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Abstract—Early detection and classification of pomegranate 
diseases are crucial for maximizing crop yield and quality. This 
research study attempts to address the challenge of accurately 
identifying and classifying pomegranate diseases by leveraging 
advanced machine learning models. For this task, we selected 
three vision models with different architecture, complexity, and 
disk size requirements. The selected models where: DaViT-Base, a 
vision transformer model; EfficientNetV2M, a convolutional 
neural network; and MobileOne-S4, a lightweight model 
optimized for mobile devices. The methodology used involved 
training these models on a dataset of annotated pomegranate 
images, which was split into four disease categories and one 
healthy category. This was followed by a thorough evaluation of 
each model to determine the accuracy and potential deployment 
on mobile devices or drones. All three models showed exceptional 
results: DaViT-Base – 99.28%, EfficientNetV2M – 99.54%, 
MobileOne-S4 – 99.15%. The results show that lightweight models 
such as the MobileOne-S4 are viable options for the task of 
pomegranate disease classification, and implementing similar 
models has the potential to significantly enhance agricultural 
disease management. Future work will focus on exploring real-
time classification. 

Keywords—Pomegranate Disease Classification, Machine 
Learning, Deep Learning, Vision Models, Image Classification, 
DaViT-Base, EfficientNetV2M, MobileOne-S4 

I. INTRODUCTION  
The production of pomegranates faces many challenges 

including various diseases that affect both yield and quality in 
agriculture. Early detection of these diseases can reduce the 
impact they have on production. Traditional techniques used 
are often inefficient and labor intensive. Using machine 
learning models can provide an efficient, accurate, and scalable 
solution for identifying and classifying these diseases. 

While there has been some success using Convolutional 
Neural Networks for this type of task, challenges remain. 
Processing images taken under various conditions with 
different illumination, occlusion, and with complex 
backgrounds is a significant hurdle to overcome. Additionally, 
distinguishing between diseases with similar symptoms is 
another challenge faced by these models. 

Our research explores the use of various machine learning 
models, each with different architecture and complexity, for the 
pomegranate disease classification task. It provides a 
comprehensive analysis of their performance focusing not only 
on accuracy metrics, but also on the effort and time needed to 
achieve the results. The methodologies and results presented in 
this paper provide a foundation for future researchers to apply 
machine learning models for disease classification tasks in 
other fruits or agriculture products. Additionally, the paper 
discusses the feasibility of training and deploying a model on a 
portable device to detect diseases in pomegranates. 

While we were able to achieve a high level of accuracy and 
excellent results on all metrics across all models, the time 
needed to train each model varied significantly. We chose 3 
different model architetures. The DaViT-Base model, a 
transformer model, achieved a validation accuracy of 99.28%, 
and took 6 hours and 9 minutes to converge. The 
EfficientNetV2-M model proved to be the best performing 
model, reaching a validation accuracy of 99.54% and taking a 
total of 3 hours and 4 minutes to converge. Lastly, the 
MobileOne-S4 model, a lightweight model designed for low 
latency, reached a validation accuracy of 99.15% and took 3 
hours and 22 minutes to converge. These results show that 
lightweight models are a feasible option for detecting and 
classifying pomegranate diseases. 

The paper follows the following structure: Section II 
reviews related work on agricultural disease detection and 
classification using machine learning. Section III offers a 
thorough description of the image dataset used, the distribution 
of images per class, and the challenges the dataset presents. 
Section IV explains the methodology used in this research 
including a detailed review of each model selected. In Section 
V, we outline the setup used in the experiments. Finally, 
Section VI discusses the results from the experiments, while 
Section VII presents the conclusion and suggestions for future 
work. 

II. RELATED WORK 
Our study builds upon existing research on pomegranate 

diseases, aiming to address specific limitations identified in 
previous studies. By introducing new models that utilize state-
of-the-art image classification technologies, we anticipate 



achieving higher accuracy, including reduced latency, in 
diagnosing these diseases. This advancement promises to 

enhance the practical application, through effectiveness, of 
pomegranate disease detection strategies. 

