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Abstract: Object detection models might not be as accurate as 

they could be when trained on particular datasets. Learning from the 
predictions of multiple object detection models can help improve 
their detection accuracy. The learning of predictions to create a new 
set of predictions is called meta-learning, and the method to meta-
learn is Stacking Generalization, or just stacking. This paper 
proposed Stacking models to improve several multiclass object 
detectors trained the Visdrone2019-DET dataset and find the most 
accurate model. Four models were trained –YOLOv5x, YOLOv7x, 
YOLOv8x, and EVA02L. The models trained on one variation of the 
dataset. The meta-models trained from the object detection 
predictions were XGBoost and Multilayer Perceptron (MLP). Nearly 
all the Stacking models using either XGBoost or MLP meta-models 
improved the mAP of the object detection models trained on 
VisDrone-split. The most improved Stacking models in both sets used 
MLP meta-models. The most accurate model was YOLOv8x + 
EVA02L MLP on VisDrone-split with an mAP50 of 0.609, with an 
mAP of 0.389, and whose mAP improved from EVA02L by 4.01%. 

Keywords—Deep learning; Stacking Generalization; Meta-
learning; VisDrone2019-DET YOLOv5; YOLOv7; YOLOv8; EVA02 

I. INTRODUCTION  
Multiclass object detection in drone images can learn to 

perform a wide range of tasks including creating a map of an 
area, predicting traffic, and monitoring wildlife. Drone images 
include real-world data, as opposed to synthetic data, which has 
it challenges. Real-world data can create a more realistic 
distribution of the objects to be detected, resulting in a 
distribution that can be highly imbalanced. This means some 
objects may be detected with high accuracy while others are not. 
Ensemble methods are often being improved to increase 
accuracy of multiple machine learning models without 
increasing the cost of time and effort significantly. There are 
ensemble methods to combine multiple object detection, such as 
the Affirmative method, the Unanimous method, and the 
Consensus method [1]. The Affirmative method may have too 
many false positive predictions, but the other two methods 
cannot be sure take advantage of every true positive prediction 
from each model. So, the goal of this research was to improve 
state-of-the-art object detection models to find the most accurate 
model using meta-learning. 

Stacking Generalization, or stacking, is an ensemble method 
that creates a new set of predictions from a set of models as 
defined in [2]. Stacking uses meta-learning which doesn’t use a 
simple formula to create a new set of final predictions. Meta-
learning, or learning to learn, is used to improve an already 
trained machine learning model. The inputs of the meta-learning 
model are the predictions or metadata of a trained model, then 
the meta-learner learns from the given predictions or metadata 
to make more accurate predictions. Stacking uses a meta-learner 
by training on predictions of at least two machine learning 
model, also known as base or level-0 models. The meta-model, 
or level-1 model, creates a new set of predictions from the 
predictions of multiple base models. 

There is more research available using stacking to perform 
classification and regression tasks than object detection tasks. 
So, this research was not as straightforward as finding an API or 
library to automate the process. There are APIs and libraries 
which can be used to train a meta-classifier or meta-regressor. 
Scikit-Learn, for example, has a stacking classifier method and 
a stacking regressor method in its ensemble module. These 
methods take a list of level-0 models and a level-1 model as 
input and output a trained stacking model. The level-1 models 
used in this research were XGBoost regressors and Multilayer 
Perceptron (MLP) regressors to stack multiple object detection 
models. Although a regression model was used as a level-1 
model, the stacking regressor method in Scikit-Learn could not 
be used. The output of the level-0 models needed to be processed 
so that a regressor could be trained as a level-1 model. 

The rest of the paper first discusses related works using 
similar level-0 models, the same dataset, or level-1 models in 
Chapter 2. Next, datasets used to train four level-0 models and 
test the Stacking models are explained in Chapter 3. The models 
were YOLOv5x [3], YOLOv7x [4], YOLOv8x [5], and 
EVA02L [6]. Chapter 4 describes the methodology and 
architecture of the level-0 models, Stacking models, and level-1 
models. Chapters 5 explains the setup of the experiments, and 6 
explains the results of the level-0 and Stacking models. Finally, 
Chapter 7 contains the conclusion and the focus of future 
research. 



