
Data Representation

• At its most basic level, all digital information must reduce to 0s and 1s, which can be discussed as binary,

octal, or hex data.

• There’s no practical limit on how it can be interpreted to represent more complex structured data

Type of Data Representation

Integers 2’s complement

Floating point numbers IEEE 754

Text ASCII, Unicode

Images GIF, JPEG, etc.

Video MPEG, etc.

Audio MP4, etc.

Integers

Suppose we only have 4 bits to work with to represent a single integer. There are 24 = 16 different bit sequences

possible. Here are 4 different ways to interpret what number the possible bits represent (there are others, too).

Bits Unsigned 2’s Comp Excess 7 Excess 8

0000 0 0 -7 -8

0001 1 1 -6 -7

0010 2 2 -5 -6

0011 3 3 -4 -5

0100 4 4 -3 -4

0101 5 5 -2 -3

0110 6 6 -1 -2

0111 7 7 0 -1

1000 8 -8 1 0

1001 9 -7 2 1

1010 10 -6 3 2

1011 11 -5 4 3

1100 12 -4 5 4

1101 13 -3 6 5

1110 14 -2 7 6

1111 15 -1 8 7

There are advantages and disadvantages for each scheme. For integer arithmetic in hardware 2’s complement is the

most commonly implemented. Unsigned integers are used in systems programming languages like C. Excess

notation is used for exponents in the IEEE 754 floating point formats.

2’s Complement Numbers

Some Facts About N-bit 2’s Complement Numbers

• There are 2N patterns or numbers possible in N bits.

o We need to reserve half for positive, half for negative numbers.

o Half of 2N = 2N/2 = 2N-1

o We must reserve one bit pattern for zero, so the number of positive numbers is one less than the

number of negative numbers.

• Most negative number: – 2N-1

• Most positive number: + 2N-1 – 1

• Leftmost bit can be used as a sign bit

o 0: positive

o 1: negative

• Positive overflow and negative overflow occurs when a result is produced that is outside the legal range.

• Illegal value cannot be represented, so a “wrap-around” occurs to a different number.

• Positive Integer Overflow: Most positive number + 1 = Most negative number

• Negative Integer Overflow: Most negative number – 1 = Most positive number

• In most programming environments, overflow is not checked as a runtime error. Think about that for a

moment: your program will compile and run with no errors and yet still generate incorrect results.

Here’s a simple C program that demonstrates positive overflow.

 int x = 2147483647;
 printf("%d\n",x);
 x++;
 printf("%d\n",x);

Output
2147483647
-2147483648

There is no easy way to detect overflow. Programmer must be cognizant of the quirks of finite-precision arithmetic.

Note that in Java, the statement:
 int x = 2147483648;
would be caught as an error by the compiler. Your C compiler may or may not catch it.

IEEE 754

Floating point arithmetic has always been handled separately from integer arithmetic in computer chips. Each type

of calculation has its own unique issues, they can’t be lumped together. In early hardware implementations,

differences in execution performance were severe, calculations used integer arithmetic if at all possible, and floating

point only when necessary. In the meantime, great progress has been made in floating point algorithms and

hardware, the performance penalty still exists but is much smaller.

The history of floating point computer arithmetic has many infamous cases where mistakes were discovered. See for

example the story of an error discovered in 1994 for the FDIV (floating point divide) instruction in the Intel

Pentium, Wikipedia article at https://en.wikipedia.org/wiki/Pentium_FDIV_bug. The Institute of Electrical and

Electronic Engineers (IEEE) is a professional organization for engineers and computer scientists that host a large

number of conferences and publish standards for many technologies. The documents are numbered sequentially and

the document number becomes part of the name of the standard. Some common standards:

• IEEE 754: floating point number representation

• IEEE 802.3: wired Ethernet

• IEEE 802.11: Wi-Fi networks

The IEEE 754 standard for floating point was a major step forward in providing a more solid foundation for

implementing floating point algorithms in hardware. Almost all CPU manufacturers now use it, and this

representation trickles upward into the programming language. When performing floating point arithmetic in C,

C++, Java, C#, almost any language today, it’s a good assumption that the calculation will be performed according

to the rules of IEEE 754.

Data Rep

Single precision

• Sign: bit 31 (0 = positive, 1 = negative)

• Exponent: 8 bits (bits 30-23) base 2 exponent in excess 127 notation (-

• Mantissa: 23 bits (bits 22-0) normalized base 2 fraction

In addition, special representations defined for

• +∞

• –∞

• NaN (not a number)

• +0

• –0

• Denormalized numbers (for delaying the occurrence of underflow)

Normalized Mantissa

A normalized mantissa means that the first bit is assumed to be 1. In base 2, positive numbers are represented on the

range:

 1.00000…2 X 2-126 through 1.11111…2 X 2+127

Similarly on the negative half of the number line:

 -1.0000…2 X 2-126 through -1.1111…2 X 2+127

Since the mantissa always starts with 1, it does not need to be explicitly stored. But you have to remember to add it

in when calculating what a floating point format value really represents. Also note that even though the exponent

range is -127 to +128, the values -127 and +128 are reserved for special values. So for normalized values, the

exponent range is -126 to +127.