The following articles conclude the need for a model 
occupying a Convolutional Neural Network. The “Diagnosis of 
Pomegranate Plant Diseases Using Neural Network” study 
utilizes a Multilayer Perceptron (MLP) neural network for 
classification. Various techniques are applied to prepare the 
data for the MLP, including K-mean clustering and Gray-level 
co-occurrence matrix. Six different conditions in pomegranates 
are analyzed, and their resulting accuracies are as follows: 
Healthy Fruit & Healthy Leaves - 100%, Leaf Spot - 87.5%, 
Bacterial Blight - 85.71%, Fruit Spot & Fruit Rot - 83.33%. [1] 

The authors of “Automated Detection and Classification of 
Pomegranate Diseases Using CNN and Random Forest” use a 
Convolutional Neural Network as a feature extraction tool 
rather than a classification. A random forest algorithm is used 
for the final classification, yielding the following results on the 
five different diseases: Aspergillus Fruit Rot - 98%, Bacterial 
Blight - 98%, Anthracnose - 97%, Cercospora - 97% and 
Psuedocercospora Punicae - 97%. This averages around 97.4%. 
However, there is room for further improvement. [2] 

The publication “Recognition and Classification of 
Pomegranate Leaves Diseases by Image Processing and 
Machine Learning Techniques” classifies the different types of 

Pomegranate leaf diseases using a multi-class SVM. The 
images are transformed to improve color contrast and then are 
pattern-matched using K-means. The multi-class SVM is then 
used to classify the images. The average accuracy of the model 
was 98.07%. [3] 

In the paper “A Deep Learning Approach for Multiclass 
Orange Disease Classification,” Orange disease classification 
uses SVM, K-Nearest Neighbor, Random Forest, and a 
Convolutional Neural Network (MobileNetV2). The analysis of 
these different models on the same dataset showed an 
outperformance by the MobileNetV2, highlighting the 
significant improvement that modern CNN models have. [4] 

“Apple Leaf Disease Detection: Machine Learning & Deep 
Learning Techniques” analyzes four apple leaf diseases using 
various models. SVM, Random Forest, Naive Bayes, K-Nearest 
Neighbor, and Decision Tree are the machine learning models 
used, with Sequential and VGG-16 being the deep learning 
models utilized. The paper concludes that the CNN model 
VGG-16 is the most accurate of the 7, with an accuracy of 
97.23% with a pre-trained model. The model is pre-trained on 
ImageNet. The paper states that the model architecture is an 
excellent tool for agricultural applications, with computational 
demands as a drawback to its application. [5] 

In the paper “Performance Analysis of Fruit Quality 
Detection using Computer Vision and Object Detection,” a 
model is trained to identify fruits and their quality. The Yolo7 
architecture is used to classify fruits such as Apples, Lemons, 
Oranges, and Pomegranates, InceptionV3 is used to detect the 
quality of the fruit, and Ripeness is determined by different 
architectures: Inceptionv3, ResNet50, and VGG19. [6] 

 In “Fast Object Detection of the Quadcopter Drone using 
Deep Learning,” the idea of a quadcopter drone with object 
detection capabilities is explored. The model integrates 
MobileNet and Single Shot Detector to localize and detect 
objects. The paper explores implementing an object detection 
model, which builds on an image classification model. The 
drone ran an average of 14 FPS while detecting objects. [7] 

 Our research differs from these other works as it utilizes 
three different neural network models, one of which runs at a 
reduced latency, optimal for drone implementation. Due to 
advancements in image detection technologies, our research 
contains higher accuracy than these related works. These new 
architectures promote efficiency in training time. However, this 
comes with the utilization of higher hardware. 

III. DATASET DESCRIPTION 
The Pomegranate Fruit Diseases Dataset for Deep Learning 

Models dataset [8] was selected for this research. This dataset 
consists of high-resolution color images of pomegranate fruits 
that exhibit one of four distinct diseases: Bacterial blight, 
Anthracnose, Cercospora fruit spot, Alternaria fruit spot, or 
have been deemed healthy. These diseases are all prevalent in 
the regions of Ballari, Bangalore, and Bagalkote among others 
in India, which is a leading global producer of pomegranates. 

Bacterial Blight 

 
Anthracnose 

 
Cercospora Fruit Spot 
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Figure 1: Sample images from the Pomegranate Fruit Disease Dataset for 
Deep Learning Models 
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The images were captured in two specific time periods: July 
and October 2023. They are all in JPEG format and have 
dimensions of 3,120 by 3,120 pixels. The dataset is organized 
into five directories corresponding to each of the disease or 
healthy categories. There is some imbalance in the dataset with 
the number of images in each category ranging from 631 – 
1,450. The overview of the distribution of the dataset is shown 
in Table I. Figure 1 shows sample images from five classes. 

