Flash Memory

- Increasingly used as a substitute for hard drive (SSD vs HDD)
- Physically similar to RAM, but with important differences
- In RAM, reads/writes can apply to any individual byte
- In flash, there are only two operations: program and erase
- Unit of program is the page
- Unit of erase is the block
- Each block has a finite lifetime of PE (program-erase cycles)
- Somewhere (firmware or OS) PE cycles for each block should be maintained
- Some effort to distribute PE cycles across the whole device is recommended
- This process is called wear leveling

Facts about using pages and blocks

- -- Free (erased) pages can be programmed (written)
- -- Modifying a programmed page means programming a different free page and marking the original as **modified (invalid)**
- -- Modified pages must be erased before being programmed again
- -- Individual pages cannot be erased, only complete blocks can be erased

Example Flash Page Mapping

FTL (Flash Translation Layer) maps logical pages to physical pages Since updates require pages to be relocated, FTL makes it easy to remap

Example: Modify logical page 2, currently stored in physical page 5

- Logical page 2 = physical page 5, copied to RAM
- Content modified in RAM
- Modified physical page 5 newly programmed to free page 9
- Physical page 5 marked invalid, can't be reused until entire block is erased
- FTL updated so logical page 2 now points to physical page 9 not 5

Garbage collection

If invalid pages accumulate, memory gradually becomes unusable Modified pages can't be reused (reprogrammed) until the entire block is erased

Garbage collection is occasionally executed to:

- -- find a block with a lot of invalid pages
- -- move any remaining valid pages in that block to a different block (and update FTL mapping)
- -- erase the entire block with the invalid pages
- -- try to move valid pages to a block with a low erase count
- -- increment the erase count for the block

3rd block is almost ready to be erased
But blocks A, B, C are valid
Move A, B, C to free pages in a different block
Remap STL entries to new locations for A, B, C

3rd block can now be erased Also want to minimize erasing a block with too many free pages, this wastes PE cycle on a page that doesn't need to be erased again.

Erase Count: 0

Erase Count: 0

Erase Count: 01

Flash Drives (USB, SSD)

- Uses flash memory at the physical layer
- Provides integrated controller that manages reading/writing blocks/pages
- So the device can be formatted as FAT32, NTFS, ext4, or other.
- But the file system format still communicates with the flash controller
- What about flash-specific file systems like YAFFS?
- These are low-level file systems that duplicate the job of the flash controller
- If your device already has a flash controller, formatting to YAFFS will interfere with the existing controller
- YAFFS is designed for a raw flash device without a controller.