
Architectural Innovations Review 

Cache Memory 

Small, fast memory for faster program execution 

Works because of principle of locality of reference 

Contributes directly to increased execution speed, as long as cache hit ratios are high 

ECC 

Increases system reliability 

Goal is reliability not improved execution speed 

Virtual Memory 

Increases system usability, allowing large process images to spill over from RAM onto hard drive 

Does not directly contribute to faster execution performance. In fact, there is a small performance 

decrease, but the benefit to usability far outweighs the small performance penalty. 

Without VM, a process would have to completely fit in RAM in order to execute. Depending on how 

much RAM was available at a specific time, some processes would simply not be allowed to run. 

IEEE 754 

Standard for improving the accuracy of floating point calculations 

Execution speed not a major goal 

Instruction Pipelining 

Hardware innovation to speed up the von Neuman instruction execution cycle 

Produces significant execution speedup 

  



Instruction Pipelining 

Imagine a waiting line of jobs, waiting to move through a series of steps, as if on an assembly line. 

The non-pipeline approach is to run the steps on one job at a time. Only one job can be active at a time, 

the active job must move through all the steps to completion before the next job can start. When a job 

is at a particular step, the other steps are idle doing nothing. 

The pipelined approach is to allow the next job in the queue to start step 1 as soon as the previous job 

has finished and moved on to step 2. In the best case scenario, the pipeline is filled with jobs at different 

steps or stages, all stages are working at the same time on different jobs. 

Instruction pipelining is applying the pipeline approach to the von Neuman instruction execution cycle. 

Each instruction is a job waiting to be processed, and each step in the cycle – fetch, decode, execute, 

write back – is a step or stage in the pipeline. 

 

Non-Computer Example: Laundry 

Suppose you work on a laundry assembly line where the steps are 

• Presoak 

• Wash 

• Dry 

• Iron 

• Fold 

Each step takes about 30 minutes. They have to be done in this order, and there’s not much opportunity 

for speeding the process up by doing a task in parallel for the same job (you can’t start the drying stage 

until the washing stage is complete). Multiple jobs queue up at the front of the line. One job enters the 

processing at a time, and you can’t start the next job until the current job is finished. While the current 

job is washing for example, the soak tub, dryer, ironing board, and folding table are all idle and unused. 

You can tell your customers to expect 1 job to be completed every 150 minutes. 

With a little internal reorganization, and maybe an extra helper on the assembly line, you can 

implement a new policy to let the next job start the presoak stage as soon as the current job moves 

from presoak to wash, and so on. In this version, once the pipeline fills up, all the stages are busy all the 

time, with one job in presoak, the job in front of it in wash, the job in front of it in dry, and so on. With 

respect to performance, there’s a big improvement, a new completed job appears at the output every 

30 minutes. The line of jobs now moves down the assembly line 5 times faster than before. More 

generally, the rate of execution is n times faster if there are n stages in the pipeline. 

 

  



Non-Pipelined Approach 

 

 

Pipelined Approach 

 

 

  



Non-Pipelined Performance 

One job finishes every 6 time steps 

Pipelined Performance 

One job finishes every 1 time step 

Assumptions 

• No dependencies between jobs 

• Each step takes about the same amount of time 

• Order of jobs in the queue is known and fixed 

• All of these assumptions can be violated in practice. 

• Pipeline still works, but performance will be less than optimal. 

  



Branches and Pipelines 

Normal program execution is for the program counter PC to move sequentially down the list of 

instructions in a program in the order they are stored. We increment the PC after every cycle to move to 

the address of the next instruction. 

But loops and decisions require branches to implement, causing instructions to execute in non-linear 

order. At the bottom of a loop, there will always be a backward unconditional loop to move the PC back 

to the top of the loop and run through the same instructions again. At the top of the loop there is a 

forward conditional branch. The loop continues when the branch fails and ends when the branch 

succeeds. 

What happens to an instruction pipeline in the presence of branches? If there were no branches every 

program would start at the top, move steadily and uniformly downward, executing each instruction in 

order until reaching the last instruction. The pipeline works pretty much perfectly in this case. 

But what about a program with branches? 

Let’s look at a simple example in a generic assembly language (no specific CPU). We’ll start with a C 

program that adds the content of an array. 

 

C source: 

#include <stdio.h> 
#include <stdlib.h> 
 
int a[1000];    // global variables 
int y,z,i; 
 
void main(void) {    // main function 
 z = 0; 
 for (i=0;i<1000;i++) {  // for loop 
  y = a[i]; 
  z = z + y; 
 } 
} 

  



The Intel Core assembly language listing is given below: 
 
; Microsoft (R) Optimizing Compiler Version 19.00.23026.0  
 
_DATA SEGMENT      ; layout of global variables 
COMM _a:DWORD:03e8H 
COMM _y:DWORD 
COMM _z:DWORD 
COMM _i:DWORD 
_DATA ENDS 
PUBLIC _main 
_TEXT SEGMENT      ; code starts here 
_main PROC 
 
