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Abstract—Early detection of carcinoma has the potential to
improve patient care and thereby save the life of a patient. The
use of deep neural nets to automatically detect carcinoma in MRI
images can speed up and help with early diagnosis. However, the
application of deep learning to analyze carcinoma images remains
a challenging task due to inherent complexities present in a MRI
image such as fine-grained features, varying resolution, image
quality, slices, occlusion, and lack of available data to sufficiently
train the model. Recent advancements in CNN architecture, such
as variants of EfficientNet, offer new opportunities to improve
carcinoma detection. We train a compact deep learning model
named EfficientNetV2-M to classify four stages of carcinoma in
images. Results show our carcinoma classification model achieves
an overall high validation accuracy of 97%. The validation
accuracy of four individual stages lies between 95.7% and
99.1%. Our research underscores the delicate balance between
optimizing model performance and mitigating overfitting.

Index Terms—carcinoma detection, DICOM, EfficientNet, deep
learning, medical imaging

I. INTRODUCTION

The integration of machine learning (ML) into medical
practices has significantly advanced diagnostics and patient
care, particularly in the fields of medical imaging and dis-
ease detection. These innovations have enhanced processes,
improved accuracy, and enabled earlier detection of conditions
that were previously challenging to diagnose. However, the
application of ML to medical imaging, particularly in ana-
lyzing carcinoma images, remains a complex task. Factors
such as tumor heterogeneity, variations in imaging protocols,
and inconsistencies in data annotation contribute to these
challenges, limiting the generalization and reliability of ML
models [1].

Deep Learning (DL), a specialized subset of ML, has
demonstrated considerable potential in overcoming these com-
plexities by learning hierarchical feature representations di-
rectly from raw data [2]. Among DL methodologies, Convolu-
tional Neural Networks (CNNs) have emerged as a cornerstone
in image analysis, excelling in tasks such as object detection,
image classification, and segmentation. However, achieving
robust and reliable performance in carcinoma image analysis
remains hindered by issues such as overfitting due to limited
dataset sizes and the inherent complexity of histopathological
images [3].

While existing research has demonstrated the potential of
CNNs for medical image classification, many studies rely
heavily on large, curated datasets that may not reflect the diver-
sity and variability of real-world medical data. This limitation
underscores a critical gap in ensuring the generalizability of
these models across diverse patient populations and imaging
conditions. Moreover, practical considerations, such as compu-
tational efficiency and the interpretability of model predictions,
remain significant barriers to the widespread clinical adoption
of deep learning systems. By employing the EfficientNetV2-
M model [4] and emphasizing advanced augmentation tech-
niques, this study not only seeks to improve classification
performance but also aims to address these broader challenges.
The outcomes of this work could provide valuable insights
for developing scalable and interpretable deep learning solu-
tions that are both clinically applicable and resource-efficient,
setting a foundation for future advancements in automated
carcinoma detection.

Recent advancements in CNN architectures, such as the
EfficientNet [5] series, offer new opportunities to improve
these challenges. These architectures prioritize efficient scaling
and parameter optimization, offering a pathway to achieving
higher diagnostic accuracy while utilizing fewer computational
resources. This study builds on this progress by evaluating the
state-of-the-art EfficientNetV2-M [4] model’s performance in
the context of carcinoma image analysis. The study aims to
address longstanding challenges by leveraging the strengths
of this architecture while proposing enhancements to mitigate
issues like data scarcity and overfitting.

To enhance the model’s effectiveness, this research pri-
oritizes the expansion of dataset size and diversity through
advanced augmentation techniques, allowing the model to
generalize effectively across varied cases. Furthermore, the
implementation of strategies such as regularization techniques
and hyperparameter tuning ensures consistent performance on
unseen data. By advancing prior research, this study seeks
to contribute to the development of reliable and efficient
methodologies for carcinoma detection, with the ultimate goal
of improving patient outcomes and streamlining diagnostic
workflows.

In section II we describe previous research on carci-
noma classification, relevant deep learning methodologies and
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Fig. 1: Sample images from four stages of the Carcinoma
image dataset [6].

its applications to disease classification in medical imag-
ing. In section III Carcinoma image dataset is discussed
including the unique modeling challenges of this dataset.
Section IV presents the pipeline of our methodology that
uses EfficientNetV2-M. Section V discusses the hardware
and software environment, performance metrics, and training
parameters. Section VI discusses the results of deep learning
methodology in terms of training and validation performance,
confusion matrix, and model performance at several different
epochs of training. Section VII provides a final perspective
on success of research, challenges encountered and sets up
directions for future work.

