
Pomegranate Disease Classification using Advanced
Deep Learning Models

Josue Sanchez
Department of Computer Science

California State University
Northridge, CA, USA

josue.sanchez.741@my.csun.edu

Jorge Enriquez

Department of Computer Science
California State University

Northridge, CA, USA
jorge.enriquez.571@my.csun.edu

Abhishek Verma

Department of Computer Science
California State University

Northridge, CA, USA
abhishek.verma@csun.edu

Abstract—Early detection and classification of pomegranate
diseases are crucial for maximizing crop yield and quality. This
research study attempts to address the challenge of accurately
identifying and classifying pomegranate diseases by leveraging
advanced machine learning models. For this task, we selected
three vision models with different architecture, complexity, and
disk size requirements. The selected models where: DaViT-Base, a
vision transformer model; EfficientNetV2M, a convolutional
neural network; and MobileOne-S4, a lightweight model
optimized for mobile devices. The methodology used involved
training these models on a dataset of annotated pomegranate
images, which was split into four disease categories and one
healthy category. This was followed by a thorough evaluation of
each model to determine the accuracy and potential deployment
on mobile devices or drones. All three models showed exceptional
results: DaViT-Base – 99.28%, EfficientNetV2M – 99.54%,
MobileOne-S4 – 99.15%. The results show that lightweight models
such as the MobileOne-S4 are viable options for the task of
pomegranate disease classification, and implementing similar
models has the potential to significantly enhance agricultural
disease management. Future work will focus on exploring real-
time classification.

Keywords—Pomegranate Disease Classification, Machine
Learning, Deep Learning, Vision Models, Image Classification,
DaViT-Base, EfficientNetV2M, MobileOne-S4

I. INTRODUCTION
The production of pomegranates faces many challenges

including various diseases that affect both yield and quality in
agriculture. Early detection of these diseases can reduce the
impact they have on production. Traditional techniques used
are often inefficient and labor intensive. Using machine
learning models can provide an efficient, accurate, and scalable
solution for identifying and classifying these diseases.

While there has been some success using Convolutional
Neural Networks for this type of task, challenges remain.
Processing images taken under various conditions with
different illumination, occlusion, and with complex
backgrounds is a significant hurdle to overcome. Additionally,
distinguishing between diseases with similar symptoms is
another challenge faced by these models.

Our research explores the use of various machine learning
models, each with different architecture and complexity, for the
pomegranate disease classification task. It provides a
comprehensive analysis of their performance focusing not only
on accuracy metrics, but also on the effort and time needed to
achieve the results. The methodologies and results presented in
this paper provide a foundation for future researchers to apply
machine learning models for disease classification tasks in
other fruits or agriculture products. Additionally, the paper
discusses the feasibility of training and deploying a model on a
portable device to detect diseases in pomegranates.

While we were able to achieve a high level of accuracy and
excellent results on all metrics across all models, the time
needed to train each model varied significantly. We chose 3
different model architetures. The DaViT-Base model, a
transformer model, achieved a validation accuracy of 99.28%,
and took 6 hours and 9 minutes to converge. The
EfficientNetV2-M model proved to be the best performing
model, reaching a validation accuracy of 99.54% and taking a
total of 3 hours and 4 minutes to converge. Lastly, the
MobileOne-S4 model, a lightweight model designed for low
latency, reached a validation accuracy of 99.15% and took 3
hours and 22 minutes to converge. These results show that
lightweight models are a feasible option for detecting and
classifying pomegranate diseases.

The paper follows the following structure: Section II
reviews related work on agricultural disease detection and
classification using machine learning. Section III offers a
thorough description of the image dataset used, the distribution
of images per class, and the challenges the dataset presents.
Section IV explains the methodology used in this research
including a detailed review of each model selected. In Section
V, we outline the setup used in the experiments. Finally,
Section VI discusses the results from the experiments, while
Section VII presents the conclusion and suggestions for future
work.

II. RELATED WORK
Our study builds upon existing research on pomegranate

diseases, aiming to address specific limitations identified in
previous studies. By introducing new models that utilize state-
of-the-art image classification technologies, we anticipate

achieving higher accuracy, including reduced latency, in
diagnosing these diseases. This advancement promises to

enhance the practical application, through effectiveness, of
pomegranate disease detection strategies.

