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Abstract—This paper proposes a novel hierarchical feature di-
mensionality reduction (FDR) methodology for fusion of features
from multiple color spaces. The objective is to automatically
recognize diabetic retinopathy (DR) stages; an eye disease that at-
tacks one in three diabetes carriers in USA. Our work examines:
(1) the role of FDR in extracting discriminatory features and (2)
the discriminatory information carried in different color spaces
on fundus images. Effectiveness of the proposed methodology is
evaluated on the challenging fine grained diabetic retinopathy
image dataset.

Features are extracted from color retina images by local binary
pattern descriptors at multiple scales, on three channels of each
color space, and organized as a feature hierarchy. Proposed
hierarchical FDR methodology performs feature reduction by
PCA, LDA, random forest, and multi-layer perceptron on the
hierarchy of features. Our experiments show (i) the hierarchical
FDR methodology with multi-layer perceptron efficiently trans-
forms features to lower dimensional space by achieving best
accuracy. (ii) To investigate the discriminatory power of color
spaces; FDR methodology and classification is evaluated on RGB,
L*a*b*, HSV, YIQ, and rgb color spaces with best classification
accuracy of 74.26% on RGB, and (iii) the novel combination of
the proposed FDR method with fusion of multiple color features
achieves 75.69% accuracy by one-vs-one SVM classifier.

Index Terms—diabetic retinopathy classification, local binary
pattern, color feature fusion

I. INTRODUCTION

Diabetic retinopathy (DR) is a very common eye disease,
US Centers for Disease Control and Prevention estimates that
DR affects 33% of the Americans with diabetes and may cause
blurred vision and blindness. High glucose level in the blood
could damage the blood vessels in the retina causing DR.
The macula swells and becomes thick as blood, cholesterol,
fluids, and fats leak from the damaged blood vessels of
the retina. The retina stops receiving oxygen and nutrients
due to damage to the capillaries. Intraretinal microvascular
abnormalities (Ir'MAs) are new abnormal fragile blood vessels
that grow in the retina so that it can deliver sufficient blood
to the retina. The retina usually develops scar tissue that may
get wrinkled or get detached and cause distortion of vision.
As the DR progresses, it can cause increase in eye pressure
leading to damage to the optic nerve [1].

Progression of DR may cause irreversible loss of vision in
both eyes. In the early stages of DR the patient may not notice
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Fig. 1. Image of a retina showing signs of Diabetic Retinopathy.

changes to the vision. If DR could be detected in its early
stages it could help in early treatment and thereby reduce the
chances of severe loss of vision by more than 90%. Detection
of DR if done manually is a time-consuming process that
requires ophthalmologists to evaluate retina images, perform a
review, and follow up. This process could take multiple days
and may cause delay in providing treatment [10], [11].

Fig. 1 shows retina image and signs of diabetic retinopathy.
A retina image has a macula, blood vessels, and an optic disc.
Center part of the retina is called Macula, which contains
rods that are sensitive to color. Fovea is the central point of
the retina where visual acuity is the highest. Blood vessels
develop tiny bulges that appear as red dots and called Mi-
croaneurysms (MAs). Tiny spots of blood discharge show as
hemorrhages. Protein and lipid leakage into the retina causes
hard exudates, appearing as lesions of white or cream in color.
Microaneurysms and hard exudates could damage the macula
and cause permanent loss of vision [10], [12].

An ophthalmologist conducts a retinal examination to dis-
tinguish between two types of diabetic retinopathy: nonprolif-
erative (NPDR) and proliferative (PDR). NPDR is categorized
according to the signs of diabetic retinopathy. In mild NPDR,
manifestations include microaneurysms, exudates, and venous



loops. Moderate NPDR exhibits hemorrhages, multiple mi-
croaneurysms, and hard exudates. Severe NPDR is identified
by the 4-2-1 rule: presence of intraretinal microvascular ab-
normalities (IrMAs) in one quadrant, venous beading in two
quadrants, and in four quadrants the hemorrhages and microa-
neurysms. PDR represents an advanced stage characterized by
the development of fragile new blood vessels that hemorrhage
and leak, along with the formation of hard exudates in the
vitreous. The vitreous is a gel-like substance located in the
middle of an eye. Complications such as scar tissue formation
and retinal wrinkles may occur, leading to increased pressure
within the retina, damage to the macula, and optic nerve
impairment, ultimately resulting in vision loss [4], [10].