II. RELATED WORK

The classification of medical images has been extensively
explored, with various studies employing convolutional neural
networks (CNNs) for this purpose. Pham et al. [7] proposed
the DICOM Imaging Router, an open deep learning frame-
work that employs CNNs to classify DICOM X-ray images
into anatomical categories, including abdominal, adult chest,
pediatric chest, spine, and others. This approach addresses
the challenge of non-standardized imaging data in clinical
practice, facilitating the deployment of artificial intelligence
solutions for medical image analysis.

In the realm of disease detection, Reshi et al. [8] developed
an efficient CNN model for detecting COVID-19 using X-ray
images. Their model exhibited high accuracy in identifying
COVID-19 cases, highlighting the potential of CNNs in diag-
nosing infectious diseases through radiographic imaging.

Beyond X-rays, CNNs have also been utilized for MRI data
analysis. Helm et al. [9] introduced an automated approach
using a 3D DenseNet-121 model to classify MRI sequences

of the chest, abdomen, and pelvis. Their model achieved an
impressive F1 score of 99.5% in distinguishing sequences
in MRI, demonstrating the effectiveness of deep learning in
managing complex imaging modalities.

Focusing on lung cancer, Binani and Satapathy [10] used
machine learning for the automated classification of patholog-
ical types of lung cancer. Their study aimed to improve diag-
nostic accuracy and efficiency, thereby reducing the workload
of radiologists.

Mandava et al. (2022) [11] explored machine learning
techniques to classify cancer patients based on gene muta-
tions, achieving a 67% accuracy with a stacking classifier
combined with TF-IDF for feature extraction. Their study
highlights the utility of NLP for clinical data preprocessing
and encoding strategies like one-hot encoding. While their
work provided a foundation, our research extends these efforts
by employing [e.g., a deep learning-based approach, larger
datasets, advanced architectures like EfficientNetV2-M, etc.]
to improve classification accuracy and scalability.

Authors in [12] focus on building a compact CNN model
based on mobile net to recognize skin cancer in real time
from images, compact CNN models are useful in deploying in
resource constrained environments such as a mobile phone. Vo
and Verma [13] propose two deep neural nets for classification
of diabetic retinopathy from retina images leveraging fine
grained texture information.

These studies collectively demonstrate the versatility and
efficacy of CNN based models in medical image classification
across various imaging modalities and disease conditions. Our
research builds upon this foundation by focusing on state-
of-the-art CNN models to enhance diagnostic capabilities in
medical imaging.

III. DESCRIPTION OF CARCINOMA DATASET

The Carcinoma image dataset [6] used in this research
centers on the adrenal gland, with a particular emphasis on
Adrenocortical Carcinoma (ACC). ACC is a rare but aggres-
sive malignancy originating from the adrenal cortex, the outer
layer of the adrenal gland, which is responsible for producing
steroid hormones. This type of carcinoma is known for its
diverse clinical manifestations due to the excessive hormone
secretion it often causes, including cortisol, androgens, es-
trogens, or aldosterone. Given its rarity and the challenges
associated with early detection, ACC represents a critical
area for research and advanced diagnostic methodologies.
The dataset is designed to facilitate studies in the accurate
identification, classification, and potential prognostic modeling
of ACC through imaging techniques, thereby contributing to
improved clinical outcomes.

The Carcinoma image dataset [6] contains 18,204 DICOM
(DCM) files, categorized into four stages numbered 1-4, each
one showing advanced stage of carcinoma in that order. The
dataset also includes a CSV manifest file that provides detailed
information about each image, including patient IDs, cancer
stage, and study descriptions. Figure 1 shows sample images
from four stages of the Carcinoma image dataset.



TABLE I: Distribution of Images in the Carcinoma Dataset

Stage 1 Stage 2 Stage 3 Stage 4
1,180 5,456 7,475 4,093

A. DICOM

Digital Imaging and Communications in Medicine (DI-
COM) files are unique because they combine medical images
and metadata within a single .dcm file [14]. To extract
these images, we utilized the Pydicom library. The images
were processed into 16-bit unsigned NumPy [15] integer
arrays. The target categorization was achieved by extracting
the patient’s name from the DICOM file and matching it with
entries in the manifest. From the manifest, the correct target
was assigned and delivered as a tuple.