The following articles conclude the need for a model
occupying a Convolutional Neural Network. The “Diagnosis of
Pomegranate Plant Diseases Using Neural Network” study
utilizes a Multilayer Perceptron (MLP) neural network for
classification. Various techniques are applied to prepare the
data for the MLP, including K-mean clustering and Gray-level
co-occurrence matrix. Six different conditions in pomegranates
are analyzed, and their resulting accuracies are as follows:
Healthy Fruit & Healthy Leaves - 100%, Leaf Spot - 87.5%,
Bacterial Blight - 85.71%, Fruit Spot & Fruit Rot - 83.33%. [1]

The authors of “Automated Detection and Classification of
Pomegranate Diseases Using CNN and Random Forest” use a
Convolutional Neural Network as a feature extraction tool
rather than a classification. A random forest algorithm is used
for the final classification, yielding the following results on the
five different diseases: Aspergillus Fruit Rot - 98%, Bacterial
Blight - 98%, Anthracnose - 97%, Cercospora - 97% and
Psuedocercospora Punicae - 97%. This averages around 97.4%.
However, there is room for further improvement. [2]

The publication “Recognition and Classification of
Pomegranate Leaves Diseases by Image Processing and
Machine Learning Techniques” classifies the different types of

Pomegranate leaf diseases using a multi-class SVM. The
images are transformed to improve color contrast and then are
pattern-matched using K-means. The multi-class SVM is then
used to classify the images. The average accuracy of the model
was 98.07%. [3]

In the paper “A Deep Learning Approach for Multiclass
Orange Disease Classification,” Orange disease classification
uses SVM, K-Nearest Neighbor, Random Forest, and a
Convolutional Neural Network (MobileNetV2). The analysis of
these different models on the same dataset showed an
outperformance by the MobileNetV2, highlighting the
significant improvement that modern CNN models have. [4]

“Apple Leaf Disease Detection: Machine Learning & Deep
Learning Techniques” analyzes four apple leaf diseases using
various models. SVM, Random Forest, Naive Bayes, K-Nearest
Neighbor, and Decision Tree are the machine learning models
used, with Sequential and VGG-16 being the deep learning
models utilized. The paper concludes that the CNN model
VGG-16 is the most accurate of the 7, with an accuracy of
97.23% with a pre-trained model. The model is pre-trained on
ImageNet. The paper states that the model architecture is an
excellent tool for agricultural applications, with computational
demands as a drawback to its application. [5]

In the paper “Performance Analysis of Fruit Quality
Detection using Computer Vision and Object Detection,” a
model is trained to identify fruits and their quality. The Yolo7
architecture is used to classify fruits such as Apples, Lemons,
Oranges, and Pomegranates, InceptionV3 is used to detect the
quality of the fruit, and Ripeness is determined by different
architectures: Inceptionv3, ResNet50, and VGG19. [6]

 In “Fast Object Detection of the Quadcopter Drone using
Deep Learning,” the idea of a quadcopter drone with object
detection capabilities is explored. The model integrates
MobileNet and Single Shot Detector to localize and detect
objects. The paper explores implementing an object detection
model, which builds on an image classification model. The
drone ran an average of 14 FPS while detecting objects. [7]

 Our research differs from these other works as it utilizes
three different neural network models, one of which runs at a
reduced latency, optimal for drone implementation. Due to
advancements in image detection technologies, our research
contains higher accuracy than these related works. These new
architectures promote efficiency in training time. However, this
comes with the utilization of higher hardware.

III. DATASET DESCRIPTION
The Pomegranate Fruit Diseases Dataset for Deep Learning

Models dataset [8] was selected for this research. This dataset
consists of high-resolution color images of pomegranate fruits
that exhibit one of four distinct diseases: Bacterial blight,
Anthracnose, Cercospora fruit spot, Alternaria fruit spot, or
have been deemed healthy. These diseases are all prevalent in
the regions of Ballari, Bangalore, and Bagalkote among others
in India, which is a leading global producer of pomegranates.

Bacterial Blight

Anthracnose

Cercospora Fruit Spot

Alternaria Fruit Spot

Healthy

Figure 1: Sample images from the Pomegranate Fruit Disease Dataset for
Deep Learning Models

Bacterial
Blight

Anthracnose Cercospora
Fruit Spot

Alternaria
Fruit Spot

Healthy
966 1166 631 886 1450

The images were captured in two specific time periods: July
and October 2023. They are all in JPEG format and have
dimensions of 3,120 by 3,120 pixels. The dataset is organized
into five directories corresponding to each of the disease or
healthy categories. There is some imbalance in the dataset with
the number of images in each category ranging from 631 –
1,450. The overview of the distribution of the dataset is shown
in Table I. Figure 1 shows sample images from five classes.