Instead of isolating DR signs with parametric filters and
segmentation on small datasets, our work targets a large-scale
dataset and examines robust discriminatory texture features
and their fusion in multiple color spaces. However, due to
the high dimensionality of texture features, a good candidate
method for feature dimensionality reduction must be con-
sidered for the retinopathy image dataset at multiple levels.
Such a method should retain highly discriminative features
even at lower dimensions at the time of fusion of texture
scales and colors and thereby improve accuracy and speed
of classification.

In section IV we describe uniform local binary pattern color
(LBP) feature descriptors at multiple LBP scales and five
selected color spaces. In section V we describe the feature
dimensionality reduction techniques and proposes dimension-
ality reduction method by neural networks. Section VI presents
our novel proposed methodology. Section VII discusses the
results from two sets of experiments: the experiment set of
dimensionality reduction on RGB color features and the ex-
periment set of proposed dimensionality reduction on multiple
color spaces and color feature fusion.

II. RELATED WORK

Microaneurysms are considered as the early sign of diabetic
retinopathy [15]. Hence, many researches in the past have
focused on extracting features from the retina by localization
and segmentation of various elements such as lesions, blood
vessels, optic disks, and the macula. This process involves
applying point operators to image pixels to balance and
enhance local contrast. Localization and segmentation are
achieved through linear filtering and neighborhood operations
like morphology, median filtering, and Gaussian filtering,
during the preprocessing stage, as noted in survey research
[10], [16]. In [17], the authors utilize watershed transformation
to address the challenge of segmenting beyond what is ideal
due to thresholding. Additionally, in [16], the authors employ
modeling contours actively and growing the region recursively
(RRGT) to isolate blood vessels and other notable regions
within the retina.

Texture extraction presents another intriguing avenue in the
recognition of diabetic retinopathy (DR). Statistical texture
extraction relies on the correlation of intensity values between

image pixels. In this method, entropy, pixel contrast, and corre-
lation are computed using the gray level co-occurrence matrix.
In the study by [3], contrast of texture patterns is extracted
alongside areas of microaneurysms (MAs) and hemorrhages
(HAs) for DR identification. For DR identification on small
datasets containing fewer than 100 images of the retina, [19],
[20] utilize the Local Binary Pattern (LBP) texture feature de-
scriptor. In other computer vision applications such as face and
scene recognition, texture descriptors like local binary patterns
have been demonstrated to significantly enhance performance
[13].

A robust vision system needs to rely on an invariant color
space to be able to handle images that are captured from
different camera devices under varying conditions of light and
intensity. HSI (Hue, Saturation, Intensity) analysis is applied
to the Messidor and DB-rect datasets for the extraction of
microaneurysms (MAs) and exudates, as discussed in [1], and
for locating the fovea, as explored in [18]. The green channel
of RGB is used for extracting the blood vessels in studies such
as [2], [3]. In [4], each channel of the RGB color space is
individually examined, and morphological operations are con-
ducted to extract the total area and perimeter of blood vessels,
hemorrhages (HAs), and microaneurysms (MAs). Researchers
in [5] consider multiple color spaces. These studies primarily
focus on the segmentation of diabetic retinopathy signs using
small datasets ranging from a few hundred to a few thousand
images.

Classification techniques such as support vector machine
(SVM), artificial neural network (ANN), and random forest
(RF) are widely employed in diabetic retinopathy (DR) re-
search [1]-[4], [16], [19]-[21]. In addition traditional machine
learning approaches along with neural networks have been suc-
cessfully applied to image datasets for skin cancer recognition
[28] and for detection of gene mutation [27].