B. Image Quantity

The dataset displayed an uneven distribution of images
across categories, presenting a challenge in creating an un-
biased model. Table I show the distribution of images per
stage in the Carcinoma dataset. As can be observed, stage
1 has 1,180 images, which is far fewer than in stages 2-
4. To mitigate this issue, we applied sampling weights to
emphasize the underrepresented stage 1 dataset. We calculated
the proportion of images for each category relative to the
total number of images and then took the inverse of these
proportions to assign weights. These inverse proportions were
applied in the weighting function to ensure that each category
contributed more evenly during model training.

IV. RESEARCH METHODOLOGY

This paper aims to measure the effectiveness of deep
learning models — specifically CNN — on medical data
types. To this end, we consider an EfficientNet architecture
known for their robust performance in image classification
tasks. EfficientNetV2-M [4] was chosen due to its high
performance on image classification using ImageNet [16],
which offers a challenging benchmark to test modern deep
learning models. In addition, EfficientNetV2-m has a low
number of parameters: 55 million, which makes it quicker
to train. We chose a pretrained model built using PyTorch
[17], aiming to reduce training time without compromising
accuracy. Using a pretrained model also allows us to more ef-
fectively incrementally train it on a smaller carcinoma dataset.

A. EfficientNet

EfficientNet, the foundational version of the EfficientNet
family, employs a compound scaling method to balance
network depth, width, and resolution effectively [5]. This
approach optimizes model performance while maintaining
parameter efficiency. The base EfficientNet-B0 achieves state-
of-the-art accuracy on the ImageNet dataset while using signif-
icantly fewer parameters compared to contemporary models.

For instance, EfficientNet-B0 contains only 5.3 million
parameters, requiring approximately 0.39 billion FLOPs per

inference [18]. This compactness makes it particularly appeal-
ing for tasks where computational resources are limited. Effi-
cientNet’s scaling principle ensures that larger variants (e.g.,
B1 through B7) maintain a consistent balance of accuracy and
efficiency, offering flexibility depending on the dataset size
and computational constraints.

The EfficientNet series laid the groundwork for subsequent
advancements in neural architecture, leading to the develop-
ment of EfficientNetV2, which retains the scaling principles
but introduces training-aware optimizations for improved per-
formance and speed.

B. EfficientNetV2-M

The selected EfficientNetV2-M model is an advanced con-
volutional neural network (CNN) optimized for high accuracy,
faster training, and enhanced parameter efficiency. Efficient-
NetV2 models leverage a blend of training-aware neural
architecture search and scaling techniques to enhance both
performance and efficiency.

In terms of performance, EfficientNetV2-M achieves a
top-1 accuracy of approximately 85.1% on the ImageNet
dataset. It has around 54 million parameters and requires about
24.7 billion FLOPs (floating-point operations) for inference.
Compared to its predecessor, EfficientNetV1, EfficientNetV2-
M offers faster training times. For instance, EfficientNetV2-
M trains significantly faster than EfficientNetV1-B7 while
achieving comparable or better accuracy.

C. Transfer Learning using Pre-Trained Weights

Transfer learning involves reusing a pre-trained model for a
new problem. By utilizing the general knowledge, a model has
gained from a large dataset like ImageNet, we can refine that
learning through additional training on the Carcinoma image
dataset.

This approach is widely used in deep learning as it allows
deep neural networks to be trained with relatively small
datasets. This is particularly beneficial in medical image clas-
sification, such as with the Carcinoma image dataset, where
labeled data can be scarce to train a large and complex deep
learning model such as EfficientNet-V2-M. Another advantage
of using transfer learning is to save training time particularly
when training large and complex models.

