
Novel Deep Learning Based Stacking Models for
Multiclass Object Recognition in Drone Images

Allison Nicole Paxton
Department of Computer Science

California State University
Northridge, CA, US

allison.paxton.505@my.csun.edu

Abhishek Verma
Department of Computer Science

California State University
Northridge, CA, US

abhishek.verma@csun.edu

Abstract: Object detection models might not be as accurate as

they could be when trained on particular datasets. Learning from the
predictions of multiple object detection models can help improve
their detection accuracy. The learning of predictions to create a new
set of predictions is called meta-learning, and the method to meta-
learn is Stacking Generalization, or just stacking. This paper
proposed Stacking models to improve several multiclass object
detectors trained the Visdrone2019-DET dataset and find the most
accurate model. Four models were trained –YOLOv5x, YOLOv7x,
YOLOv8x, and EVA02L. The models trained on one variation of the
dataset. The meta-models trained from the object detection
predictions were XGBoost and Multilayer Perceptron (MLP). Nearly
all the Stacking models using either XGBoost or MLP meta-models
improved the mAP of the object detection models trained on
VisDrone-split. The most improved Stacking models in both sets used
MLP meta-models. The most accurate model was YOLOv8x +
EVA02L MLP on VisDrone-split with an mAP50 of 0.609, with an
mAP of 0.389, and whose mAP improved from EVA02L by 4.01%.

Keywords—Deep learning; Stacking Generalization; Meta-
learning; VisDrone2019-DET YOLOv5; YOLOv7; YOLOv8; EVA02

I. INTRODUCTION
Multiclass object detection in drone images can learn to

perform a wide range of tasks including creating a map of an
area, predicting traffic, and monitoring wildlife. Drone images
include real-world data, as opposed to synthetic data, which has
it challenges. Real-world data can create a more realistic
distribution of the objects to be detected, resulting in a
distribution that can be highly imbalanced. This means some
objects may be detected with high accuracy while others are not.
Ensemble methods are often being improved to increase
accuracy of multiple machine learning models without
increasing the cost of time and effort significantly. There are
ensemble methods to combine multiple object detection, such as
the Affirmative method, the Unanimous method, and the
Consensus method [1]. The Affirmative method may have too
many false positive predictions, but the other two methods
cannot be sure take advantage of every true positive prediction
from each model. So, the goal of this research was to improve
state-of-the-art object detection models to find the most accurate
model using meta-learning.

Stacking Generalization, or stacking, is an ensemble method
that creates a new set of predictions from a set of models as
defined in [2]. Stacking uses meta-learning which doesn’t use a
simple formula to create a new set of final predictions. Meta-
learning, or learning to learn, is used to improve an already
trained machine learning model. The inputs of the meta-learning
model are the predictions or metadata of a trained model, then
the meta-learner learns from the given predictions or metadata
to make more accurate predictions. Stacking uses a meta-learner
by training on predictions of at least two machine learning
model, also known as base or level-0 models. The meta-model,
or level-1 model, creates a new set of predictions from the
predictions of multiple base models.

There is more research available using stacking to perform
classification and regression tasks than object detection tasks.
So, this research was not as straightforward as finding an API or
library to automate the process. There are APIs and libraries
which can be used to train a meta-classifier or meta-regressor.
Scikit-Learn, for example, has a stacking classifier method and
a stacking regressor method in its ensemble module. These
methods take a list of level-0 models and a level-1 model as
input and output a trained stacking model. The level-1 models
used in this research were XGBoost regressors and Multilayer
Perceptron (MLP) regressors to stack multiple object detection
models. Although a regression model was used as a level-1
model, the stacking regressor method in Scikit-Learn could not
be used. The output of the level-0 models needed to be processed
so that a regressor could be trained as a level-1 model.

The rest of the paper first discusses related works using
similar level-0 models, the same dataset, or level-1 models in
Chapter 2. Next, datasets used to train four level-0 models and
test the Stacking models are explained in Chapter 3. The models
were YOLOv5x [3], YOLOv7x [4], YOLOv8x [5], and
EVA02L [6]. Chapter 4 describes the methodology and
architecture of the level-0 models, Stacking models, and level-1
models. Chapters 5 explains the setup of the experiments, and 6
explains the results of the level-0 and Stacking models. Finally,
Chapter 7 contains the conclusion and the focus of future
research.