Working with the selected image dataset does present some
challenges. Aside from the imbalance in the dataset, each image
was taken under different conditions. Various camera angles
were used when capturing the images. There is partial occlusion
in the images, and each image has different illumination
conditions. Additionally, all images have a complex
background with leaves, branches, fingers, dirt, other debris,
and a timestamp of when the image was captured.

These challenges add to the difficulty and complexity of
training a machine learning model for this task. Feature
extraction becomes more challenging. Overfitting may start to
appear as the model learns to recognize features that are not
indicative of the disease class. Learning to address these
challenges can make the model more complex, which can
ultimately lead to longer training times.

IV. RESEARCH METHODOLOGY
The purpose of this research is to evaluate the effectiveness

of using pre-trained models to accurately classify diseases in
pomegranates. Each of the models selected for this research was
trained and benchmarked using the ImageNet-21K dataset [9].
By using pre-trained models, we hope to leverage transfer
learning to achieve high accuracy while using a smaller dataset.
Additionally, the research explores the feasibility of using
lightweight models, those designed for low latency and
portability, which could be used on drones or other portable
devices for this type of task. By taking this approach, we hope
to address some of the common challenges in agricultural
disease classification such as having a small dataset, reducing
training time, and making models deployable in portable
devices. Figure 2 shows system pipeline for classification.

To accomplish these objectives, three distinct models were
chosen, training, and evaluated using a variety of metrics:
DaViT-Base [10] EfficientNetV2-M [11], and MobileOne S4

[12]. The models were selected based on their proven
performance on the ImageNet dataset [9]. Each of these models
has a unique architecture, different complexity, and vary in the
amount of disk space needed. These differences allow us to
effectively compare the models with one another.

A. DaViT-Base Model
The Dual Attention Vision Transformer (DaViT) model is

a transformer model that uses two self-attention mechanisms:
Spatial Window Multihead Attention (SWM-SA) and Channel
Group Self-Attention (CG-SA) [10]. The two attention
mechanisms complement each other. The SWM-SA
mechanism focuses on obtaining fine-grained local features
while CG-SA finds global representations [10]. This design
allows the model to be computationally efficient and effective.

SWM-SA can be represented mathematically using the
following equation:

𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑄𝑄,𝐾𝐾,𝑉𝑉) = {𝐴𝐴�𝑄𝑄𝑖𝑖,𝐾𝐾𝑖𝑖,𝑉𝑉𝑖𝑖�}𝑖𝑖=0
𝑁𝑁𝑤𝑤

 (1)

Here Q, K, and V represent the query, key, and value
matrices, and dk is the dimension of key vectors. Nw represents
the number of windows.

Similarly, we can use the following to represent CG-SA:

 𝐴𝐴𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑄𝑄𝑔𝑔𝐾𝐾𝑔𝑔
𝑇𝑇

�𝑑𝑑𝑘𝑘𝑘𝑘
�𝑉𝑉𝑔𝑔

 (2)

where Qg, Kg, and Vg represent the query, key, and value
matrices, and dkg is the dimension of key vectors in grouped
context.

II. COMPARATIVE ANALYSIS OF DAVIT-BASE, EFFICIENTNETV2-
M, AND MOBILEONE-S4 MODELS: COMPUTATIONAL EFFICIENCY
AND PERFORMANCE ON IMAGENET [9]

I. DISTRIBUTION OF IMAGES ACROSS EACH DISEASE CATEGORY

Figure 2: System Pipeline for the recognition of pomegranate diseases

Model FLOP Top-1 Acc
DaViT-Base [10] 15.5 B 84.6%
EfficientNetV2-M [11] 24 B 85.1%
MobileOne-S4 [12] 2.98 B 79.4%

The DaViT family of models has many variations.
However, we have selected the DaViT-Base model for our
research. This model has 87.95 million parameters, which
makes it relatively compact, and 15.5 billion floating-point
operations (FLOPS) [10], which highlights its computational
efficiency. Additionally, the model was able to achieve a top-1
accuracy of 84.6% on the ImageNet dataset. These
characteristics enable it to be deployed in a variety of hardware
platforms, including those with limited computational
capacities such as phones or other portable devices.