D. System Pipeline for Training and Validation on Carcinoma
Dataset

Figure 2 shows the system pipeline for training and valida-
tion on the Carcinoma image dataset. We preprocess training
images by applying resizing, augmentation, and normalization.
Specifically, dataset imbalance is addressed using a weighted
random sampler from PyTorch, ensuring that minority classes
are adequately represented during training. The images are
resized to a resolution of 512 x 512 pixels to maintain uniform
input dimensions for the model. Augmentation techniques
include random horizontal and vertical flips applied with a
probability of 50%, and random rotations within a range of -30
to +30 degrees to enhance model robustness against positional



Fig. 2: System pipeline for training and validation on Carcinoma image dataset.

variance. Additionally, images are normalized using a mean
value of 0.485 and a standard deviation of 0.229, aligning
with the standard preprocessing practices for EfficientNet-
based architectures.

The training process using EfficientNetV2-M consists of
loading pretrained weights, performing validation at each
epoch, and fine-tuning the model performance based on the
evaluation metric. Finally, the model outputs a classification
score on the validation image data.

V. EXPERIMENT SETUP

A. Software and Hardware Setup
This model was set up and ran on Amazon Sage Maker via

Amazon Web Services. In addition, a S3 Bucket was utilized
to hold all the DICOM images needed. The model ran on a
CPU instance with 16 virtual CPUs and 64 gibibytes (GiB) of
memory [19]. We used Jupyter Notebook [20] as our IDE,
the deep learning framework used was PyTorch version 2.2.2
and TorchVision 0.17.2. We use Pandas [21] and NumPy [15]
for handling the data, and Matplotlib [22] to plot the results.

B. Metrics
1) Cross-Entropy Loss: Cross-Entropy loss was used as the

main loss function to measure the discrepancy between the
predicted probability distribution and the actual class labels.
We define it as below:

l(x, y) = − log

(
expx[y]∑c
j=1 expx[j]

)
where x is the input tensor (logits) of size C (number of
classes), y is the target class index, an integer in the range
[0, C−1], and x[y] denotes the logit corresponding to the target
class. This metric guided the optimization process during
training.

2) Training and Validation Process: During the training
process, both accuracy and loss were tracked for the training
and validation splits. Accuracy was determined as the percent-
age of correctly classified images, while loss was calculated
using the Cross-Entropy loss function. Tracking these metrics
across epochs provided insights into model convergence and
overfitting. Validation metrics, in particular, were used to
evaluate generalization performance.

3) Confusion Matrix: To further assess the model’s clas-
sification performance, a confusion matrix was created for
the validation set. This matrix illustrates the number of true
positive, true negative, false positive, and false negative pre-
dictions, providing a comprehensive evaluation of performance
for each class. This analysis also revealed potential biases in
the model toward specific classes and informed adjustments
to the training process, if necessary.

C. Training Setup

1) Optimizer - Adam: The Adam optimizer was chosen
since it is able to adapt the learning rate and handles the
sparse gradients effectively. It adapts the learning rate based
on individual parameters and maintains a running average of
both the gradients and their squared values. The update rule
for parameter θt at iteration t is:

θt = θt−1 −
η√

v̂t + ϵ
· m̂t

where m̂t and v̂t are estimates of the first and second moment
respectively, which are corrected for bias. For numerical stabil-
ity a small constant ϵ is used. The learning rate is represented
as η. This method combines the advantages of both AdaGrad
and RMSProp algorithms, providing an effective optimization
strategy for a variety of real world problems [23].

2) Learning Rate Scheduler - Cyclical Learning Rate
(CyclicLR): To enhance training efficiency and potentially
escape local minima, a cyclical learning rate (CLR) policy
was implemented using PyTorch’s CyclicLR scheduler. The
learning rate cyclically varies between a lower boundary (base
learning rate) and an upper boundary (maximum learning rate)
within each cycle. Values of the parameters are: Base learning
rate: 0.01. Maximum learning rate: 0.001. The CyclicLR
scheduler adjusts the learning rate after each batch, following
a triangular policy by default. This approach can lead to
improved convergence rates and model performance.

When combining the Adam optimizer with the CyclicLR
scheduler, it’s important to set the cycle momentum pa-
rameter to False in the CyclicLR scheduler. This is because
the Adam optimizer does not utilize the momentum parameter
in the same way as optimizers like stochastic gradient descent



Fig. 3: Training and Validation accuracy at various epochs of
EfficientNetV2-M on the Carcinoma image dataset.

(SGD). Failing to set cycle momentum=False may result
in errors during training.