Working with the selected image dataset does present some 
challenges. Aside from the imbalance in the dataset, each image 
was taken under different conditions. Various camera angles 
were used when capturing the images. There is partial occlusion 
in the images, and each image has different illumination 
conditions. Additionally, all images have a complex 
background with leaves, branches, fingers, dirt, other debris, 
and a timestamp of when the image was captured.  

These challenges add to the difficulty and complexity of 
training a machine learning model for this task. Feature 
extraction becomes more challenging. Overfitting may start to 
appear as the model learns to recognize features that are not 
indicative of the disease class. Learning to address these 
challenges can make the model more complex, which can 
ultimately lead to longer training times. 

IV. RESEARCH METHODOLOGY 
The purpose of this research is to evaluate the effectiveness 

of using pre-trained models to accurately classify diseases in 
pomegranates. Each of the models selected for this research was 
trained and benchmarked using the ImageNet-21K dataset [9]. 
By using pre-trained models, we hope to leverage transfer 
learning to achieve high accuracy while using a smaller dataset. 
Additionally, the research explores the feasibility of using 
lightweight models, those designed for low latency and 
portability, which could be used on drones or other portable 
devices for this type of task. By taking this approach, we hope 
to address some of the common challenges in agricultural 
disease classification such as having a small dataset, reducing 
training time, and making models deployable in portable 
devices. Figure 2 shows system pipeline for classification.  

To accomplish these objectives, three distinct models were 
chosen, training, and evaluated using a variety of metrics: 
DaViT-Base [10] EfficientNetV2-M [11], and MobileOne S4 

[12]. The models were selected based on their proven 
performance on the ImageNet dataset [9]. Each of these models 
has a unique architecture, different complexity, and vary in the 
amount of disk space needed. These differences allow us to 
effectively compare the models with one another. 

A. DaViT-Base Model 
The Dual Attention Vision Transformer (DaViT) model is 

a transformer model that uses two self-attention mechanisms: 
Spatial Window Multihead Attention (SWM-SA) and Channel 
Group Self-Attention (CG-SA) [10]. The two attention 
mechanisms complement each other. The SWM-SA 
mechanism focuses on obtaining fine-grained local features 
while CG-SA finds global representations [10]. This design 
allows the model to be computationally efficient and effective.  

SWM-SA can be represented mathematically using the 
following equation: 

𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑄𝑄,𝐾𝐾,𝑉𝑉) = {𝐴𝐴�𝑄𝑄𝑖𝑖,𝐾𝐾𝑖𝑖,𝑉𝑉𝑖𝑖�}𝑖𝑖=0
𝑁𝑁𝑤𝑤  

         (1) 

Here Q, K, and V represent the query, key, and value 
matrices, and dk is the dimension of key vectors. Nw represents 
the number of windows. 

Similarly, we can use the following to represent CG-SA: 

 𝐴𝐴𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑄𝑄𝑔𝑔𝐾𝐾𝑔𝑔
𝑇𝑇

�𝑑𝑑𝑘𝑘𝑘𝑘
�𝑉𝑉𝑔𝑔 

         (2) 

where Qg, Kg, and Vg represent the query, key, and value 
matrices, and dkg is the dimension of key vectors in grouped 
context. 

II. COMPARATIVE ANALYSIS OF DAVIT-BASE, EFFICIENTNETV2-
M, AND MOBILEONE-S4 MODELS: COMPUTATIONAL EFFICIENCY 
AND PERFORMANCE ON IMAGENET [9] 

I. DISTRIBUTION OF IMAGES ACROSS EACH DISEASE CATEGORY 
      

 
Figure 2: System Pipeline for the recognition of pomegranate diseases 

Model FLOP Top-1 Acc 
DaViT-Base [10] 15.5 B 84.6% 
EfficientNetV2-M [11] 24 B 85.1% 
MobileOne-S4 [12] 2.98 B 79.4% 
 



The DaViT family of models has many variations. 
However, we have selected the DaViT-Base model for our 
research. This model has 87.95 million parameters, which 
makes it relatively compact, and 15.5 billion floating-point 
operations (FLOPS) [10], which highlights its computational 
efficiency. Additionally, the model was able to achieve a top-1 
accuracy of 84.6% on the ImageNet dataset. These 
characteristics enable it to be deployed in a variety of hardware 
platforms, including those with limited computational 
capacities such as phones or other portable devices. 

