes a 26 bit tag with 0 bits used for cache line index.

There is no preferred cache line to check, the RAM block we’re looking for could

be stored in any line in the entire cache.

• Since there is no single cache line to check, we must compare the address’s 11 bit

tag with every tag in every cache line – all 215 of them. This search is done

associatively (in parallel) for performance reasons.

• If the address tag matches any of the 215 stored tags, the associative search will

report that a match was detected for cache line x. The line with the matching tag

will contain the data we are looking for.

Problem 5. Use sizes from Problems 1 and 2 and assume 16-Way Set Associative Cache

• # of Cache sets: _215 lines / 24 lines per set = 211 sets_

• # of lines per Cache set: _24 = 16_

• # of RAM blocks that map to each cache set: _226/211 = 215_

• Address breakdown: _15_ bits tag | _11_ bits set index | _6_ bits byte index

• Associative search: when looking up an address tag, how many stored tags must it be

compared to? _24 = 16_

Address lookup for 16-way set associative:

• CPU issues a 32-bit address = 26 bits RAM block index + 6 bits byte index.

• Before fetching the data from RAM, we check to see if a copy is in cache.

• The 26 bit block index is divided into 15 bit tag and 11 bit cache set index.

• We use the 11 bit set index to select that set. Like all sets, it contains 16 lines.

• The RAM block we are looking for must be in this set, but within the set it could be

in any one of the 16 lines.

• We compare the 15 bit address tag with the 16 stored tags in the set. This search is

done associatively (in parallel) for performance reasons.

• If the address tag matches any of the stored tags in the set, the associative search

will report that a tag match was detected on line x. A copy of the RAM block we are

looking for is in that line with the matching tag.