II. RELATED WORK 
Meta-learning for image classification has been more 

thoroughly researched than meta-learning for object detection. 
Since image classification and object detection are related tasks, 
it’s important to discuss meta-learning for image classification 
before meta-learning for object detection. An article published 
in 2023 in the MDPI Journal proposed four decomposition-
based meta-learning methods in four different datasets with 
between 3 and 8 classes as described in [7]. Two of the four 
methods improved the baseline multiclass classifier the most. 
The first of the best methods divide the multiclass classification 
problem into different classifiers for each class in a dataset. Each 
classifier was trained as a binary classifier, then combined into 
the final predictions using a generalizer. The second of the best 
methods used Stacking Generalization. Binary classifiers were 
trained for each class independently and one multiclass classifier 
was trained for the level-0 classifiers. The level-1 classifier is a 
generalizer. So, stacking for classification tasks perform well. 

 Meta-learning is not only used for classification, but also 
regression. A Multi-target Stacked Generalisation (MTSG) 
method was proposed in an article published in the 
Chemometrics and Intelligent Laboratory Systems Journal in 
2021 [8]. The level-0 regression models were trained to predict 
ten soil fertility parameters. MTSG is similar to stacking, except 
instead of a meta-model predicting one target, multiple meta-
models predict multiple targets. For d targets and j level-0 
models, each level-0 model will predict d targets for an input set 
X. These j*d predictions will go through a filter F to preserve 
only the best predictions from each target. For the level-0 
models, there is one meta-model for each of the d targets. The 
predictions after passing through F will be inputted into these 
meta-models to get the final output predictions. The next paper 
uses a similar method of MTSG to predict multiple targets but 
applies to single class object detection. 

A paper published in 2022 in the Scientific Reports Journal 
provided a stacking-based framework for improving the 
detection of a single class of polyps, called StackBox [9]. Five 
models, including YOLOv5 [3], were combined through their 
final predictions to create a new set of final predictions. For each 
level-1 model, there were four datasets for each coordinate. The 
best regression models that were used as level-1 models were 
Linear Regression, Random Forest, Gradient Boosting, and 
XGBoost. Even though the article does not use VisDrone2019, 
it explains which learners are best for meta-learning. StackBox 
was able to significantly improve the average precision from the 
level-0 models. The next paper expands upon the meta-learning 
task that StackBox completes by detecting objects in the 
multiclass dataset, VisDrone2019. 

In 2022, an article published in the International Journal of 
Computational Intelligence Systems explained how a global and 
local ensemble network was used to increase the accuracy of 
object detection model predictions [10]. Three models were 
combined using a global and local ensemble network (GLE-
NET). In general, the global ensemble network combines 
detection boxes, and the local ensembled network creates a new 
confidence score from these combined detection boxes. This 
helps to visualize the process of creating a new prediction box 
from base prediction boxes as separate from the process of 

creating a new confidence score. GLE-NET improved the 
accuracy by combining two or more models together over what 
those selected models can do alone. This research merges GLE-
Net and StackBox by using a simpler algorithm to improve upon 
multiple models trained on a dense multiclass dataset, while also 
using higher average precision models as the level-0 model 

III. DATASET DESCRIPTION 

A. VisDrone 
Visdrone2019-DET, or VisDrone for short, a drone image 

dataset created at Tianjin University in China as explained in 
[11] were used to train the object detection models. The 
annotation format of the VisDrone dataset was that for each 
image, the coordinates in pixels for each detection are “X min, 
Y min, width, height.” The images had a wide range of sizes, up 
to 1500 by 2000 pixels. So, they were resized to 1500 by 1500 
pixels. An example from the resized dataset is shown Figure 1. 
The image shown was originally 1080 by 1920 pixels, so the 

width got smaller, and the height was increased. This explains 
why the objects look compressed or stretched. The number of 
images used for training was 6,471 and the number of images 
used for testing was 548. 

There are ten main classifications– pedestrian, people, 
bicycle, car, van, truck, tricycle, awning-tricycle, bus, and 
motor. There are a total of 343,205 training annotations in 
VisDrone. There are also some inconsistencies with ground truth 
detections. There are objects that are a part of the ground truth, 
but other objects of the same size and class are which are not a 
part of the ground truth. For example, in the upper left-hand 
corner of Figure 1, the cars parked in the parking lot and those 
parked on the street are about the same size and almost as 
crowded. However, some cars in the parking lot are not a part of 
the ground truth, while cars parked on the street are. 