B. EfficientNetV2-M Model 
The EffcientNetV2-M model is a convolutional neural 

network that is known for its good performance on image 
classification tasks [11]. We selected the “M” or medium 
variant, since it offers a good balance of model size, speed, and 
accuracy. EfficientNetV2 models builds upon its predecessor. 
Inverted Residual Blocks, often called MBConv, and fused-
MBConv layers [13] are used to enhance the model’s efficiency 
and make it more computationally efficient. Additionally, the 
model limits the size of the images used to 480 by 480. This 
helps to address the memory overhead that comes with 
processing larger images as well as reduces the computation 
time. 

The EfficientNetV2-M model was trained and 
benchmarked on the ImageNet-21K dataset. It reached a top-1 
accuracy rate of 85.1%, which highlights its ability to extract 
visual features. The model was able to achieve this level of 
accuracy with only 52.86 million parameters and 24 billion 
FLOPs. The low parameter count and FLOPs make this model 
a viable option to deploy on a variety of devices including those 
with limited computational capabilities. 

C. MobileOne-S4 Model 
MobileOne prioritizes lowering the latency cost of deep-

learning models to develop an efficient architecture for mobile 
devices. We’ve selected “S4”, which is the largest MobileOne 
model with 12.91 million parameters, 2.978 billion FLOPs, and 
a latency of 1.86ms. On a GPU, MobileOne-S4 was able to 
achieve a latency of 0.95 milliseconds. MobileOne-S4 achieves 
this by choosing a simpler activation function (ReLU), which 
reduces latency at low loss of accuracy, and Architectural 
Blocks with no branches at inference, which reduce the amount 
of parallelism the model undergoes, thus reducing latency. 

In ImageNet-1k benchmarks, MobileOne-S4 reached an 
accuracy of 79.4%. All MobileOne models were trained for 300 
epochs with a 256-batch size. Since MobileOne has reduced 
complexity, it requires less regularization due to a reduced risk 
of overfitting. MobileOne’s low latency and relatively high 
accuracy make the model optimal for mobile devices, however, 
is limited by the reduced complexity, as larger applications will 
not yield high accuracy rates. 

By selecting three distinct models with different 
architectures and sizes, we aim to assess the trade-off between 
computation time and resources and performance. This will 
help guide future research and selections of models used in real-
world deployment. 

V. EXPERIMENT SETUP 
The training of all three models selected was performed 

under the same conditions utilizing the same hardware and 
software components. Additionally, similar modifications were 
made to each model to enable them to make predictions on the 
dataset, and each model was evaluated using the same 
performance metrics. 

A. Hardware and Software 
All experiments were conducted using a personal laptop 

computer connected to an eGPU to assist with processing the 
images during training and evaluation. A Dell XPS 15 equipped 
with a 12th Generation Intel Core i9-12900HK processor and 
16 GB of RAM was used. The GPU was a NVIDIA Titan XP 
with 12 GB of memory. 

We used a Jupyter Notebook environment for all 
preprocessing, training, and evaluation tasks. The models were 
implemented using PyTorch version 2.1.2 [14] and were 
acquired using the timm [15] and torchvision [16] libraries. In 
addition, CUDA version 12.1 was utilized to leverage the 
NVIDIA Titan GPU. Additional libraries such as scikit-learn 
[17] and seaborn [18] were used to assist in calculating 
performance metrics and visualizing the training progress and 
results. 

B. Metrics 
We employed a variety of evaluation metrics and 

visualization tools to measure the overall performance of the 
models while accounting for the class imbalance. 

1) Cross-Entropy Loss 
Cross-Entropy Loss was used as the primary criterion for 

optimizing the models. This loss function is suitable and widely 
used for multi-class classification tasks. When making 
predictions, Cross-Entropy returns a distribution of 
probabilities over all classes. Then, the difference between the 
predicted probabilities and the actual target values is calculated. 
By minimizing this value, the aim is to improve the model’s 
ability to make accurate predictions. The formula for the cross-
entropy loss for a single observation can be represented by the 
formula: 

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −∑ 𝑝𝑝(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞(𝑥𝑥)𝑥𝑥                (3) 

 Here, p(x) is the actual probability of class x, q(x) is the 
predicted probability distribution of class x, H(p,q) is the cross-
entropy between the true distribution p and the predicted 
distribution q with the sum being over all classes. 