III. DESCRIPTION OF DIABETIC RETINOPATHY IMAGE
DATASET

In this study, we conduct experiments using the EyePACS
diabetic retinopathy image dataset, a publicly available re-
source for retinopathy screening [26]. The dataset comprises
35,126 images for training and 53,576 images for testing.
These images are sourced from several camera models and
types, resulting in variations in resolution. Each image has
been manually reviewed by a human clinician for signs of
diabetic retinopathy disease. The dataset is categorized into
five classes representing DR stages from 0 to 4, corresponding
to no DR, mild, moderate, severe, and proliferative DR. The
training set comprises 74% of stage 0 (no DR) images, 7%
of stage 1 (mild) images, 15% of stage 2 (moderate) images,
and 2% each of stage 3 (severe) and stage 4 (proliferative
DR) images. The test set follows the same distribution as the
training set across the five stages.

The dataset presents several challenges, including variations
in image resolution, intensity, and quality. Upon examining the
training set, we observe that image heights range from 289 to
3,456 pixels, widths range from 400 to 5,184 pixels, and the



aspect ratio (height to width) falls between 0.66 and 1.00. The
average image intensity ranges from 1 to 192, with a mean
average intensity of 63 on a scale of 0 to 255. Depending on
the image resolution, the image size on disk varies from 8KB
for low-resolution images to 2MB for high-resolution images.

IV. COLOR FEATURE EXTRACTION
A. Local Binary Pattern (LBP) descriptor

The Local Binary Pattern (LBP) texture descriptor, intro-
duced by Ojala [6], [7], has been recognized as a robust feature
extractor for texture information [8], [9]. It has demonstrated
success in various applications including biometrics, face
detection and recognition, and scene recognition [8], [9].

The basic version of the LBP descriptor focuses on each
3x3 neighborhood to generate an ordered 8-bit LBP code by
comparing the gray values of the surrounding pixels with that
of the center pixel. The local binary pattern around a pixel P
with eight neighbors P, is encoded as follows:

IBP — Z 227 s(z) = 1 1wa>.P 0
0  otherwise

The LBP operator is known for its invariance to changes
in average intensity. To achieve scale invariance, the original
LBP operator has been extended to consider a circularly
symmetric neighborhood of P pixels on a circle with radius
R surrounding the center pixel. This extended operator is
denoted as LBPp r. In this setup, the top-middle neighbor
is considered the most significant bit in the LBP code, and
the remaining neighbors are ordered clockwise. To ensure
accuracy, the gray value of each neighbor point, which may
not lie exactly at the center of pixel area, is estimated through
interpolation.

The extension proposed by Ojala [7] introduces a uniform
pattern denoted as LBPIT{I“%Q. This binary pattern is circularly
chained and contains a maximum of two spatial transitions,
namely “1-0” and “0-1". LBP””2 enhances rotation invari-
ance and significantly reduces the dimensionality of LBP by
consolidating all nonuniform patterns into a single bin.

In the diabetic retinopathy (DR) dataset utilized in our
experiments, images are captured from diverse cameras under
varying illumination and quality conditions. Additionally, the
DR signs exhibit fine-grained characteristics with variations
in granularity, rendering the classification task more challeng-
ing. Microaneurysms (MAs), characterized by tiny red dots,
hemorrhages, and hard exudates, can manifest in various sizes
and shapes. Moreover, fragile blood vessels may develop in
unpredictable patterns. To address these challenges, we employ
the uniform local binary pattern (LBP) descriptor at different
scales to capture fine-grained discriminatory features. The
multi-scale LBP features exhibit invariance to rotation, global
intensity variations, and scales, enhancing the robustness of
our classification approach.