1 push ebp      ; adjust stack at fn start 
2 mov ebp, esp 
3 mov DWORD PTR _z, 0    ; set z to 0 
4 mov DWORD PTR _i, 0    ; set i to 0 
5 jmp SHORT $LN4@main    ; jump to top of loop 
 
$LN2@main:       ; loop increment block 
6 mov eax, DWORD PTR _i 
7 add eax, 1 
8 mov DWORD PTR _i, eax    ; i++ 
 
$LN4@main:       ; top of loop 
9 cmp DWORD PTR _i, 1000   ; cmp i to 1000 
10 jge SHORT $LN1@main    ; cond forward jump 
11 mov ecx, DWORD PTR _i    ; body of loop 
12 mov edx, DWORD PTR _a[ecx*4] 
13 mov DWORD PTR _y, edx    ; y = a[i] 
14 mov eax, DWORD PTR _z 
15 add eax, DWORD PTR _y 
16 mov DWORD PTR _z, eax    ; z = z + y 
17 jmp SHORT $LN2@main    ; uncond backward jump 
        ; back to loop increment 
 
$LN1@main:       ; continuation after loop 
18 xor eax, eax 
19 pop ebp      ; adjust stack at fn end 
20 ret 0 
 
_main ENDP 
_TEXT ENDS 
END 

See http://www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html for a quick guide to Intel x86 

assembly language. From this guide: 

• Rather than separate load and store instructions, there is a bi-directional “mov” instruction 

• 32 bit General purpose registers: eax, ebx, ecx, edx 

• Stack Base and Stack Pointer: ebp, esp; stack is adjusted at the beginning and end of every function call 

• Data types:  DWORD PTR, SHORT 

• Autogen labels:  $LN1@main, $LN2@main, … 

  



Optimal Pipeline Performance 

When the CPU is in the middle of executing a long series of instructions with no braches, the instruction pipeline 

fills and execution performance reaches its maximum. One instruction is completed every pipeline cycle. Note that 

we are ignoring the problem of pipeline hazards which can decrease performance for now. 

Branches, both unconditional and conditional, will degrade the performance of an instruction pipeline unless 

special corrective measures are taken. Compilers for pipelined processors may try to minimize the number of 

branches to try to reduce the penalty. 

From the assembled program above, zoom in on the code starting around line 3: 

1 push ebp      ; adjust stack at fn start 
2 mov ebp, esp 
3 mov DWORD PTR _z, 0    ; set z to 0 
4 mov DWORD PTR _i, 0    ; set i to 0 
5 jmp SHORT $LN4@main    ; jump to top of loop 
 
$LN2@main:       ; loop increment block 
6 mov eax, DWORD PTR _i 
7 add eax, 1 
8 mov DWORD PTR _i, eax    ; i++ 
 
$LN4@main:       ; top of loop 
9 cmp DWORD PTR _i, 1000   ; cmp i to 1000 

 

Let’s look at a simple version of the pipeline when instruction 3 enters the pipeline: 

Time Fetch Decode Execute Write Back 

1 1 push    

2 2 mov 1 push   

3 3 mov 2 mov 1 push  

 

Now let’s let the execution move forward several cycles: 

Time Fetch Decode Execute Write Back 

1 1 push    

2 2 mov 1 push   

3 3 mov 2 mov 1 push  

4 4 mov 3 mov 2 mov 1 push 

5 5 jmp 4 mov 3 mov 2 mov 

6 6 mov 5 jmp 4 mov 3 mov 

7     

 

At step 5, instruction 5 jmp has entered the pipeline. It is an unconditional jump, but this fact won’t be detected 

during the fetch step, which merely moves the next instruction from RAM (or cache) to the CPU. Only when 

instruction 5 has reached the decode stage can the type of the instruction be recognized, and the target of the 

jump might not be available until the execute step. But by the time instruction 5 reaches decode, the next 

instruction in sequence – instruction 6 – has already entered the pipeline. But instruction 6 is not the next 

instruction, instruction 9 is. 

So there may be a hiccup in the operation of the pipeline to correct for the incorrect insertion of instruction 6 into 

the pipeline. 



Time Fetch Decode Execute Write Back  

1 1 push     

2 2 mov 1 push    

3 3 mov 2 mov 1 push   

4 4 mov 3 mov 2 mov 1 push  

5 5 jmp 4 mov 3 mov 2 mov  

6 6 mov 5 jmp 4 mov 3 mov � 5 jmp detected here 

7 9 cmp 6 mov 5 jmp 4 mov � 6 mov invalid, 9 cmp fetched 

 

What is displayed here is a very generic possible response, the detailed response of a specific CPU pipeline can 

vary. Some pipelines may have added hardware to avoid the kind of one-cycle time penalty shown at time 7. 

A similar problem with optimal pipeline operation occurs with a conditional branch but in a different way. A 

conditional branch may or may not branch, depending on the condition codes set by the previous instruction. 