 
Figure 1.  A resized 1500 by 1500 pixel image from the VisDrone [11] 
dataset. The ground truths in the image are pedestrian, people, bicycle, 
car, and motor. 

 



B. VisDrone-split 
To increase accuracy and remove some inconsistencies in 

the ground truth, each 1500 by 1500 pixel image from VisDrone 
was later cropped to nine equal sized sub-images. The images in 
VisDrone-split do not overlap with their adjacent images. This 
means the number of training annotations in the new dataset, 
VisDrone-split, is 295,677. Since the only objects that were 
trained to be identified are objects that are completely in the 
frame, the annotations for cropped objects were removed. The 
images without annotations from both image inconsistencies 
and removed cropped annotations were also removed. This 
means there are fewer instances of each class due to all the 
cropped objects in each image. 

IV. REARCH METHODOLOGY 

A. Base Models (Level-0): YOLOv5, YOLOv7, YOLOv8 
The level-0 object detection models were trained on the 

VisDrone dataset variation, VisDrone-split. The four level-0 
models are YOLOv5x, YOLOv7x, YOLOv8x, and EVA02L. 
YOLO models can be characterized by their backbone, neck, 
and head. YOLOv5 [3] has the same backbone as YOLOv4. The 
neck is Spatial Pyramid Pooling Fusion (SPPF) [12] and CSP-
Path Aggregation Network (CSP-PAN) [13], [14]. CSP-PAN 
uses the features that were learned in the backbone and preserves 
the information into the lower layers. The activation function is 
Sigmoid Linear Units (SiLU), which is defined as the following: 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 𝑥𝑥/(1 + 𝑒𝑒−𝑥𝑥). (1) 

By default, the optimizer is Stochastic Gradient Descent (SGD). 
The model head is the same as YOLOv3 [15] with has three 
output heads, which correspond to bounding boxes, objectness, 
and class. The three output heads and loss functions correspond 
to bounding boxes, objectness, and class. Location loss uses 
Complete Intersection over Union (CIOU) loss defined in [16]. 
Objectness and class loss both use Binary Cross Entropy (BCE) 
loss. BCE for m classes and n predictions is: 

 𝐵𝐵𝐵𝐵𝐵𝐵 = − 1
𝑛𝑛
∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖))𝑚𝑚

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 , (2) 

where 𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖)  is the probability of class j. CIOU for two 
detection boxes a and b is: 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎, 𝑏𝑏) = 1 − 𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎, 𝑏𝑏) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(a, b)2/𝑐𝑐2 + 𝛼𝛼 (3) 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) is the Euclidean distance, c is the length of the 
diagonal of the smallest box covering both a and b, and α is the 
aspect ratio. 

YOLOv7 and YOLOv8 architectures are similar to YOLOv5 
with a few differences. YOLOv7 [4] modified Efficient Layer 
Aggregation Network (ELAN) [17] as the backbone, called 
Extended ELAN. CSPSPP and PAN form the neck, followed by 
YOLOR [18] as the head. The SiLU activate function is used 
and, by default, SGD with momentum 0.937 is used for the 
optimizer. The image augmentation that is used includes mosaic, 
where portions of images are combined into one. There are three 
losses from the output head for bounding boxes, objectness, and 
class. YOLOv7 used the same losses for bounding boxes, 
objectness, and class as YOLOv5. The backbone for YOLOv8 
[5] is a modified YOLOv4 backbone with a Feature Pyramid 
Network (FPN) [19], and the neck is PAN. One output head 
identifies the bounding boxes, objectness, and class. The loss 
functions are CIOU with Distribution Focal Loss (DFL) [20] for 
bounding box loss and BCE for class loss. DFL is a specific form 
of Focal Loss which is calculated using a weighted cross entropy 
where there is more weight on predictions closer to the ground 
truths. 