B. EfficientNetV2-M Model
The EffcientNetV2-M model is a convolutional neural

network that is known for its good performance on image
classification tasks [11]. We selected the “M” or medium
variant, since it offers a good balance of model size, speed, and
accuracy. EfficientNetV2 models builds upon its predecessor.
Inverted Residual Blocks, often called MBConv, and fused-
MBConv layers [13] are used to enhance the model’s efficiency
and make it more computationally efficient. Additionally, the
model limits the size of the images used to 480 by 480. This
helps to address the memory overhead that comes with
processing larger images as well as reduces the computation
time.

The EfficientNetV2-M model was trained and
benchmarked on the ImageNet-21K dataset. It reached a top-1
accuracy rate of 85.1%, which highlights its ability to extract
visual features. The model was able to achieve this level of
accuracy with only 52.86 million parameters and 24 billion
FLOPs. The low parameter count and FLOPs make this model
a viable option to deploy on a variety of devices including those
with limited computational capabilities.

C. MobileOne-S4 Model
MobileOne prioritizes lowering the latency cost of deep-

learning models to develop an efficient architecture for mobile
devices. We’ve selected “S4”, which is the largest MobileOne
model with 12.91 million parameters, 2.978 billion FLOPs, and
a latency of 1.86ms. On a GPU, MobileOne-S4 was able to
achieve a latency of 0.95 milliseconds. MobileOne-S4 achieves
this by choosing a simpler activation function (ReLU), which
reduces latency at low loss of accuracy, and Architectural
Blocks with no branches at inference, which reduce the amount
of parallelism the model undergoes, thus reducing latency.

In ImageNet-1k benchmarks, MobileOne-S4 reached an
accuracy of 79.4%. All MobileOne models were trained for 300
epochs with a 256-batch size. Since MobileOne has reduced
complexity, it requires less regularization due to a reduced risk
of overfitting. MobileOne’s low latency and relatively high
accuracy make the model optimal for mobile devices, however,
is limited by the reduced complexity, as larger applications will
not yield high accuracy rates.

By selecting three distinct models with different
architectures and sizes, we aim to assess the trade-off between
computation time and resources and performance. This will
help guide future research and selections of models used in real-
world deployment.

V. EXPERIMENT SETUP
The training of all three models selected was performed

under the same conditions utilizing the same hardware and
software components. Additionally, similar modifications were
made to each model to enable them to make predictions on the
dataset, and each model was evaluated using the same
performance metrics.

A. Hardware and Software
All experiments were conducted using a personal laptop

computer connected to an eGPU to assist with processing the
images during training and evaluation. A Dell XPS 15 equipped
with a 12th Generation Intel Core i9-12900HK processor and
16 GB of RAM was used. The GPU was a NVIDIA Titan XP
with 12 GB of memory.

We used a Jupyter Notebook environment for all
preprocessing, training, and evaluation tasks. The models were
implemented using PyTorch version 2.1.2 [14] and were
acquired using the timm [15] and torchvision [16] libraries. In
addition, CUDA version 12.1 was utilized to leverage the
NVIDIA Titan GPU. Additional libraries such as scikit-learn
[17] and seaborn [18] were used to assist in calculating
performance metrics and visualizing the training progress and
results.

B. Metrics
We employed a variety of evaluation metrics and

visualization tools to measure the overall performance of the
models while accounting for the class imbalance.

1) Cross-Entropy Loss
Cross-Entropy Loss was used as the primary criterion for

optimizing the models. This loss function is suitable and widely
used for multi-class classification tasks. When making
predictions, Cross-Entropy returns a distribution of
probabilities over all classes. Then, the difference between the
predicted probabilities and the actual target values is calculated.
By minimizing this value, the aim is to improve the model’s
ability to make accurate predictions. The formula for the cross-
entropy loss for a single observation can be represented by the
formula:

𝐻𝐻(𝑝𝑝, 𝑞𝑞) = −∑ 𝑝𝑝(𝑥𝑥) 𝑙𝑙𝑙𝑙𝑙𝑙 𝑞𝑞(𝑥𝑥)𝑥𝑥 (3)

 Here, p(x) is the actual probability of class x, q(x) is the
predicted probability distribution of class x, H(p,q) is the cross-
entropy between the true distribution p and the predicted
distribution q with the sum being over all classes.