We divide each 512 x 512 retina image into four quad-
rants. Texture information in the image is extracted at 10

TABLE I
LBP FEATURE DIMENSION AT MULTIPLE SCALES ON A SINGLE COLOR
CHANNEL AND ON A COLOR SPACE WITHOUT DIMENSIONALITY

REDUCTION
LBP opera- Scale (R) Neighbors g?:;‘;::e
tors P) .
sion
(8.1) 1 8 40
(8.2) 2 8 40
(12,3) 3 12 56
(16,4) 4 16 72
(20,5) 5 20 88
(24,6) 6 24 104
(28,7) 7 28 120
(32,8) 8 32 136
(32,9) 9 32 136
(32,10) 10 32 136
Concatenated feature | single color channel 928
dimension 3-channel color space 2784

different scales by LBP{1*?, LBP{%**, LBP[3*?, LBP{'¢,
LBP{&’?, LBPﬁ"GQ, LBP2T§“72, LBP;;;“SQ, LBP§’2“§2, and
LBPgQL“I% operators on four 256x256 quadrants to form a LBP
feature block on each scale for each channel of a given color
space. The extracted LBP features are normalized within its
block. The feature dimension of each LBP block is shown in
Table 1. Note that feature dimension will grow to 928 for gray
images and 2,784 for color images if feature dimensionality
reduction techniques are not considered. Furthermore, dimen-
sion will continue to grow in case of fusion of LBP features
from multiple color spaces.

B. Color Spaces

In this paper, discriminative color features are extracted
for DR recognition by uniform LBP descriptors on five color
spaces: RGB, YIQ, rgb, HSV, and L*a*b*.

V. FEATURE DIMENSIONALITY REDUCTION TECHNIQUES

Need for feature dimensionality reduction (FDR) has be-
come increasingly important in recent years to efficiently
classify processing of ever increasing real-world data ad-
equately. Features from high resolution digital images are
usually represented in high dimensional spaces. FDR improves
classification in terms of efficiency and accuracy. FDR tech-
niques have two categories: feature selection (FS) and feature
extraction (FE). FS approaches aim at finding a subset of the
original features, whereas FE transforms higher dimensional
data observation space to lower dimension feature space [23].

Several nonlinear data transformation techniques for di-
mensionality reduction have been proposed to overcome the
limitation of principle component analysis (PCA) on complex
nonlinear data. Empirical results in [22] on five artificial
datasets and five real-world datasets compare PCA and twelve
other nonlinear transformation techniques. However, results
show that most nonlinear techniques do not outperform PCA
on real-world datasets. In our work, feature dimension from
LBP descriptors grows to several thousand on a single color
space and further increases as features from multiple color



spaces are fused together. Our proposed hierarchical feature
dimensionality reduction methodology is described in detail
in the proposed methodology section of this paper.

A. Feature Selection by Feature Importance

RF can be used for ranking the importance of features
based on its recorded out-of-bag error (OOB). Approximately
one-third of the training data is left out when building each
bootstrap sub-sample. OOB is estimated by combining one-
third of the classifiers in RF ensemble. A threshold 6 is
commonly defined for feature selection. Let m be the mean
of feature importance in the feature space, features whose
importance is greater than or equal to 6 xm are selected while
others are dropped.

Additionally, we run experiments using Principal Compo-
nent Analysis (PCA) for dimensionality reduction. PCA is
good for dimensionality reduction but it does not perform well
for class prediction. We also perform experiments with Linear
Discriminant Analysis (LDA). LDA seeks to reduce feature
dimensionality while preserving the information needed for
differentiating between classes. There are several limitations
to LDA dimensionality reduction technique. First, the number
of classes L in a given problem restricts the maximum reduced
features to L — 1. Second, LDA is a parametric model that
assumes Gaussian distribution; thus, it is unable to preserve
complex data where the distribution is significantly non-
Gaussian. Lastly, LDA fails if the discriminatory information
is not in the mean but in the variance of data [24].

B. Dimensionality Reduction by Multi-Layer Perceptron

The idea behind applying MLP for supervised dimension-
ality reduction is derived from autoencoder. An autoencoder
is similar to MLP except its output layer has same number
of neurons as that in the input layer. Autoencoder consists
of two components, the encoder and the decoder. The two
components share a hidden layer where compressed data can
be extracted. Autoencoder is one of the nonlinear techniques to
overcome limitations of traditional PCA on complex nonlinear
data. Autoencoder is similar to PCA in the sense that it is
an unsupervised dimensionality reduction technique. It com-
presses the input into a data representation that can be used
for reconstructing the original input. However, with nonlinear
transformation on hidden layers, the autoencoder can capture
multi-modal aspects of the input and outperforms PCA [25].