B. Base Models (Level-0): EVA02L  
One of the two EVA methods is EVA02 [6]. EVA02L uses 

Transform Vision (TrV), a type of Vision Transformer (ViT) 
[21]. TrV follows Contrastive Language-Image Pre-training 
(CLIP) [22] to pretrain the TrV. The improved ViT include 
multi-head self-attention (MHSA) layers + 2D rotary position 
embedding (RoPE) [23], random weight initialization in a 

 
Figure 2.  One of the proposed Stacking models- YOLOv7x + YOLOv8x + EVA02L. For an input image dataset, the output of YOLOv7x, YOLOv8x, and 
EVA02L level-0 models are used as the dataset to train the meta-learner regressors. But first, the data must be combined and processed so that predictions 
with the highest IOU from each level-0 model are grouped with the same class, any ungrouped predictions are removed, and incomplete groups are filled. 
Once the data is separated based on the four coordinates, each dataset can be used to train an XGBoost or MLP Meta-learner regressor. Each of the four 
resulting level-1 models provide a single coordinate for a new set of final predictions. Combining the coordinates provides the final output. 



feedforward network (FFN) with a SiLU activation function, 
and a normalization layer further explained in [6]. Before the 
inputs can be used in the MSHA layer, they need to be separated 
into tokens, where input embeddings convert them into vectors. 
The position of each token is important to the relationship 
between the elements, so positional embeddings include 
information about each position of the tokens to create the query, 
key, and value vectors. So, RoPE modifies only the query and 
key vectors. 

C. Proposed Stacking Models  
After training four level-0 models, the stacking ensemble 

method was implemented to combine multiple object detectors. 
The meta-learning models learned from the output of several 
combinations of the level-0 models on the VisDrone datasets. 
The outputs are all combinations of YOLOv5x, YOLOv7x, 
YOLOv8x, and EVA02L trained on VisDrone-split. The meta- 
regressors trained as level-1 models were XGBoost and 
Multilayer Perceptron (MLP). Four datasets were created from 
the output of the level-0 models, one for each coordinate to 
meta-learn the detection boxes, like StackBox [9]. Even though 
the datasets used in this research were multiclass, meta-learning 
the class label may have created a problem in the end results 
since the dataset is imbalanced. So, each class prediction was 
not used in each of the meta-learner datasets. To create the 
datasets to train the level-1 models, the data was first prepared. 

The first step was converting the images and annotations into 
tables for each image in the dataset. The features of the table are 
the bounding box, confidence score, class label, image number, 
and model name. Next, ground truths were paired with 
predictions of the same class with the highest Intersection over 
Union (IOU) from each level-0 model. If there were no 
predictions from a model to be paired with a ground truth, then 
a null value is used for that prediction. The third step was to drop 
a ground truth from training if only null predictions were paired 
with it. For each ground truth, if there were still any null 
predictions, it would be filled with the prediction from another 
model with the highest IOU. The last step was to create the four 
datasets for each meta-learner, which contains the detection box 
coordinates of each level-0 model, their confidences, and the 
IOUs between each other. 

The learners trained as meta-learners were XGBoost and 
MLP. Since each level-1 regressor needed to learn the 
coordinates of the detection box, four models were trained after 
the dataset was separated into four datasets for each coordinate 
of a detection box - X min, Y min, X max, and Y max. To train 
each XGBoost, four-fold cross-validation was used to find the 
optimal set of hyperparameters. To train each MLP, the number 
of layers and the number of nodes had to be determined. Each 
MLP had two deeply connected layers because having one or 
three layers did not improve the results. However, the number 
of nodes in each layer of each MLP was determined by the 
number of level-0 models that were being combined. This is 
because more level-0 models mean more features. The number 
of nodes in the first layer was number of features plus one and 
output layer had one node. The number of nodes in the second 
layer was between the number of nodes in the first and last layer. 
There were no signs of significant overfitting, so there was no 

need for a dropout layer or any other techniques to reduce 
overfitting. 

The level-0 output predictions from the test dataset were 
grouped differently than the level-0 output predictions from the 
training dataset. Each level-0 model was paired with the other 
level-0 models instead of the ground truth being paired with the 
level-0 models. Any prediction without a group was removed 
from testing. Any other missing predictions left were filled in 
the same manner as for the training dataset. The next step was 
to remove the test dataset’s duplicate rows. The same 
predictions were not always paired together so, rows with 
repeated predictions were also removed. Next, the test dataset 
was split into the four coordinate datasets as inputs to the four 
separate level-1 models. Lastly, the outputs were combined to 
get a finalized set of predictions to calculate the metrics to 
compare the results of the level-0 and level-1 models. Figure 2 
shows one of the Stacking models. 