2) Performance Metrics 

III. TRAINING AND VALIDATION METRICS AT SELECTED EPOCH 
FOR THE DAVIT-BASE, EFFICIENTNETV2-M AND 
MOBILEONE-S4 MODELS 

Model Epoch Train Acc. Val. Acc. Train Loss Val. Loss 
DaViT-Base 28 99.97 99.28 0.001 0.031 

EfficientNetV2-M 27 99.92 99.54 0.003 0.025 
MobileOne-S4 31 99.55 99.15 0.013 0.037 

 



 A variety of performance metrics were used to evaluate the 
performance of the models. This included accuracy: a general 
measurement of correctness, precision: the correctness of 
positive predictions, recall: measures the ability to detect 
positive instances of each class, and F1 score: a balance 
between precision and recall, which is useful in situations with 
uneven class distributions. While accuracy was measured for 
both training and validation sets, precision, recall, and F1 
values were only taken from the validation set as our aim was 
to evaluate the model’s generalization on unseen data.  

3) Confusion Matrix 
 To visualize the model’s performance across all classes, a 
confusion matrix was created. The confusion matrix makes it 
possible to identify classes that are often confused with one 
another. Additionally, to address the imbalance of the dataset, 
a weighted confusion matrix was also created. This weighted 
confusion matrix allowed us to consider the frequency of each 
class in the dataset, which helped us to evaluate the model’s 
performance more accurately.  

C. Preprocessing 
Some preprocessing was performed on the dataset to 

prepare it for training. The dataset was split into training and 
validation sets using a 70/30 split, which is common practice. 
This ensured that most of the data was used for training while 
retaining a sizeable amount for validation. All images were 
resized to 224 by 224 pixels and were normalized using 
ImageNet’s mean and standard deviation values of (0.485, 
0.456, 0.406) and (0.229, 0.224, 0.225) respectively. An 
augmentation factor for 0.05 was used to synthesize a small but 
significant amount of data to add some variety to the training 
samples. Additional augmentations were performed on the 
training samples including a random rotation of ± 20 degrees, a 
random horizontal rotation, and color brightness, contrast, and 
saturation were all varied by up to 20 percent. By performing 
these augmentations, we hope to enhance the models’ ability to 
learn from the training data and generalize enabling it to make 
more accurate predictions. 

D. Model Configuration 
An instance of each model was created using the timm [15] 

and torchvision libraries [15]. The models were initialized 
using the pretrained weights provided by the libraries. This 
allows us to leverage transfer learning to improve the models ’
performance.  

In our experiments, we elected to keep the standard 
configuration of model-specific parameters for each model. For 
the DaViT-Base model, this included keeping the predefined 
settings for the attention mechanisms, dimensions of each layer, 
the GELU activation function, and dropout, which was set to 
0.0. Similarly, the EfficientNetV2-M model was left with its 
original scaling, SiLU activation function, and dropout rate of 
0.3 per dropout layer. The MobileOne-S4 model was also used 
with its default settings and used the ReLU activation function. 
The rest of the parameters were left to the default values as set 
in the timm [15] and torchvision [16] libraries with the only 
exception being the modification of the classifier layer. To meet 
the requirements for the task, the classifier layer of each model 

was modified to be a linear layer with five output features, one 
for each of the five distinct classes in the dataset. 

E. Training Parameters 
A specific set of training parameters were used to ensure the 

results from each model can be accurately compared with each 
other. The parameters consisted of the batch size used, the 
number of epochs, the learning rate, the optimizer selected, and 
the scheduler that was used. 

All models were trained using a batch size of 20 images for 
40 or 50 epochs. This selection was made to maximize the 
efficiency of the hardware use, maintain an acceptable level of 
randomness in the gradient decent process, and provide the 
models with enough exposure to the training data for adequate 
learning and convergence. 