2) Performance Metrics

III. TRAINING AND VALIDATION METRICS AT SELECTED EPOCH
FOR THE DAVIT-BASE, EFFICIENTNETV2-M AND
MOBILEONE-S4 MODELS

Model Epoch Train Acc. Val. Acc. Train Loss Val. Loss
DaViT-Base 28 99.97 99.28 0.001 0.031

EfficientNetV2-M 27 99.92 99.54 0.003 0.025
MobileOne-S4 31 99.55 99.15 0.013 0.037

 A variety of performance metrics were used to evaluate the
performance of the models. This included accuracy: a general
measurement of correctness, precision: the correctness of
positive predictions, recall: measures the ability to detect
positive instances of each class, and F1 score: a balance
between precision and recall, which is useful in situations with
uneven class distributions. While accuracy was measured for
both training and validation sets, precision, recall, and F1
values were only taken from the validation set as our aim was
to evaluate the model’s generalization on unseen data.

3) Confusion Matrix
 To visualize the model’s performance across all classes, a
confusion matrix was created. The confusion matrix makes it
possible to identify classes that are often confused with one
another. Additionally, to address the imbalance of the dataset,
a weighted confusion matrix was also created. This weighted
confusion matrix allowed us to consider the frequency of each
class in the dataset, which helped us to evaluate the model’s
performance more accurately.

C. Preprocessing
Some preprocessing was performed on the dataset to

prepare it for training. The dataset was split into training and
validation sets using a 70/30 split, which is common practice.
This ensured that most of the data was used for training while
retaining a sizeable amount for validation. All images were
resized to 224 by 224 pixels and were normalized using
ImageNet’s mean and standard deviation values of (0.485,
0.456, 0.406) and (0.229, 0.224, 0.225) respectively. An
augmentation factor for 0.05 was used to synthesize a small but
significant amount of data to add some variety to the training
samples. Additional augmentations were performed on the
training samples including a random rotation of ± 20 degrees, a
random horizontal rotation, and color brightness, contrast, and
saturation were all varied by up to 20 percent. By performing
these augmentations, we hope to enhance the models’ ability to
learn from the training data and generalize enabling it to make
more accurate predictions.

D. Model Configuration
An instance of each model was created using the timm [15]

and torchvision libraries [15]. The models were initialized
using the pretrained weights provided by the libraries. This
allows us to leverage transfer learning to improve the models ’
performance.

In our experiments, we elected to keep the standard
configuration of model-specific parameters for each model. For
the DaViT-Base model, this included keeping the predefined
settings for the attention mechanisms, dimensions of each layer,
the GELU activation function, and dropout, which was set to
0.0. Similarly, the EfficientNetV2-M model was left with its
original scaling, SiLU activation function, and dropout rate of
0.3 per dropout layer. The MobileOne-S4 model was also used
with its default settings and used the ReLU activation function.
The rest of the parameters were left to the default values as set
in the timm [15] and torchvision [16] libraries with the only
exception being the modification of the classifier layer. To meet
the requirements for the task, the classifier layer of each model

was modified to be a linear layer with five output features, one
for each of the five distinct classes in the dataset.

E. Training Parameters
A specific set of training parameters were used to ensure the

results from each model can be accurately compared with each
other. The parameters consisted of the batch size used, the
number of epochs, the learning rate, the optimizer selected, and
the scheduler that was used.

All models were trained using a batch size of 20 images for
40 or 50 epochs. This selection was made to maximize the
efficiency of the hardware use, maintain an acceptable level of
randomness in the gradient decent process, and provide the
models with enough exposure to the training data for adequate
learning and convergence.

Adam was selected as the optimizer for its computational
efficiency, small memory requirements, and usability for non-
convex optimization problems [19]. A learning rate of 0.001
was chosen as it is commonly used with the Adam optimizer
for a wide range of tasks. Additionally, the ReduceLROnPlateu
scheduler was used. This scheduler, accessed through the torch

Figure 4: DaViT-Base Confusion Matrix at Epoch 28

Figure 3: DaViT-Base Model Training and Validation Accuracy and Loss
Graph

library, dynamically adjusts the learning rate based on the
validation loss allowing the weights to be adjusted more
precisely.