V. EXPERIMENT SETUP 
A. Hardware and Software 

There were two GPUs used in this research. All the level-1 
models were trained using the NVIDIA GeForce RTX 3060 
with 6 GB. The level-0 models that were trained using the 
NVIDIA Titan XP with 12 GB were YOLOv7x and YOLOv8x. 
The cloud computing platform, Amazon Web Services (AWS), 
was used to train the largest models – YOLOv5x and EVA02L. 
Two instances of Amazon Sagemaker were created with a 
NVIDIA A10G Tensor Core GPU with 24 GB. YOLOv5x 
trained with one GPU and EVA02L trained with four GPUs. 
Even though the level-0 and level-1 models were trained using 
GPUs, the meta-data was preprocessed using the CPU.  

B. Model Evaluation Metrics 
An object detection metric is Average precision (AP), which 

is the area under the precision-recall curve [24]. The precision 
and recall are calculated as the following: 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =   𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

  =   𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (4) 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =   𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

  =   𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑠𝑠

 (5) 

where TP is true positive, FP is false positive, and FN is false 
negative. A prediction is considered TP if its Intersection over 
Union (IOU) with a ground truth is greater than given threshold. 
The mean AP (mAP) is the average of each class AP. The most 
used IOU thresholds mAP uses are 50%, 75%, and 50:5:95%. 
The first two mAPs with IOU thresholds 50% and 75% are 
labeled as mAP50 and mAP75, respectively. mAP50:5:95 is the 
average of the ten mAPs from an IOU of 50% to 95% with 
increments of 5%.  

TABLE I. STACKING MODEL RUNTIME IN MINUTES BASED ON THE 
NUMBER OF LEVEL-0 MODELS 

Number of Level-0 Models 2 3 4 

XGBoost Stacking Runtime (min) 51 93 155 

MLP Stacking Runtime (min) 60 100 171 

 



C. Base Models (Level-0) Parameter Setups 
The four base models which were trained were YOLOv5x 

[3], YOLOv7x [4], YOLOv8x [5], and EVA02L [6]. Due to time 
constraints and computational limitations for the larger models, 
the four models were only trained on the VisDrone-split dataset. 
They all used the default parameters. The batch size and number 
workers were based on the space available. The main 
complication was overfitting. YOLOv8x had a 20% dropout rate 
but, adding more image augmentation helped slow done 
overfitting the most across all models. The augmentations that 
were applied were image rotation, translation, scale, flip across 
both x and y axes, mosaic, and mixup. The training stopped 
when the training and testing mAP50 results differed more than 
0.05. 

D. Meta Model (Level-1) Parameter Setups  
Before training and testing XGBoost and Multilayer 

Perceptron (MLP) level-0 models, the final predictions for the 
training and testing datasets were saved from all four level-0 
models. An IOU threshold of 0.0 or 0.1 was put on the overlap 
of each pair of base models. This was because some of the 
objects in the images were close together, so the IOU threshold 

attempts to make sure that the paired predictions were detecting 
the same object. Although the training predictions were paired 
using the ground truth, that was not the case for the testing 
predictions. So, the meta-learners were trained and tested using 
predictions that have some overlap between them. Table I shows 
the time to preprocess the data, train, and test was based on the 
number of level-0 models for Stacking models. The average 
runtime of the Stacking models with two and three level-0 
models including EVA02L was calculated to find the runtime 
for two and three level-0 models, respectively. The runtimes for 
YOLOv5x + YOLOv7x + YOLOv8x + EVA02L XGBoost and 
MLP are the runtimes for four level-0 models. Each runtime is 
rounded to the nearest whole minute. 

As mentioned in the previous chapter, four-fold cross-
validation was used to find the optimal set of hyperparameters 
to train each XGBoost. The hyperparameters that were tested to 
find the optimal set of measurements were n estimators for the 
number of trees, max depth for the maximum depth of each tree, 
and learning rate. The default values for each hyperparameter 
were 100 estimators, a max depth of 6, and a learning rate of 0.3. 
All the models for any combination of level-0 models used a 

TABLE II.  Proposed XGBoost Stacking Models mAP per Class and mAP50 With VisDrone-Split 

Method mAP50 mAP pedes-
trian 

people bicycle car van truck tricycle awning- 
tricycle 

bus motor 

Level-0 Models 
YOLOv5x-s 0.560 0.337 0.340 0.236 0.195 0.631 0.426 0.300 0.242 0.170 0.508 0.326 