For DR problem, the aim of feature dimensionality reduc-
tion technique is not about preserving the principal infor-
mation for possible reconstruction but to extract the most
discriminatory information for DR stage separation. Thus,
supervised MLP data transformer is proposed as a candidate
FDR technique in our work. MLP data transformer is created
by dropping the output layer of a MLP classifier after training.
Thereby, the last hidden layer of the original MLP classifier
becomes output data with lower dimension than input data.

C. Classification Techniques

In our experiments we build models using Multi-Layer Per-
ceptron (MLP), Support Vector Machines (SVM), and Random
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Fig. 2. Overview of proposed methodology.

Forest (RF). This section briefly introduces these classification
techniques along with their strengths and weaknesses.

In addition to classification, RF and MLP are selected
for reducing feature dimensionality. Due to simplicity of
parameter tuning in RF classifier, we select it as the primary
classifier to evaluate dimensionality reduction methodology in
our work.

VI. PROPOSED METHODOLOGY

In our work, DR classification performance is based on
uniform LBP features that are extracted on multiple scales
for each of the color space RGB, HSV, L*a*b*, YIQ, and rgb.
Proposed methodology is structured in three main parts: image
preprocessing, feature extraction, and classification. Three
aforementioned classification techniques are used. Details of
the first two parts are described in this section. Fig. 2 gives
an overview of the proposed methodology.

A. Dataset Preprocessing and Augmentation

As mentioned in the dataset description section, there is
large variation in size of input images. We crop images of
various sizes to a tight square around the retina. Next, we scale
the image to a 512x512 size by bicubic interpolation method.
The dataset is imbalanced as there are many more images of
DR stage 0, i.e., no disease, compared to DR stages 1-4. We
augment the stages 1-4 by rotation and mirroring to make the
dataset balanced and thereby avoid biasing training on stage
0.

B. Hierarchical Feature Dimensionality Reduction

In this work, LBP features at level-1 are extracted on
individual color channels of a given color space by multiple
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LBP operators and each one is named as a LBP feature block.
Features at level-2 are named color feature block, it consists
of multiple LBP feature blocks from multiple texture scales
over three color channels of a single color space. Features at
level-3 is named color feature fusion block, it consists of color
feature blocks from multiple color spaces that are selected for
color fusion. Fig. 3 illustrates hierarchy of features at three
levels extracted with multiple LBP operators and its fusion in
multiple color spaces.

A candidate FDR technique can be applied at one or more
levels from bottom-up on the hierarchy of features. In a FDR-
n, features blocks at and below the n-th level are reduced by
the specified FDR technique. If there are any more levels above
n-th level in the features hierarchy, no FDR technique will be
applied at those levels. Example: FDR-1 reduces features at
level-1 but does not reduce features at level 2 and 3. Thus,
features block at 2nd level is the fusion of reduced features
from level-1 and features block at level-3 is the fusion of non-
reduced features from level-2. Fig. 4 illustrates the work-flow
to obtain reduced features at multiple levels.

VII. EXPERIMENT RESULTS

We structure our experiments into three sets, each toward
particular objective. Experiments in the first set focus on

RGB color space and evaluate the proposed FDR-1 and
FDR-2 methodology, which comprises of four selected FDR
techniques: PCA, LDA, RF feature selection, and MLP FDR.
Classification is performed with RF in first set. The FDR tech-
nique that yields best performance is selected to be applied in
second and third set of experiments. Second set of experiments
apply FDR-2 MLP on features from RGB, YIQ, rgb, HSV, and
L*a*b* color spaces. Classification is performed with RF, one-
vs-rest, and one-vs-one SVM, and MLP. In order to further
improve classification performance, third set of experiments
is performed on fusion of features from multiple color spaces
using FDR-2 and FDR-3 MLP methodology. Classification is
performed with SVM.

