
COMP 222

Number Systems

Convert from base 2, 8, 16 to base 10

• Each position represents a power of the base, starting at 0 on the right

• Each digit is multiplied by its power of the base

• Terms are summed to get the base 10 value

Examples:

• 101101012 = 1 X 27 + 0 X 26 + 1 X 25 + 1 X 24 + 0 X 23 + 1 X 22 + 0 X 21 + 1 X 20 in base 10

• F3EA716 = 15 X 164 + 3 X 163 + 14 X 162 + 10 X 161 + 7 X 160 in base 10

• 37718 = 3 X 83 + 7 X 82 + 7 X 81 + 1 X 80 in base 10

Converting Between Bases 2, 8, 16

• Since 8 and 16 are powers of 2, converting between bases 8 and 2 or 16 and 2 requires no calculation, just

grouping and regrouping of base 2 bits

Example

1011010011112
 to base 8

Each group of 3 binary digits forms 1 octal digit

Must group starting on the right

Pad with 0s if necessary on left

(101)(101)(001)(111) = 55178

• What about conversion from base 2 to base 16?

o Use groups of 4 bits

• What about conversion between base 8 and base 16?

o First convert from original base to base 2, then convert to final base.

Converting a Long Binary String to Decimal

When a binary number has long unbroken strings of 0s and 1s, there is a trick that might simplify the calculation.

• Simple version of the trick: long string of 1s = next power of 2 – 1.

• Example:

o 11111 = 24 + 23 + 22 + 21 + 20 = 16 + 8 + 4 + 2 + 1 = 31

o Note that the next power of 2 is 25 so value = 25 – 1

More general version of the shortcut

• What if the binary digit contains a mix of strings of 0s and strings of 1s?

• The more general version does computations based on the number of transitions from 0 to 1 or 1 to 0.

• Take the string to be converted and pad with 0s left and right

o 0 11111 0

• Read digits from right to left

o 0 to 1 transition: subtract next power of 2

o 1 to 0 transition: add next power of 2

• Value = (0 to 1 transition) – 20 + (1 to 0 transition) 25 = – 1 + 32 = 31

Exercise

• 1110000111100011

• Brute force solution: 215 + 214 + 213 + 28 + 27 + 26 + 25 + 21 + 20

• Shortcut: 0 1110000111100011 0

Coming Up

• Booth’s Algorithm for Binary Multiplication

• Example of an algorithm commonly implemented in hardware

• Algorithm is easier to understand if you know this shortcut first

Converting From Base 10 to Another Base (2, 8, 16)

Algorithms require more calculation, although they are still simple.

Commonly makes use of integer divide and integer remainder (modulo) ops.

Note the following tricks with div and mod.

In base 10, div and mod can be used to strip away and/or isolate specific digits.

Example:

 15346 / 10 = 1534 (deletes rightmost digit)

 15346 % 10 = 6 (isolates rightmost digit)

 15346 / 100 = 153 (delete rightmost 2 digits)

 15346 % 100 = 46 (isolates rightmost 2 digits)

As a warm up, let’s convert 56197 from base 10 to base 10 (no change) to demo the steps with div and mod:

56197 % 10 = 7 56197 / 10 = 5619

5619 % 10 = 9 5619 / 10 = 561

561 % 10 = 1 561 / 10 = 56

56 % 10 = 6 56 / 10 = 5

5 % 10 = 5 5 / 10 = 0 � done

• At each step we compute one digit of the result starting with the rightmost digit, working our way left.

• To advance the calculation to the next step, we chop off one digit on the right and continue with the

remaining digits.

• When the remaining value reaches 0, the conversion is complete

Now let’s convert it to base 2:

 56197 % 2 = 1 56197 / 2 = 28098

 28098 % 2 = 0 28098 / 2 = 14049

 14049 % 2 = 1 14049 / 2 = 7024

 7024 % 2 = 0 7024 / 2 = 3512

 3512 % 2 = 0 3512 / 2 = 1756

 1756 % 2 = 0 1756 / 2 = 878

 878 % 2 = 0 878 / 2 = 439

 439 % 2 = 1 439 / 2 = 219

 219 % 2 = 1 219 / 2 = 109

 109 % 2 = 1 109 / 2 = 54

 54 % 2 = 0 54 / 2 = 27

 27 % 2 = 1 27 / 2 = 13

 13 % 2 = 1 13 / 2 = 6

 6 % 2 = 0 6 / 2 = 3

 3 % 2 = 1 3 / 2 = 1

 1 % 2 = 1 1 / 2 = 0 � done

Reassemble the digits (topmost is rightmost0 to get 1101101110000101

Check:

215 + 214 + 212 + 211 + 29 + 28 + 27 + 22 + 20

 = 32768 + 16384 + 4096 + 2048 + 512 + 256 + 128 + 2 + 1 = 56197

Exercise: convert 56197 to base 16

There are other conversion algorithms. One alternative is to produce the resulting bits left to right. This algorithm

requires you to first calculate the largest power of the base that is not larger than the number being converted.