YOLOv7x-s 0.563 0.341 0.337 0.227 0.206 0.629 0.428 0.316 0.262 0.147 0.528 0.330 

YOLOv8x-s 0.579 0.362 0.367 0.262 0.215 0.656 0.453 0.337 0.285 0.172 0.514 0.357 

EVA02L-s 0.587 0.374 0.358 0.281 0.247 0.604 0.437 0.395 0.309 0.213 0.544 0.352 

Proposed XGBoost Stacking models With Only YOLOs 
YOLOv5x + 
YOLOv7x-s 

0.577 0.353 0.344 0.241 0.214 0.630 0.442 0.331 0.267 0.180 0.539 0.342 

YOLOv5x + 
YOLOv8x-s 

0.586 0.361 0.355 0.257 0.221 0.635 0.452 0.337 0.279 0.189 0.533 0.351 

YOLOv7x + 
YOLOv8x-s 

0.587 0.364 0.355 0.254 0.228 0.639 0.450 0.351 0.290 0.176 0.542 0.358 

YOLOv5x + 
YOLOv7x + 
YOLOv8x-s 

0.590 0.366 0.358 0.256 0.227 0.639 0.456 0.347 0.285 0.188 0.544 0.357 

Proposed XGBoost Stacking models With EVA02L 
YOLOv5x + 
EVA02L-s 

0.603 0.377 0.354 0.277 0.247 0.626 0.456 0.377 0.306 0.213 0.555 0.359 

YOLOv7x + 
EVA02L-s 

0.605 0.382 0.361 0.277 0.256 0.629 0.453 0.383 0.324 0.209 0.563 0.366 

YOLOv5x + 
YOLOv7x + 
EVA02L-s 

0.605 0.382 0.365 0.277 0.253 0.634 0.460 0.378 0.317 0.212 0.555 0.369 

YOLOv5x + 
YOLOv8x + 
EVA02L-s 

0.605 0.383 0.370 0.283 0.252 0.637 0.461 0.382 0.312 0.211 0.550 0.370 

YOLOv5x + 
YOLOv7x + 
YOLOv8x + 
EVA02L-s 

0.604 0.384 0.371 0.281 0.252 0.640 0.464 0.378 0.316 0.211 0.553 0.374 

YOLOv7x + 
YOLOv8x + 
EVA02L-s 

0.606 0.385 0.373 0.283 0.254 0.640 0.459 0.386 0.322 0.208 0.553 0.373 

YOLOv8x + 
EVA02L-s 

0.608 0.385 0.365 0.282 0.254 0.634 0.461 0.394 0.324 0.209 0.553 0.370 

Note: The “-s” means the level-0 models were trained on VisDrone-split. Bold values are the most improved class per method and the bold method is the 
best performing model in the table. The green and blue cells show the highest metrics. 

 



max depth of either 4, 6, or 8, and they all used a learning rate 
of 0.05. The number of estimators for most models for all 
combinations of level-0 models used 200 estimators. 

To train and to more efficiently find the optimal MLP, 0.25 
of the training was used as a validation dataset to find the models 
with the lowest mean squared error. Each MLP used the Adam 
optimizer, a learning rate of 0.001, the number of features plus 
one as the number of nodes in the first layer and one node for 
the output layer. The number of nodes in the second layer was 
between the number of nodes first layer and output layer. Each 
model ran for a maximum of 100 epochs with early stopping and 
a batch size of 128 with eight workers. Early stopping monitored 
the validation loss with a patience of ten epochs as a stopping 
point. 

VI. RESULTS AND DISCUSSION 
The results of Stacking models with level-1 models trained 

on the level-0 models are analyzed. Between the level-1 models, 
Multilayer Perceptron (MLP) provides the highest average 
precision results.  

A. Level-0 Models: YOLOv5x, YOLOv7x, YOLOv8x, EVA02L 
The metric results of YOLOv5x, YOLOv7x, YOLOv8x, and 

EVA02L are shown in Table II, where “-s” is for models trained 
on VisDrone-split. EVA02L had the highest mAP50 and mAP 
scores of the level-0 models. Class 3 (car) had the highest mAP 
class score for every level-0 model. However, EVA02L had the 
lowest scoring car class, 0.052 below YOLOv8x’s car mAP. 
EVA02L had the highest scoring class 5 (truck), whose mAP is 
0.058 above YOLOv8x’s truck mAP. Given the differences, the 
car and truck mAPs between models affected some Stacking 
models. 

