NAME: **COMP 222 Ouiz #2** Fill in the blank on this sheet (no scantron).

In the following problems, answers about # of bits should be in integer form, answers about # of blocks/lines can be left as a power of 2. Problems 1 and 2 are general sizing parameters. For Problems 3, 4, and 5, use the sizing parameters from Problems 1 and 2.

Problem 1: General Size Parameters

Express these values as powers of 2.

- RAM: 4 GB =
- Block/Line: 64 B = _____
- Cache: 2 MB =

Problem 2. Refer to sizes in Problem 1.

- # of bits in a full RAM address:
- # of RAM blocks:
- # of Cache lines:
- _____ bits block index | _____ bits byte index • RAM address breakdown:

Problem 3. Use sizes from Problems 1 and 2 and assume Direct Mapped Cache

- # of RAM blocks that map to each cache line:
- Address breakdown: _____ bits tag | _____ bits line index | _____ bits byte index
- Associative search: when looking up an address tag, how many stored tags must it be compared to?

Problem 4. Use sizes from Problems 1 and 2 and assume Fully Associative Cache

- # of RAM blocks that map to each cache line: _____
- Address breakdown: _____ bits tag | _____ bits line index | _____ bits byte index
- Associative search: when looking up an address tag, how many stored tags must it be compared to?

Problem 5. Use sizes from Problems 1 and 2 and assume 16-Way Set Associative Cache

- # of Cache sets:
- # of lines per Cache set: _____
- # of RAM blocks that map to each cache set: _____
- Address breakdown: _____ bits tag | _____ bits set index | _____ bits byte index
- Associative search: when looking up an address tag, how many stored tags must it be compared to?