Adam was selected as the optimizer for its computational 
efficiency, small memory requirements, and usability for non-
convex optimization problems [19]. A learning rate of 0.001 
was chosen as it is commonly used with the Adam optimizer 
for a wide range of tasks. Additionally, the ReduceLROnPlateu 
scheduler was used. This scheduler, accessed through the torch 

 
Figure 4: DaViT-Base Confusion Matrix at Epoch 28 

 
Figure 3: DaViT-Base Model Training and Validation Accuracy and Loss 
Graph 



library, dynamically adjusts the learning rate based on the 
validation loss allowing the weights to be adjusted more 
precisely.  

VI. RESULTS AND DISCUSSION 

 
While the architecture, complexity, and computational 

efficiency of each model is distinct, the results obtained from 
the experiments show comparable performance. The 
performance of each model is evaluated at different epochs. 
These epochs were specifically chosen based on the 
performance of the models, indication of convergence, and 
signs of overfitting. This approach allows us to assess the 
capabilities of each model under optimal conditions. Table III 
compares the training and validation metrics for each model at 
the selected epoch. 

A. DaViT-Base Model Performance 
 
 The DaViT-Base model is the more complex of the three 
models selected. Figure 3 shows its accuracy and loss metrics 
throughout the training phase, which lasted 40 epochs. Based 
on these metrics, we determined that the model converged at 
Epoch 28. At this epoch, the model showed the highest 
validation accuracy and maintained a minimal gap between the 

training and validation metrics. At Epoch 28, the model 
obtained an accuracy of 99.28% on the validation dataset. The 
graph in Figure 3 shows a stable decrease in training loss while 
the validation loss stabilizes. This indicates that the model was 
able to learn effectively and avoided overtraining. The total 
training time up to this epoch was 6 hours and 9 minutes.  

 The confusion matrix for the DaViT-Base model at Epoch 
28 is shown in Figure 4. The matrix validates the model’s 
performance across all five classifications of diseases. 
Precision, recall, and F1 scores for each disease classification 
are provided in Table V. All metrics demonstrate the model 

performed exceptionally across all classes with 100% accuracy, 
precision, recall, and F1 score on the Healthy class.   

B. EfficientNetV2-M Model Performance 
 The EfficinetNetV2-M model went through a training phase 
that lasted 50 epochs. The accuracy and loss metric graphs are 
shown in Figure 5. From the results, we determined that the 
model converged at Epoch 27. Here, the graph shows that the 
validation loss stabilizes. At this epoch, the model obtained a 

IV. PRECISION, RECALL, AND F1 SCORE FOR EACH DISEASE CLASS 
OBTAINED BY DAVIT-BASE MODEL AT EPOCH 28 

V. PRECISION, RECALL, AND F1 SCORE FOR EACH DISEASE CLASS 
OBTAINED BY THE EFFICIENTNETV2-M MODEL 

TABLE VII.  PRECISION, RECALL, AND F1 SCORE FOR EACH DISEASE 
 CLASS OBTAINED BY THE MOBILEONE-S4 MODEL 

 

Figure 6: EfficientNetV2-M Confusion Matrix at Epoch 27 

 
Figure 5: EfficientNetV2-M Model Training and Validation Accuracy and Loss 
Graph 

Disease Validation 
Accuracy Precision Recall F1 Score 

Alternaria 0.9919 0.9839 0.9919 0.9879 
Anthracnose 0.9944 0.9916 0.9944 0.9930 

Bacterial Blight 0.9809 0.9935 0.9809 0.9872 
Cercospora 0.9946 0.9892 0.9946 0.9919 

Healthy 1.0000 1.0000 1.000 1.0000 
 

Disease Validation 
Accuracy Precision Recall F1 Score 

Alternaria 0.9919 0.9839 0.9919 0.9879 
Anthracnose 0.9944 0.9916 0.9944 0.9930 

Bacterial Blight 0.9809 0.9935 0.9809 0.9872 
Cercospora 0.9946 0.9892 0.9946 0.9919 

Healthy 1.0000 1.0000 1.0000 1.0000 
 

Disease Validation 
Accuracy Precision Recall F1 Score 

Alternaria 0.9847 0.9923 0.9847 0.9885 
Anthracnose 1.0000 0.9886 1.0000 0.9943 

Bacterial Blight 0.9865 0.9832 0.9865 0.9848 
Cercospora 0.9843 1.0000 0.9843 0.9921 

Healthy 0.9954 0.9954 0.9954 0.9954 
 



validation accuracy of 99.54% and held a minimal gap between 
training and validation metrics. The total training time up to this 
epoch was 3 hours and 4 minutes. 