Special Values

Special values lead to greatly improved handling of computations that would otherwise result in inconsistent values.

Denormalized Numbers

Denormalized numbers allow the range of very small values to be slightly extended before reaching underflow. For

example, imagine taking the smallest positive normalized number and dividing it by two:

 1.00000 X 2-127 / 2 = ? (-127 is the most negative exponent, answer cannot be 1.0 X 2-128)

Without denormalized numbers, the result would be set to 0, an example of positive underflow. But denormalized

numbers allow the calculation to be continued for another 23 bits:

 1.00000 X 2-127 / 2 = 0.10000 X 2-127

This is a denormalized number because the first digit of the mantissa is no longer 1, but 0. A special exponent value

is used to distinguish between normalized and denormalized values. Since there are 23 bits in the mantissa, even

smaller denormalized numbers can be represented, all the way down to

 0.00000000000000000000001 X 2-127

If you divide the smallest positive denormalized number by 2, the operation will generate positive underflow and the

result will be set to positive 0.

Conversion Example

Let’s do some simple conversion operations that don’t involve special values like infinity, denormalized numbers, or

NaN. Let’s decode the IEEE 754 single precision value 42E00000.

• Expand to binary: 0100 0010 1110 0000 0000 0000 0000 0000

o Sign: 0

o Exponent: 100 0010 1

o Mantissa: 110 0000 0000 0000 0000 0000

• Decode

o Sign: 0 is positive

o Exponent: 1000 0101 = 8516 = 13310; 133 – 127 = 6

o Mantissa: 1100…. = 1 + 2-1 + 2-2 = 1 + 0.5 + 0.25 = 1.75

o Value: 1.75 X 26 = 1.75 X 64 = 112

o Use technique in C described in C notes #4 to confirm

Precision Limitation

• Only some numbers can be represented exactly in a finite number of bits.

• Other numbers will have to be approximated with some round off error.

Overflow

• Number becomes too positive or too negative to be correctly represented.

• IEEE 754 notation includes representations for positive and negative infinity.

Underflow

• Number becomes too close to zero to be distinguishable from zero, and is therefore set to zero.

• Can happen from both the positive or negative side of zero.

• Denormalized numbers are used to avoid underflow in a specific narrow range.

Some Exact Normalized Fractions

Although any floating point number can be approximated in IEEE 754, some numbers have a simpler representation

than others. If you consider that the mantissa represents the summation of a series of negative powers of 2, then

numbers which can be represented by a mantissa with only a few 1s in the leftmost bit positions (2-1, 2-2, 2-3, etc)

will be easier to calculate than numbers whose mantissa requires larger negative powers of 2 (2-20, 2-21, 2-22, etc).

Mantissa Sum Value

10000 …. 1 + 0.5 1.5

01000 …. 1 + 0.25 1.25

00100 …. 1 + 0.125 1.125

00010 …. 1 + 0.0625 1.0625

11000 …. 1 + 0.5 + 0.25 1.75

10100 …. 1 + 0.5 + 0.125 1.625

11100 …. 1 + 0.5 + 0.25 + 0.125 1.875

Combining a mantissa with an exponent that represents a power of 2 gives rise to all possible values that can be

represented exactly.

Example: 1.875 X 25 = 1.875 X 32 = 60

But 61 or 63 may not be represented exactly.

Exercise: what is the binary representation of 60?

Why Excess 127 Notation for Exponent?

The reason that the exponent is represented in excess 127 rather than regular two’s complement is to make it

possible to do a quick comparison of two’s complement numbers without having to denormalize them.

In excess notation, a negative exponent looks like a smaller number than a positive number. This is not true with

two’s complement because of the sign bit: negative numbers have a 1 in the most significant bit, positive numbers

have a 0. With the exponent to the left of the mantissa and using excess 127 notation, two floating point numbers

can be compared as if they were unsigned integers to get a quick answer to what their positions are relative to one

another. Note that the comparison is necessary only if the two numbers have the same sign bit – both are negative or

both are positive. If one number is negative and the other is positive, then the negative number is trivially known to

be less than the positive number.

IEEE 754 Double Precision

64 bit format

Circuits for Arithmetic

The ALU (arithmetic logic unit) of the CPU implements basic arithmetic operations in hardware.