Ideally class sizes should be close to equal. However, class
sizes in DR dataset are extremely unequal. It is challenging
to collect a large and balanced DR dataset simply due to
much lower occurrence of DR stages 1-4 in the real world.
Despite our efforts to balance the class sizes for training set by
increasing the image count for specific classes through flipping
and rotation, it still remains highly unbalanced. Considering
the above limitation of DR dataset, experimental performance
is primarily evaluated by total accuracy, i.e., mean correct
classification rate (CCR) across all test images. However, for
sake of completeness, we do provide average class accuracy,
i.e., mean of average accuracy across five DR classes.

A. FDR-1 and FDR-2 Experiments on RGB Color Features

First set of experiments focus on level-2 feature hierarchy
in RGB color space. Proposed FDR-1 and FDR-2 methods are
applied for each of the four aforementioned FDR techniques.
There are features blocks at 2 levels: LBP feature block and
color feature block. Concatenation of features from level-1
results in 2,784 dimensional feature vector, which is partially
reduced by FDR-1 and further reduced by FDR-2. All exper-
iments are evaluated by RF classifier with 1,000 trees.

1) PCA vs. LDA Results: The reduced dimension of each
features block is determined by the total variance to be retained
in each PCA experiment. Total range of variance for retained
PCA features is 95.00% to 99.95%. For LDA we use reduced
features of 1 to 4 dimensions. These linear FDR approaches
best perform on FDR-1 at 99.5% total variance for PCA
(Fig. 5(a)) and 3 features for LDA (Fig. 5(b)). On FDR-2,
both techniques drastically degrade on the fusion of reduced
LBP feature blocks, possibly due to loss of discriminatory
information. FDR-2 PCA is at least 1% behind FDR-1 PCA,
while the degradation increases by more than 7% for FDR-
2 LDA. Therefore, these linear FDR techniques are not the
best candidates to be applied at higher levels of DR feature
hierarchy.

In addition, empirical results on FDR-1 PCA improve from
total accuracy of 71.03% at 95.0% variance to 72.28% at
99.5% variance. Furthermore, there is an increase of 3.0%
in the average class performance across the variance rang-
ing from 95.0% to 99.5%. Results indicate that DR class
discriminatory information is better represented in the tailed
variance of PCA rather than through principal components
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themselves. This is one of the reasons why unsupervised FDR
PCA outperforms the supervised FDR LDA on DR dataset.

2) Feature Selection Results: Feature selection by random
forest (FS-RF) is applied at multiple values of . The best
performance of 71.12% is achieved by FDR-2 FS-RF with
0 = 0.9 (Fig. 5(c)), which is approximately 1% less than
FDR-1 PCA performance (Fig. 5(a)). After applying FDR-
2 FS-RF at level-1, we obtain 1,723 features concatenated
from 30 reduced LBP feature blocks from level-1. Importance
of these features ranges from 0.32e-3 to 6.02e-3 with mean
m = 0.58e-3. FDR-2 FS-RF at 6 = 0.9 discards all features
whose importance is below 0.52e-3. Highest ranked feature
is 12.58 times more important than the lowest amongst 506
selected features. It implies that DR information is dissem-
inated in almost all texture features and in order to reduce
dimensionality FS-RF consequently discards what it considers
as weak features even though it may carry partially significant
information in our DR feature space. Thus, we conclude that
supervised FDR FS-RF technique is surpassed by unsuper-
vised technique such as FDR PCA.