VI. RESULTS AND DISCUSSION

A. Training and Validation Performance Across Epochs

The data was divided into 80%-20% splits respectively for
training and validation. We trained the model over 50 epochs.
The model accuracy at different epochs of EfficientNetV2-M
are shown in Figure 3, while model loss at various epochs
on the Carcinoma image dataset are displayed in Figure 4.
As shown in both figures, the validation performance has
converged within the 50 epochs. The training and validation
performance stays close to each other from epoch 20 onwards
highlighting the fact that parameter tuning, dropout, regular-
ization, and data preprocessing have helped remove overfitting.
A mostly smooth curve across various epochs highlights the
consistency in the learning process. In Table II, we show
the training and validation accuracy and loss at five different
epochs of importance. We decided to choose model weights at
epoch 49 since it has the minimal difference between training
and validation performance in terms of loss and accuracy and

Fig. 4: Training and Validation loss at various epochs of
EfficientNetV2-M on the Carcinoma image dataset.

TABLE II: Training and Validation Accuracy and Loss at Five
different Epochs of Importance using EfficientNetV2-M on the
Carcinoma Image Dataset

Epoch Training Loss Val. Loss Training Acc. Val. Acc.
26 0.15870 0.15609 0.94227 0.94285
31 0.13958 0.13615 0.94846 0.94858
39 0.11495 0.11841 0.95669 0.95682
46 0.10014 0.08945 0.96457 0.96548
49 0.09607 0.07847 0.96701 0.97029

has the highest accuracy. Therefore, our research underscores
the delicate balance between optimizing model performance
and mitigating overfitting.

B. Validation Performance Across Four Stages

The Figure 5 shows the confusion matrix at epoch 49. As
can be observed, stages 1 and 4 have close to zero confusion
with other stages in terms of classification performance of
the model. There is a high accurate classification of images
in stages 2 and 3 with very minimal confusion with other
stages. The validation accuracy of each of the four stages
of carcinoma at epoch 49 is shown in Table III. Results
show our carcinoma classification model achieves an overall
high validation accuracy of 97%. The validation accuracy of
four individual stages lie between 95.7% and 99.1%, which is
within a narrow range of 3.4% and highlights the consistency
of the model performance across four stages of carcinoma.

Additionally, correctly classified carcinoma images for three
distinct stages further illustrate the model’s capacity to ac-
curately differentiate between varying levels of progression.
Figure 6a corresponds to Stage 1, where the model precisely
identifies early-stage carcinoma with minimal structural ab-
normalities. Similarly, Figure 6b and Figure 6c show accurate
classifications for Stage 3 and Stage 4, respectively, capturing
advanced morphological changes characteristic of later stages.

VII. CONCLUSION AND FUTURE WORK

Our study underscores the delicate balance between op-
timizing model performance and mitigating overfitting. De-
spite leveraging EfficientNetV2-M pretrained on the ImageNet

Fig. 5: Confusion matrix at epoch 49.



TABLE III: Validation Accuracy of Each of the Four Carci-
noma Stages at Epoch 49

Carcinoma
Stage Stage 1 Stage 2 Stage 3 Stage 4

Validation
Accuracy 0.991228 0.962799 0.95661 0.998762

(a) Stage 1 (b) Stage 3

(c) Stage 4

Fig. 6: Example images of correctly classified stage of carci-
noma.

dataset, our model necessitated a diverse array of images to
achieve robust generalization. This highlights the importance
of extensive and varied medical image datasets in training deep
neural nets for classification.

The accuracy of our model could be further enhanced by
increasing the volume of patient data, which would provide
a broader spectrum of examples for the model to learn
from. Additionally, exploring alternative architectures, such
as transformer based models, presents a promising avenue.
Transformers have demonstrated significant success in cap-
turing long-range dependencies and contextual information in
imaging tasks. Integrating these models to medical imaging
could potentially improve classification performance.

Another prospective direction involves developing low-
latency models to facilitate real-time diagnostic applications,
thereby enhancing clinical workflow efficiency. Moreover,
adapting our model for object detection tasks could enable
the precise localization and identification of carcinoma tumors
within images, providing detailed spatial information crucial
for treatment planning. While our current model offers a solid
foundation, future work should focus on expanding the dataset,
experimenting with advanced architectures like transformers,
optimizing for low-latency scenarios, and extending capa-
bilities to include object detection for comprehensive tumor
analysis.
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