Implementation must be based on a specific data representation

Usually it’s designed to operate on integers in 2’s complement format.

Signed Addition

If we assume 2’s complement as the representation for integers, and we accept the possibility of overflow, then we

can build a circuit to perform addition by starting with the half adder (HA) and full adder (FA). The half adder adds

two bits and generates a sum and a carry. The full adder extends this by adding three bits – 2 data bits and carry-in –

and produces the same two outputs as the half adder – sum and carry-out.

X Y Z Cout

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

If we’re adding two numbers A and B, we compute the sum one column at a time. If we zoom in on one column, this

reduces to defining the logic for:

X + Y = Z + Cout

An example circuit that implements the required logic is:

Figure from: http://www.circuitstoday.com/half-adder-and-full-adder

The full adder (FA) generalizes the half adder by accounting for the carry-in input. The possibilities:

Cin X Y Z Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

• Z is a parity bit for Cin, X, and Y.

• Cout checks that 2 or more of the inputs are 1.

The calculation is

X + Y + Cin = Z + Cout

An example circuit that implements this logic is:

Figure taken from: http://www.circuitstoday.com/half-adder-and-full-adder

Keep in mind that the HA and FA circuit compute only 1 bit of a sum. To compute the sum of two 32-bit two’s

complement numbers, a circuit is required with 32 FA’s hooked together in series, called a ripple carry or carry

propagate adder. There are more complex circuits called carry lookahead adders that have better performance than

ripple carry.

Ripple Carry or Carry Propagate Adder

Figure from: http://www.circuitstoday.com/half-adder-and-full-adder

Carry Lookahead Adder

The problem with the carry propagate adder is that a given bit in the sum cannot be completed until the carry from

the previous bit of the sum is available. In other words, the sums cannot be computed in parallel, one column must

wait for the availability of the carry from the previous column. The greater the number of bits in the sum, the greater

the propagation delay, hence overall slow performance.

One fix is the carry lookahead adder which uses additional complex logic to compute carry bits in parallel. See the

Wikipedia article for more info at: https://en.wikipedia.org/wiki/Carry-lookahead_adder

Multiplication

Addition is most likely implemented with a carry lookahead adder, itself based on the full adder concept plus

additional circuits to calculate carry bits in parallel. To multiply two numbers, we could do repeated addition, but a

faster method is Booth’s Algorithm. But before we study Booth’s, let’s first look at some obvious ways to

implement multiplication that are easier to understand. Note the maximum size of the numbers involved when doing

binary arithmetic. Addition of two n-bit unsigned integers will at most produce a sum that is an n+1 bit integer.

Example:

1111 (15) + 1111 (15) = 11110 (30)

But if we multiply two n-bit unsigned integers, the product will contain up to 2n bits.

 Example:

 1111 (15) X 1100 (12) = 10110100 (180)

The sum-of-partial-products approach that most people use when multiplying with pencil and paper works in binary

just the same way that it does in base 10.

 1111
 X 1100

 0000 0 X 1111 (partial product)
 0000 0 X 1111 (partial product)
 1111 1 X 1111 (partial product)
 1111 1 X 1111 (partial product)

 10110100 sum of partial products = 128+32+16+4 = 180

This approach will work, although it may have uninspiring performance. A bigger problem is how to adapt it to 2’s

complement numbers with both positive and negative inputs. One approach would be to first convert both inputs to

positive numbers, multiply them, then convert to a negative result if needed:

 1 Let Ax be the absolute value of A

 2 Let Bx be the absolute value of B

 3 Use the well-known sum-of-products multiplication algorithm that you might use with pencil and paper

 4 If A and B are the same sign, you’re done.

 5 If A and B are different signs, take the two’s complement of the product.

Example:

 Multiply -15 X 12 = -180

 To represent -15 as a tc integer, we need 5 bits.

 The product of two 5-bit ints will be up to 10 bits.

 As a positive number in 5 bits, 15 = 01111

 In 5 bits 12 = 01100

 01111
 X 01100

 00000 0 X 1111 (partial product)
 00000 0 X 1111 (partial product)
 01111 1 X 1111 (partial product)
 01111 1 X 1111 (partial product)

 0010110100 sum of partial products = 128+32+16+4 = 180

When performing arithmetic on tc integers, it’s important to get the leftmost bit in the result correct: 0 if the result is

positive, 1 if the result is negative. For this version of the algorithm, we convert all arguments to positive numbers to

get a positive product. But then we have to adjust the answer if the result requires a negative number. In this case

one input is positive, one input is negative, so the result must be negative. To negate the result, we convert the 10 bit

result to its two’s complement:

 0010110100 original

 1101001011 1’s complement
+ 0000000001

 1101001100 2’s complement = -180

Check:

 0010110100 +180
+ 1101001100 -180

 0000000000 0

When adding two tc ints, any carry out of the left most column is ignored.