B. XGBoost Stacking Models 
The set of base models were stacked to create eleven 

combinations of models with XGBoost. The XGBoost Stacking 
models that trained on the output of level-0 models were tested 
on VisDrone-split. Table II show the average mAP50, average 
mAP, and mAP per class of all the Stacking models with 
XGBoost trained on each combination of level-0 models. The 
XGBoost Stacking models tested on VisDrone-split improved 

on nearly all the combinations of the level-0 models. The most 
improved XGBoost Stacking model in terms of mAP was  
YOLOv5x-s + YOLOv7x-s which had both their mAP50 and 
mAP increase from YOLOv7x. The most improved class was 
the least accurate class, awning-tricycle. The only negative 
percent change was the most accurate class, car, but the car class 
for nearly every Stacking model had no improvement. Figure 3 
shows percent change from EVA02L’s metrics to their XGBoost 
Stacking model’s metrics in the green boxes. The most accurate 
XGBoost Stacking model is YOLOv8x-s + EVA02L-s since it 
has the highest mAP50 and mAP. The most improved class was 
tricycle but, the class with the smallest percent change was car. 
The class improvements of YOLOv8-s + EVA02L-s XGBoost 
were less significant than YOLOv5x-s + YOLOv7x-s XGBoost, 
and the class deteriorations of YOLOv8-s + EVA02L-s 
XGBoost were more significant than YOLOv5x-s + YOLOv7x-
s XGBoost. This is why the best XGBoost model in terms of 
mAP was also not the most improved. 

C. MLP Stacking Models  
Next, the set of four level-0 models were stacked to create 

eleven combinations of models with MLP, the same as with 
XGBoost. The MLP Stacking models that trained on the output 
of level-0 models were tested on VisDrone-split. Table III show 
the average mAP50, average mAP, and mAP per class of the 
most improved and best performing MLP Stacking models 
trained on each set of level-0 models trained on VisDrone-split. 
The best performing model overall in the table according to 
mAP50 and mAP came from YOLOv8x + EVA02L-s MLP, the 
same as with an XGBoost meta-model. 

These MLP Stacking models tested on VisDrone-split 
improved on all the combinations of the level-0 models when 
measuring both mAP50 and mAP. The most improved model in 
terms of mAP in Table III is YOLOv5x-s + YOLOv7x-s MLP. 
The most improved class was awning tricycle. This model was 
one of the few Stacking models that experienced an increase in 
the car class from their level-0 models. Every class from the 
YOLOv5x-s + YOLOv7x-s MLP model improved more than 
every class from the YOLOv5x-s + YOLOv7x-s XGBoost model. 
Figure 4 shows percent change from EVA02L’s metrics to their 
MLP Stacking model’s metrics. Each green box shows a 

 
Figure 3.  Metric comparison between EVA02L and proposed XGBoost Stacking models. The green boxes show the positive percent changes between each 
Stacking model and EVA02L. The percent changes shown are all from the metric scores of EVA02L 



positive percent change. The most efficient model with the most 
improved mAP50 metric was YOLOv8x + EVA02L-s MLP. 
The YOLOv8x + EVA02L-s MLP model had all but three of 
their classes improved from its level-0 models, including the car 
and truck classes. However, each class in the YOLOv8x + 
EVA02L-s MLP model improved at least as much as its 
XGBoost counterpart. The YOLOv8x + EVA02L-s MLP 
model’s most improved class was tricycle and the smallest 
percent change was car. The decrease in the car class from 
YOLOv8x was expected since YOLOv8x had a significantly 
better car mAP than EVA02L.  

VII. CONCLUSION AND FUTURE WORK 
The proposed Stacking models used XGBoost and 

Multilayer Perceptron (MLP) meta-models to learn from and 
improve multiple multiclass object detectors. The XGBoost and 
MLP level-1 models were trained on the predictions of two sets 
of level-0 models each. Improvements were seen in nearly all 
XGBoost and all MLP Stacking models. The most improved 
Stacking model was the YOLOv5x-s + YOLOv7x-s with an 
MLP level-1 model whose mAP improved 4.99% from 
YOLOv7x. The model with the highest mAP between both 

level-0 sets was the YOLOv8x-s + EVA02L-s MLP model with 
an mAP50 of 0.609, with an mAP of 0.389, and whose mAP 
improved 4.01% from EVA02L. Therefore, the YOLOv8x-s + 
EVA02L-s MLP Stacking model is the best performing models 
of all proposed models.  