3) Feature Reduction by MLP: In the hierarchical FDR
MLP approach, features in a block at the i-th level are
reduced by a 3-layer MLP denoted as M LP;[x;, ;] with z;
and [; as nodes in its first and second layer respectively. ;
is the expected dimension of features at the i-th level and
x; is adjusted by the original feature dimension. Experiments
are conducted with M LP;[50,20] for LBP feature blocks
using FDR-1 and FDR-2 MLP. Using FDR-2 MLP at level-2,
M L P5[100, 50] is selected to reduce 600 concatenated features
from 30 reduced LBP feature blocks at level-1 to 50 features
for the reduced color feature block at level-2. Fig. 6 shows the
classification accuracy across all four FDR techniques using
FDR-1 & 2 approaches on RGB color features. It is observed
that FDR-2 MLP outperforms rest of the FDR techniques both
in terms of total and average class accuracy. Since, FDR-2
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MLP outperforms FDR-1 MLP, we consider FDR MLP as an
effective dimensionality reduction technique at multiple levels
of feature hierarchy.

In addition, FDR MLP approach is flexible in terms of
expected dimensionality of features on a single color space.
Furthermore, in future, other feature descriptors can be scaled
and fused with reduced multi-scale color LBP descriptor via
hierarchical FDR MLP approach. Thereby, it can strengthen
the discriminatory power of features on a single color space
and ensure that the dimensionality of features stays within a
reasonable upper bound.

B. FDR-2 MLP Experiments on Various Color Spaces

FDR-2 MLP approach is applied to reduce features from
each of the color spaces: RGB, YIQ, rgb, HSV, and L*a*b*.
M LP5[100, 50] reduces feature dimensionality to 50. Classi-



fication accuracy is evaluated by RF, one-vs-rest SVM, one-
vs-one SVM, and MLP (softmax decision layer).

Table II shows the total accuracy and average class accuracy
on various color spaces using four different classifiers. One-vs-
one SVM classifier consistently outperforms other classifiers
on each of the five color spaces in terms of total accuracy by
approximately 0.4% on average.

We notice an approximate average gain of 1.4% both in total
accuracy and class average accuracy with FDR-2 MLP upon
FDR-1 MLP using MLP classifier consistently across each of
the five color spaces. Thus, it illustrates the positive role that
FDR plays in improving recognition of DR stages with LBP
descriptors.

In DR problem, RGB is still the most discriminatory color
space within the selected group. This is in contrast to empirical
results in other domains such as scene and face recognition
where several other color spaces perform better than RGB [9],
[13], [14]. Labels in face or scene dataset represent true ground
truth, i.e., a face or scene image is taken of a known subject
or place respectively, which serves as ground truth and does
not require inferencing on part of a human to label an image.
However, DR stages are manually labeled by ophthalmologists
by observing retina images in RGB color space, which could
induce inference bias towards RGB color space in generating
the ground truth. The extremely fine grained nature of DR
signs within an image and across DR stages may further bias
the manual labeling process towards RGB color space, it is
reasonable to obtain the most accurate prediction on RGB.
Thus, DR labels may not strictly represent ground truth.

Our experiments show both luminance and chrominance
information is useful in DR recognition. A color space that
lacks luminance information such as rgb is lower in terms of
both total and average class accuracies in comparison to other
color spaces. RGB surpasses rgb by 2.1% in total accuracy
and 6.1% in average class accuracy as seen in Table II.

C. FDR-2 and FDR-3 MLP Experiments on Fusion of Multi-
ple Color Spaces

Fusion of multiple color spaces is organized in a level-3
feature hierarchy. FDR-2 & 3 MLP approaches are applied
on fusion of selected color spaces. M LP3[80,50] reduces
100 concatenated color features from fusion of two color
spaces and M LP5[100, 50] reduces fused color features from
various combinations of three or more color spaces, reduced
feature size is 50 dimensional. SVM one-vs-one classification
accuracy on color fusion and on individual color spaces is
summarized in Fig. 7.

Although, performance of FDR-3 MLP is slightly less than
FDR-2 MLP on color fusion, there is a huge saving in terms
of time. For instance, FDR-3 MLP on 4-color fusion of RGB,
Lab, HSV, and YIQ loses merely 0.11% in accuracy but the
SVM recognition task on 50 dimensional feature vector is 60
times faster than FDR-2 MLP. Results from both approaches
show that color fusion clearly outperforms individual color
spaces in terms of accuracy.