Figure 6 shows the confusion matrix at Epoch 27 for the 
EfficientNetV2-M model while Table VI shows the precision, 
recall, and F1 score metrics. These results show that the model 
performed remarkably well across all classes with 100% 
accuracy, precision, recall, and F1 score on the Healthy class.     

C. MobileOne-S4 Model Performance 
The MobileOne-S4 was trained for 50 epochs. The training 

and validation accuracy and loss metrics graphs are shown in 
Figure 7. From the results, we determined that the model 
converged at Epoch 31. Here the model obtained a validation 
accuracy of 99.15% and held a minimal gap between training 
and validation metrics. The total training time up to this epoch 
was 3 hours and 22 minutes. 

The confusion matrix shown in Figure 8 and the metrics 
presented in Table VII show the model’s performance at Epoch 

31. As indicated in the results, the model performed well across 
all classes. 

D. Performance Comparison 

All three models performed exceptionally well on this 
dataset with each model attaining an overall validation accuracy 
of over 99%. However, the training time needed for each model 
to converge, and the amount of disk space needed for each 
model varied significantly. Table VIII compares the training 
times and disk spaces of each of the models. 

While DaViT-Base, the transformer model, performed 
exceptionally well on all classes of this dataset, its training time 
was substantially longer than the training time required for the 
other models without any significant improvement in 
performance. The DaViT-Base Model was also the largest in 
size regarding disk space taking up 331 MB.  

The EfficientNetV2-M, the convolutional neural network, 
model performed the best out of the three models trained and 
tested. However, the improvement in performance is marginal. 
The EfficientNetV2-M model accomplished these results with 
a shorter training time – approximately 50% less when 
compared to DaViT-Base – and taking up less space on the 
disk: 203 MB.  

The lightweight model, MobileOne-S4, also demonstrated 
good performance on all classes of this dataset with results 
comparable to the other models. While it did take a few more 
epochs to converge, it had the fastest training time per epoch 
resulting in a similar overall training time as the 
EfficientNetV2-M model. The MobileOne-S4 model was able 
to achieve these results while only taking up 49.9 MB of disk 
space.  

VII. CONCLUSION AND FUTURE WORK 
Three models with different architecture, complexity, and 

size were trained and evaluated on the pomegranate fruit 
disease dataset. While each model performed exceptionally on 
the disease classification task, the time needed to reach these 
results varied. The DaViT-Base transformer model reached a 
high validation accuracy of 99.28% but took significantly 
longer to reach convergence: over 6 hours. This extra training 
time needed did not yield any performance benefits. The 
EfficientNetV2-M model achieved the best results, 99.54% 

TABLE VIII. TRAINING TIME AND DISK SPACE COMPARISON OF THE DAVIT-
BASE, EFFICIENTNETV2-M, AND MOBILEONE-S4 MODELS 

 

Figure 7: MobileOne-S4 Model Training and Validation Accuracy and Loss 
Graph 

 

Figure 8: MobileNet-S4 Confusion Matrix at Epoch 31 

Model DaViT-Base EfficientNetV2-M MobileOne-s4 

Total Training 
Time to 

Converge 
6 hrs. 9 mins. 3 hrs. 4 mins 3 hrs.22 mins 

Average Time 
per Epoch 

13 mins. 11 
secs. 6 mins. 49 secs. 6 mins. 32 secs. 

Disk Space 331 MB 203 MB 49.9 MB 
# of Params 87.95 M 52.86 M 12.92 M 

 



validation accuracy, and required the least amount of training 
time: 3 hours and 4 minutes. Lastly, the lightweight model, 
MobileOne-S4, reached a validation accuracy of 99.15% with 
only a slightly longer training time of 3 hours and 22 minutes. 
These results show that lightweight models, those designed for 
low latency and portability, are a viable option for the task of 
disease classification on pomegranates.  

While these experiments show that lightweight models are 
a viable option for disease classification task, this research stops 
short of deploying to model on a portable device and testing the 
performance in a non-controlled setting. Additionally, the 
images used were all collected using the same equipment. 
Future work could explore using images taken with different 
equipment using different camera settings and having different 
resolution as well as test model performance on the field. 
Another area for future research could modify the model to 
detect pomegranates infected with a novel disease.   
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