VI. RESULTS AND DISCUSSION

While the architecture, complexity, and computational

efficiency of each model is distinct, the results obtained from
the experiments show comparable performance. The
performance of each model is evaluated at different epochs.
These epochs were specifically chosen based on the
performance of the models, indication of convergence, and
signs of overfitting. This approach allows us to assess the
capabilities of each model under optimal conditions. Table III
compares the training and validation metrics for each model at
the selected epoch.

A. DaViT-Base Model Performance

 The DaViT-Base model is the more complex of the three
models selected. Figure 3 shows its accuracy and loss metrics
throughout the training phase, which lasted 40 epochs. Based
on these metrics, we determined that the model converged at
Epoch 28. At this epoch, the model showed the highest
validation accuracy and maintained a minimal gap between the

training and validation metrics. At Epoch 28, the model
obtained an accuracy of 99.28% on the validation dataset. The
graph in Figure 3 shows a stable decrease in training loss while
the validation loss stabilizes. This indicates that the model was
able to learn effectively and avoided overtraining. The total
training time up to this epoch was 6 hours and 9 minutes.

 The confusion matrix for the DaViT-Base model at Epoch
28 is shown in Figure 4. The matrix validates the model’s
performance across all five classifications of diseases.
Precision, recall, and F1 scores for each disease classification
are provided in Table V. All metrics demonstrate the model

performed exceptionally across all classes with 100% accuracy,
precision, recall, and F1 score on the Healthy class.

B. EfficientNetV2-M Model Performance
 The EfficinetNetV2-M model went through a training phase
that lasted 50 epochs. The accuracy and loss metric graphs are
shown in Figure 5. From the results, we determined that the
model converged at Epoch 27. Here, the graph shows that the
validation loss stabilizes. At this epoch, the model obtained a

IV. PRECISION, RECALL, AND F1 SCORE FOR EACH DISEASE CLASS
OBTAINED BY DAVIT-BASE MODEL AT EPOCH 28

V. PRECISION, RECALL, AND F1 SCORE FOR EACH DISEASE CLASS
OBTAINED BY THE EFFICIENTNETV2-M MODEL

TABLE VII. PRECISION, RECALL, AND F1 SCORE FOR EACH DISEASE
 CLASS OBTAINED BY THE MOBILEONE-S4 MODEL

Figure 6: EfficientNetV2-M Confusion Matrix at Epoch 27

Figure 5: EfficientNetV2-M Model Training and Validation Accuracy and Loss
Graph

Disease Validation
Accuracy Precision Recall F1 Score

Alternaria 0.9919 0.9839 0.9919 0.9879
Anthracnose 0.9944 0.9916 0.9944 0.9930

Bacterial Blight 0.9809 0.9935 0.9809 0.9872
Cercospora 0.9946 0.9892 0.9946 0.9919

Healthy 1.0000 1.0000 1.000 1.0000

Disease Validation
Accuracy Precision Recall F1 Score

Alternaria 0.9919 0.9839 0.9919 0.9879
Anthracnose 0.9944 0.9916 0.9944 0.9930

Bacterial Blight 0.9809 0.9935 0.9809 0.9872
Cercospora 0.9946 0.9892 0.9946 0.9919

Healthy 1.0000 1.0000 1.0000 1.0000

Disease Validation
Accuracy Precision Recall F1 Score

Alternaria 0.9847 0.9923 0.9847 0.9885
Anthracnose 1.0000 0.9886 1.0000 0.9943

Bacterial Blight 0.9865 0.9832 0.9865 0.9848
Cercospora 0.9843 1.0000 0.9843 0.9921

Healthy 0.9954 0.9954 0.9954 0.9954

validation accuracy of 99.54% and held a minimal gap between
training and validation metrics. The total training time up to this
epoch was 3 hours and 4 minutes.

Figure 6 shows the confusion matrix at Epoch 27 for the
EfficientNetV2-M model while Table VI shows the precision,
recall, and F1 score metrics. These results show that the model
performed remarkably well across all classes with 100%
accuracy, precision, recall, and F1 score on the Healthy class.

C. MobileOne-S4 Model Performance
The MobileOne-S4 was trained for 50 epochs. The training

and validation accuracy and loss metrics graphs are shown in
Figure 7. From the results, we determined that the model
converged at Epoch 31. Here the model obtained a validation
accuracy of 99.15% and held a minimal gap between training
and validation metrics. The total training time up to this epoch
was 3 hours and 22 minutes.