In order to further refine and examine these models, future 
work should include updating the process for the Stacking and 
selecting other metrics. First, the dataset used could be another 
version of the VisDrone dataset to improve the imbalanced 
number of objects per class. Second, new data preprocess 
techniques should be researched to better minimize the number 
of false positives. Next, other models could also be used as meta-
learners trained from object detection predictions, such as 
Support Vector Machine or Cascade Forest [25]. Lastly, other 
metrics should be included in the results to get a better picture 
of how the Stacking models improved from their level-0 models. 
These metrics could be based on the size of the object, such as 
mAP-large, mAP-medium, and mAP-small. So, there are many 
paths on which to move forward to improve on multiclass object 
detection models. 

 

TABLE III.  Proposed MLP Stacking Models mAP per Class and mAP50 With VisDrone-Split 

Method mAP50 mAP pedes-
trian 

people bicycle car van truck tricycle awning- 
tricycle 

bus motor 

Level-0 Models 
YOLOv5x-s 0.560 0.337 0.340 0.236 0.195 0.631 0.426 0.300 0.242 0.170 0.508 0.326 

YOLOv7x-s 0.563 0.341 0.337 0.227 0.206 0.629 0.428 0.316 0.262 0.147 0.528 0.330 

YOLOv8x-s 0.579 0.362 0.367 0.262 0.215 0.656 0.453 0.337 0.285 0.172 0.514 0.357 

EVA02L-s 0.587 0.374 0.358 0.281 0.247 0.604 0.437 0.395 0.309 0.213 0.544 0.352 

Proposed MLP Stacking Models With Only YOLOs 
YOLOv5x + 
YOLOv7x-s 

0.578 0.358 0.356 0.247 0.219 0.637 0.447 0.334 0.271 0.182 0.544 0.348 

YOLOv5x + 
YOLOv8x-s 

0.587 0.366 0.367 0.263 0.223 0.644 0.456 0.339 0.284 0.189 0.541 0.358 

YOLOv7x + 
YOLOv8x-s 

0.588 0.369 0.366 0.262 0.230 0.648 0.455 0.352 0.294 0.178 0.543 0.365 

YOLOv5x + 
YOLOv7x + 
YOLOv8x-s 

0.591 0.369 0.366 0.262 0.230 0.643 0.456 0.347 0.289 0.188 0.547 0.361 

Proposed MLP Stacking Models With EVA02L 
YOLOv5 + EVA02L-s 0.608 0.384 0.369 0.284 0.253 0.633 0.461 0.383 0.312 0.216 0.562 0.367 

YOLOv5x + 
YOLOv7x + 
YOLOv8x + 
EVA02L-s 

0.605 0.386 0.380 0.284 0.257 0.642 0.463 0.380 0.318 0.210 0.550 0.378 

YOLOv7x + 
YOLOv8x + 
EVA02L-s 

0.606 0.386 0.377 0.283 0.256 0.642 0.462 0.385 0.322 0.209 0.549 0.374 

YOLOv5x + 
YOLOv8x + 
EVA02L-s 

0.607 0.387 0.380 0.288 0.254 0.642 0.464 0.384 0.316 0.212 0.555 0.376 

YOLOv5 + YOLOv7x 
+ EVA02L-s 

0.608 0.387 0.377 0.285 0.256 0.639 0.461 0.381 0.319 0.212 0.556 0.375 

YOLOv7x + 
EVA02L-s 

0.608 0.388 0.375 0.286 0.261 0.637 0.460 0.389 0.329 0.212 0.563 0.373 

YOLOv8x + 
EVA02L-s 

0.609 0.389 0.375 0.290 0.257 0.640 0.463 0.394 0.324 0.211 0.559 0.374 

Note: The “-s” means the level-0 models were trained on VisDrone-split. Bold values are the most improved class per method and the bold method is the 
best performing model in the table. The green and blue cells show the highest metrics. 
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Figure 4.  Metric comparison between EVA02L and proposed MLP Stacking models. The green boxes show the positive percent changes between each 
Stacking model and EVA02L. The percent changes shown are all from the metric scores of EVA02L. 
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