Booth’s Algorithm

This is a more realistic algorithm for implementing 2’s comp integer multiplication efficiently in hardware. To help

understand how it works, keep in mind the following facts about 2’s comp arithmetic:

• Multiplying by 2 is the same as shifting left one position

• Dividing by 2 (integer divide) is the same as shifting right one position. But if the number is tc, then the

new digit shifted in on the left must match the sign of the original number. If the leftmost bit was a 0, then

the new bit should also be a 0. If the leftmost bit was a 1, then the new bit shifted in should also be a 1. This

operation is also known as sign extension.

• Long sequences of 1’s can be represented by a subtraction of a power of 2 on the right end and an addition

of a power of two on the left end.

• Adding two n-bit 2’s comp ints produces a sum that can occupy up to n+1 bits. Multiplying two n-bit ints

produces a product that can occupy up to 2n bits. In other words, the output can be up to twice as long as

the two inputs.

If you look at what you did to multiply using the sum of products, whenever there was a 1 in the second argument,

you added a shifted version of the first argument, and whenever there was a 0 in the second argument, you did

nothing. Booth slightly modifies this approach. As you read the 2nd argument from right to left:

• whenever you see a transition from 0 to 1, you subtract a shifted version of the 1st argument

• whenever you see a transition from 1 to 0, you add a shifted version of the 1st argument.

So Booth’s algorithm does no work when the 2nd argument is in the middle of a long string of 0s or a long string of

1s. Work needs to be done only when transitioning from 0 to 1 or 1 to 0. However, it does require you to do both

addition and subtraction of partial products.

Worked Example

First, let’s use Booth’s algorithm to show how it works in general using a mixture of base 2 and base 10. Then we’ll

do an example that has been optimized for hardware implementation.

Multiply 13 X 460 = 5980

460 has been chosen because its value in binary is 0111001100 with several sequences of multiple 0s and multiple

1s. Let’s convert this string back to base 10 using the shortcut discussed earlier.

0111001100

 0 � 1 transition at position 2

 1 � 0 transition at position 4

 0 � 1 transition at position 6

 1 � 0 transition at position 9

So value = 29 – 26 + 24 – 22 = 512 – 64 + 16 – 4 = 460

Now imagine using this value as the multiplier in binary

 13

X 0111001100

• We initialize the result to 0

• The algorithm proceeds by stepping along the multiplier one bit at a time from right to left.

• Each step we shift the multiplicand one bit to the left (multiply it by two).

• We keep track of the bit transitions in the multiplier and do the following at each step

0 � 1: subtract the multiplicand from the result

1 � 0: add the multiplicand to the result

0 � 0: do nothing

1 � 1: do nothing

Bit Multiplicand Transition Action Result

0 13 X 20 00 -- 0

1 13 X 21 00 -- 0

2 13 X 22 10 Sub Mult 0 – 13 X 22 = –52

3 13 X 23 11 -- –52

4 13 X 24 01 Add Mult –52 + 13 X 24 = –52 + 208 = 156

5 13 X 25 00 -- 156

6 13 X 26 10 Sub Mult 156 – 13 X 26 = 676

7 13 X 27 11 -- –676

8 13 X 28 11 -- –676

9 13 X 29 01 Add Mult –676 + 13 X 29

= 5980

= 13 X (0 – 22 + 24 – 26 + 29)

= 13 X 460

Booth In Binary

Now we can show the algorithm in more detail in binary. Since we will need both the multiplier and its two’s

complement, we’ll maintain both of these values as we shift.

Multiplicand m = … 01101

Multiplicand –m = … 10011

In 2’s complement addition, you must sign extend arguments correctly on the left. When evaluating the result, you

may have to discard the final carry based on the number of binary places.

In each step, the + and – versions of the multiplicand are multiplied by 2 (shifted left).

Bit Multiplicand Tran Action Result

0 01101

10011

00 -- 0

1 011010

100110

00 -- 0

2 0110100

1001100

10 Sub Mult 0000000 (result)

1001100 (-m)

1001100 (-52)

3 01101000

10011000

11 -- 1001100 (-52)

4 011010000

100110000

01 Add Mult 111001100 (result)

011010000 (+m)

010011100 (156)

5 0110100000

1001100000

00 -- 010011100 (156)

6 01101000000

10011000000

10 Sub Mult 00010011100 (result)

10011000000 (-m)

10101011100 (-676)

7 011010000000

100110000000

11 -- 10101011100 (-676)

8 0110100000000

1001100000000

11 -- 10101011100 (-676)

9 01101000000000

10011000000000

01 Add Mult 11110101011100 (result)

01101000000000 (+m)

01011101011100 (5980)