RGB_Lab_Hsv_via_reb [ 7556
RGB_Lab_HSV_YIQ S 75.69
rae_tab_hsv [ 75.56
RGE_Lab_via | R = 7553
rGe_Lab_rgb [ 7539
RGB-Lab S 7522
ree-Hsv | 7514
rRee-via e 701
rGe-rgb | ee 7401
RGB 74.26
ylq —— 73.53
Lab T 73.31
®FDR-3 rgb B 72.19
Total Accuracy (%) 72 73 74 75 76

Fig. 7. SVM one-vs-one total classification accuracy on reduced features
using FDR-2 & 3 MLP techniques on multiple color spaces and their fusion.

Performance on fused features from RGB and rgb color
spaces improve upon RGB by approximately 0.6% in total
accuracy and 1.0% in average class accuracy, as shown in
Table III. Thus, information contained in rgb features is not
completely redundant when combined with RGB. Discrimi-
natory power of color fusion is best expressed in fusion of
four color spaces RGB, Lab, HSV, and YIQ. It gains at least
1.4% in total accuracy and 2.7% in average class accuracy
upon individual color spaces. This implies that there exists
different discriminatory information in different color spaces
in context of DR recognition task. Results in Table III indicate
incremental accuracy gain across almost all DR stages by color
fusion upon the strongest single color space RGB. Also, the
table reveals that additional advanced techniques for feature
descriptors are definitely required to improve performance on
individual DR stages and more so for NPDR-mild stage.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a novel hierarchical feature dimen-
sionality reduction (FDR) methodology for fusion of features
from multiple color spaces. Results of the experiments using
grand challenge fine grained DR dataset show FDR with
multi-layer perceptron surpasses other techniques in terms of
accuracy and scalability. Feature descriptor on RGB improves
performance on descriptors from other four color spaces. The
novel combination of the proposed FDR method with fusion
of multiple color features improves classification performance,
which indicates various color descriptors contain complemen-
tary information.

The proven success of hierarchical FDR methodology in this
paper offers higher accuracy, scalability, and time efficiency.
Thereby, it could serve as an efficient mechanism for com-
bining LBP features with other descriptors and extract more
discriminatory features for DR recognition as future work.



TABLE II
CLASSIFICATION ACCURACY OF VARIOUS CLASSIFIERS ON FIVE COLOR SPACES. FEATURES ARE REDUCED BY FDR-2 MLP

MLP (%) Random Forest (%) SVM one vs. rest (%) SVM one vs. one (%)
Color Dim Total Average Class Total Average Class Total Average Class Total Average Class
Space Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
RGB 50 73.39 34.20 73.83 32.58 73.75 33.60 74.26 33.06
YIQ 50 72.25 33.58 73.17 31.51 73.31 31.99 73.53 31.23
L*a*b* 50 71.99 33.80 73.01 31.54 72.52 33.02 73.31 32.63
HSV 50 71.44 30.65 72.47 27.83 72.69 29.12 72.75 28.82
rgb 50 70.38 29.14 72.09 26.25 71.80 28.03 72.19 27.18
TABLE III [13] C. Liu and H. Wechsler, “Robust coding schemes for indexing and

CLASSIFICATION ACCURACY OF SVM ONE-VS-ONE ON RGB AND FUSED
COLOR FEATURES ACROSS DR STAGES. FEATURES ARE REDUCED BY

[1]

[4]

[5]

[7]

[8]

[9]

(10]

[11]

[12]

FDR-2 MLP
DR Stages Accuracy (%) Accuracy (%)
Color non- | mild | mod | severe | PDR || Total| Avg.
DR

Space(s) 0) (1) 2) 3) 4) Class
RGB 94.69| 0.90 | 22.19| 12.44 35.16|| 74.26| 33.06
RGB-rgb 94.89| 0.69 | 25.51| 15.98 33.00|| 74.91| 34.01
RGB-Lab- 94.94| 0.53 | 29.97| 17.63 | 35.66|| 75.69| 35.75
HSV-YIQ
5-color fu- | 95.15| 0.59 | 27.48| 1549 | 35.57|| 75.56| 34.86
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