Similarly to the unconditional branch, the CPU can access the op code and determine that the instruction is a 

branch during the decode step. But unlike an unconditional branch, there are two possible next instructions: the 

contiguous instruction in the next memory location (if the branch does not succeed), or a different instruction at a 

different address stored in the branch opcode (if the branch succeeds). Also unlike the unconditional branch, the 

result of the branch (whether it will be taken or not) cannot be determined until the execute step. 

Look at the program starting at instruction 10: 

9 cmp DWORD PTR _i, 1000   ; cmp i to 1000 
10 jge SHORT $LN1@main    ; cond forward jump 
11 mov ecx, DWORD PTR _i    ; body of loop 
12 mov edx, DWORD PTR _a[ecx*4] 
13 mov DWORD PTR _y, edx    ; y = a[i] 
14 mov eax, DWORD PTR _z 
15 add eax, DWORD PTR _y 
16 mov DWORD PTR _z, eax    ; z = z + y 
17 jmp SHORT $LN2@main    ; uncond backward jump 
        ; back to loop increment 
 
$LN1@main:       ; continuation after loop 
18 xor eax, eax 
19 pop ebp      ; adjust stack at fn end 
20 ret 0 
 

Branch fails, jump is not taken, instruction 11 follows instruction 10: 

Time Fetch Decode Execute Write Back  

X 11 mov 10 jge 9 cmp …  

X + 1 12 mov 11 mov 10 jge 9 cmp � result of jge computed 

X + 2 13 mov 12 mov 11 mov 10 jge � no special action required 

Branch succeeds, jump is taken, instruction 18 follows instruction 10: 

Time Fetch Decode Execute Write Back  

X 11 mov 10 jge 9 cmp …  

X + 1 12 mov 11 mov 10 jge 9 cmp � result of jge computed 

X + 2 18 xor 12 mov 11 mov 10 jge � flush pipeline to invalidate 

incorrectly fetched instructions 

and start over with 18 xor 

 



Ways to Fix 

• Branch Prediction 

• Multiple Pipelines 

Branch Prediction 

When a conditional branch instruction is decoded, there are two possible “next” instructions: the instruction that 

immediately follows in memory if the branch is not taken, and the target or operand of the branch if the branch is 

taken. If the branch is part of an if-else, there may be no way to predict which branch will be taken. But if the 

branch is part of loop, there may be. A conditional forward branch at the top of a loop will fail more often than it 

will succeed. As long as the loop is continuing the branch will fail (e.g., the loop counter has not reached its 

maximum value). When the loop counter reaches its limit the branch succeeds. It is this branch that terminates the 

loop and moves execution on to the instructions following the loop. Most loops run for 10, 100, or even 1000 

iterations. So for a loop that executes 1000 times, the branch will fail 999 times and will succeed 1 time. It would 

make sense in a case like this to always guess that the branch will fail. You will be right 999 times out of 1000 and 

wrong only 1 time in a 1000 (or however many times the loop executes). 

Branch prediction requires a small number of bits added to the instruction pipeline to track the state of a 

conditional branch in the pipeline. Prediction is implemented by using a FSM (finite state machine) to remember a 

small amount of history about that instruction the last time it was executed. If the branch failed the last time it was 

checked, the pipeline can guess that it will do the same thing the next time it is encountered. 

Exactly where to store these bits is not standardized. It could be part of the instruction cache, or it could be a 

specialized lookup table as part of the pipeline management hardware. If bits are stored in cache, history is lost if 

the instruction gets kicked out of cache. The recommended implementation is a branch history table that is 

maintained by the instruction pipeline. 

The branch history table is a cache used by the pipeline to make decisions about branches as they are 

encountered. It holds three fields for each branch 

• Address 

• History bits 

• Target address (where to branch to if branch succeeds) 

 When a branch is encountered for the first time, it is not in the table, so it must be entered and the prediction bits 

initialized. Based on the initial state, a static guess is made about the branch, and the target address is left blank 

since the instruction has not been decoded yet. Once the branch actually executes, the result of the branch is 

updated in the history bits, and the target address is filled in. If the instruction is encountered a second time, a 

better guess about its execution can be made, and its target address is now available in the table. 

Types of Prediction 

• Static Guess (No History Bits):  Always guess that a branch is either taken or not taken. 

• One Bit History:  If the bit is cleared, guess branch not taken. If the bit is set, guess taken. Update the bit 

based on previous execution. 

• Two Bit History:  This requires two incorrect guesses before changing the guess for the next branch. 

 

  



Multiple Pipelines 

Another approach is to use multiple pipelines so that a single pipeline with a conditional branch can be “forked” to 

become two pipelines, one with the next instruction based on a branch fail and the other pipeline based on a 

branch success. The extra pipeline sits unused until a conditional branch is encountered. Then the two versions of 

the pipeline are run in parallel even though only one will prove to be valid. As soon as the result of the branch is 

known, the correct pipeline continues execution, and the duplicate pipeline is invalidated and returns to its backup 

state. If the forked pipeline encounters another conditional branch, some systems will fork both of these pipelines 

to create 4 pipelines until it is known which pipeline contains the valid instructions. 

 