The confusion matrix shown in Figure 8 and the metrics
presented in Table VII show the model’s performance at Epoch

31. As indicated in the results, the model performed well across
all classes.

D. Performance Comparison

All three models performed exceptionally well on this
dataset with each model attaining an overall validation accuracy
of over 99%. However, the training time needed for each model
to converge, and the amount of disk space needed for each
model varied significantly. Table VIII compares the training
times and disk spaces of each of the models.

While DaViT-Base, the transformer model, performed
exceptionally well on all classes of this dataset, its training time
was substantially longer than the training time required for the
other models without any significant improvement in
performance. The DaViT-Base Model was also the largest in
size regarding disk space taking up 331 MB.

The EfficientNetV2-M, the convolutional neural network,
model performed the best out of the three models trained and
tested. However, the improvement in performance is marginal.
The EfficientNetV2-M model accomplished these results with
a shorter training time – approximately 50% less when
compared to DaViT-Base – and taking up less space on the
disk: 203 MB.

The lightweight model, MobileOne-S4, also demonstrated
good performance on all classes of this dataset with results
comparable to the other models. While it did take a few more
epochs to converge, it had the fastest training time per epoch
resulting in a similar overall training time as the
EfficientNetV2-M model. The MobileOne-S4 model was able
to achieve these results while only taking up 49.9 MB of disk
space.

VII. CONCLUSION AND FUTURE WORK
Three models with different architecture, complexity, and

size were trained and evaluated on the pomegranate fruit
disease dataset. While each model performed exceptionally on
the disease classification task, the time needed to reach these
results varied. The DaViT-Base transformer model reached a
high validation accuracy of 99.28% but took significantly
longer to reach convergence: over 6 hours. This extra training
time needed did not yield any performance benefits. The
EfficientNetV2-M model achieved the best results, 99.54%

TABLE VIII. TRAINING TIME AND DISK SPACE COMPARISON OF THE DAVIT-
BASE, EFFICIENTNETV2-M, AND MOBILEONE-S4 MODELS

Figure 7: MobileOne-S4 Model Training and Validation Accuracy and Loss
Graph

Figure 8: MobileNet-S4 Confusion Matrix at Epoch 31

Model DaViT-Base EfficientNetV2-M MobileOne-s4

Total Training
Time to

Converge
6 hrs. 9 mins. 3 hrs. 4 mins 3 hrs.22 mins

Average Time
per Epoch

13 mins. 11
secs. 6 mins. 49 secs. 6 mins. 32 secs.

Disk Space 331 MB 203 MB 49.9 MB
of Params 87.95 M 52.86 M 12.92 M

validation accuracy, and required the least amount of training
time: 3 hours and 4 minutes. Lastly, the lightweight model,
MobileOne-S4, reached a validation accuracy of 99.15% with
only a slightly longer training time of 3 hours and 22 minutes.
These results show that lightweight models, those designed for
low latency and portability, are a viable option for the task of
disease classification on pomegranates.

While these experiments show that lightweight models are
a viable option for disease classification task, this research stops
short of deploying to model on a portable device and testing the
performance in a non-controlled setting. Additionally, the
images used were all collected using the same equipment.
Future work could explore using images taken with different
equipment using different camera settings and having different
resolution as well as test model performance on the field.
Another area for future research could modify the model to
detect pomegranates infected with a novel disease.

REFERENCES

[1] M. Dhakate and Ingole A. B., "Diagnosis of pomegranate plant diseases
using neural network," 2015 Fifth National Conference on Computer Vision,
Pattern Recognition, Image Processing and Graphics (NCVPRIPG), Patna,
India, 2015, pp. 1-4, doi: 10.1109/NCVPRIPG.2015.7490056.

[2] A. Gupta, S. Mishra, Saweksha and V. Kukreja, "Automated Detection
and Classification of Pomegranate Diseases Using CNN and Random Forest,"
2024 International Conference on Automation and Computation
(AUTOCOM), Dehradun, India, 2024, pp. 62-66, doi:
10.1109/AUTOCOM60220.2024.10486122.

[3] Madhavan, Mangena Venu, et al. “Recognition and Classification of
Pomegranate Leaves Diseases by Image Processing and Machine Learning
Techniques.” Computers, Materials & Continua/Computers, Materials &
Continua (Print), vol. 66, no. 3, Jan. 2021, pp. 2939–55.
https://doi.org/10.32604/cmc.2021.012466.

[4] S. Kumar, A. K. Pandey, D. Raghav, G. Gupta and V. Srivastava, "A Deep
Learning Approach for Multiclass Orange Disease Classification," 2024 2nd
International Conference on Disruptive Technologies (ICDT), Greater Noida,
India, 2024, pp. 184-189, doi: 10.1109/ICDT61202.2024.10489557.

[5] M. Sebastian, S. M S and C. M. Antony, "Apple Leaf Disease Detection:
Machine Learning & Deep Learning Techniques," 2023 Intelligent
Computing and Control for Engineering and Business Systems (ICCEBS),
Chennai, India, 2023, pp. 1-5, doi: 10.1109/ICCEBS58601.2023.10449037.

[6] K. Deshmukh, R. Kasture, S. Bhoite, S. L. Tade and S. A. Vaishnav,
"Performance Analysis of Fruit Quality Detection Using Computer Vision and
Object Detection," 2023 7th International Conference On Computing,
Communication, Control And Automation (ICCUBEA), Pune, India, 2023,
pp. 1-8, doi: 10.1109/ICCUBEA58933.2023.10392090.

[7] W. Budiharto, A. A. S. Gunawan, J. S. Suroso, A. Chowanda, A. Patrik
and G. Utama, "Fast Object Detection for Quadcopter Drone Using Deep
Learning," 2018 3rd International Conference on Computer and
Communication Systems (ICCCS), Nagoya, Japan, 2018, pp. 192-195, doi:
10.1109/CCOMS.2018.8463284.

[8] B. Pakruddin and R. Hemavathy, "Pomegranate Fruit Diseases Dataset for
Deep Learning Models," Mendeley Data, 2023.

[9] T. Ridnik, E. Ben-Baruch, A. Noy and L. Zelnik-Manor, "ImageNet-21K
Pretraining for the Masses," 05 August 2021. [Online]. Available:
https://arxiv.org/pdf/2104.10972.pdf. [Accessed 01 March 2024].

[10] M. Ding, B. Xiao, N. Codella, P. Luo, J. Wang and L. Yuan, "DaViT:
Dual Attention Vision Transformers," Springer Nature, 2022.

[11] M. Tan and Q. V. Le, "EfficientNetV2: Smaller Models and Faster
Training," PMLR, 2021.

[12] P. K. A. Vasu, J. Gabriel, J. Zhu, O. Tuzel and A. Ranjan, "Mobileone:
An improved one millisecond mobile backbone," in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2023.

[13] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen,
"Inverted Residuals and Linear Bottlenecks: Mobile Networks for
Classification, Detection and Segmentation," CoRR, vol. abs/1801.04381,
2018.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai
and S. Chintala, "PyTorch: An Imperative Style, High-Performance Deep
Learning Library," in Advances in Neural Information Processing Systems 32,
Curran Associates, Inc., 2019, p. 8024–8035.

[15] R. Wightman, PyTorch Image Models, GitHub, 2019.

[16] T. maintainers and contributors, TorchVision: PyTorch's Computer
Vision library, GitHub, 2016.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A.
Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, "Scikit-
learn: Machine Learning in Python," Journal of Machine Learning Research,
vol. 12, p. 2825–2830, 2011.

[18] M. L. Waskom, "seaborn: statistical data visualization," Journal of Open
Source Software, vol. 6, p. 3021, 2021.

[19] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization,
2017.

	I. Introduction
	II. Related Work
	III. Dataset Description
	IV. Research Methodology
	A. DaViT-Base Model
	B. EfficientNetV2-M Model
	C. MobileOne-S4 Model

	V. Experiment Setup
	A. Hardware and Software
	B. Metrics
	1) Cross-Entropy Loss
	2) Performance Metrics
	3) Confusion Matrix

	C. Preprocessing
	D. Model Configuration
	E. Training Parameters

	VI. Results and Discussion
	A. DaViT-Base Model Performance
	B. EfficientNetV2-M Model Performance
	C. MobileOne-S4 Model Performance
	D. Performance Comparison

	VII. Conclusion And Future Work
	References