II. RELATED WORK
Meta-learning for image classification has been more

thoroughly researched than meta-learning for object detection.
Since image classification and object detection are related tasks,
it’s important to discuss meta-learning for image classification
before meta-learning for object detection. An article published
in 2023 in the MDPI Journal proposed four decomposition-
based meta-learning methods in four different datasets with
between 3 and 8 classes as described in [7]. Two of the four
methods improved the baseline multiclass classifier the most.
The first of the best methods divide the multiclass classification
problem into different classifiers for each class in a dataset. Each
classifier was trained as a binary classifier, then combined into
the final predictions using a generalizer. The second of the best
methods used Stacking Generalization. Binary classifiers were
trained for each class independently and one multiclass classifier
was trained for the level-0 classifiers. The level-1 classifier is a
generalizer. So, stacking for classification tasks perform well.

 Meta-learning is not only used for classification, but also
regression. A Multi-target Stacked Generalisation (MTSG)
method was proposed in an article published in the
Chemometrics and Intelligent Laboratory Systems Journal in
2021 [8]. The level-0 regression models were trained to predict
ten soil fertility parameters. MTSG is similar to stacking, except
instead of a meta-model predicting one target, multiple meta-
models predict multiple targets. For d targets and j level-0
models, each level-0 model will predict d targets for an input set
X. These j*d predictions will go through a filter F to preserve
only the best predictions from each target. For the level-0
models, there is one meta-model for each of the d targets. The
predictions after passing through F will be inputted into these
meta-models to get the final output predictions. The next paper
uses a similar method of MTSG to predict multiple targets but
applies to single class object detection.

A paper published in 2022 in the Scientific Reports Journal
provided a stacking-based framework for improving the
detection of a single class of polyps, called StackBox [9]. Five
models, including YOLOv5 [3], were combined through their
final predictions to create a new set of final predictions. For each
level-1 model, there were four datasets for each coordinate. The
best regression models that were used as level-1 models were
Linear Regression, Random Forest, Gradient Boosting, and
XGBoost. Even though the article does not use VisDrone2019,
it explains which learners are best for meta-learning. StackBox
was able to significantly improve the average precision from the
level-0 models. The next paper expands upon the meta-learning
task that StackBox completes by detecting objects in the
multiclass dataset, VisDrone2019.

In 2022, an article published in the International Journal of
Computational Intelligence Systems explained how a global and
local ensemble network was used to increase the accuracy of
object detection model predictions [10]. Three models were
combined using a global and local ensemble network (GLE-
NET). In general, the global ensemble network combines
detection boxes, and the local ensembled network creates a new
confidence score from these combined detection boxes. This
helps to visualize the process of creating a new prediction box
from base prediction boxes as separate from the process of

creating a new confidence score. GLE-NET improved the
accuracy by combining two or more models together over what
those selected models can do alone. This research merges GLE-
Net and StackBox by using a simpler algorithm to improve upon
multiple models trained on a dense multiclass dataset, while also
using higher average precision models as the level-0 model

III. DATASET DESCRIPTION

A. VisDrone
Visdrone2019-DET, or VisDrone for short, a drone image

dataset created at Tianjin University in China as explained in
[11] were used to train the object detection models. The
annotation format of the VisDrone dataset was that for each
image, the coordinates in pixels for each detection are “X min,
Y min, width, height.” The images had a wide range of sizes, up
to 1500 by 2000 pixels. So, they were resized to 1500 by 1500
pixels. An example from the resized dataset is shown Figure 1.
The image shown was originally 1080 by 1920 pixels, so the

width got smaller, and the height was increased. This explains
why the objects look compressed or stretched. The number of
images used for training was 6,471 and the number of images
used for testing was 548.

There are ten main classifications– pedestrian, people,
bicycle, car, van, truck, tricycle, awning-tricycle, bus, and
motor. There are a total of 343,205 training annotations in
VisDrone. There are also some inconsistencies with ground truth
detections. There are objects that are a part of the ground truth,
but other objects of the same size and class are which are not a
part of the ground truth. For example, in the upper left-hand
corner of Figure 1, the cars parked in the parking lot and those
parked on the street are about the same size and almost as
crowded. However, some cars in the parking lot are not a part of
the ground truth, while cars parked on the street are.

Figure 1. A resized 1500 by 1500 pixel image from the VisDrone [11]
dataset. The ground truths in the image are pedestrian, people, bicycle,
car, and motor.

B. VisDrone-split
To increase accuracy and remove some inconsistencies in

the ground truth, each 1500 by 1500 pixel image from VisDrone
was later cropped to nine equal sized sub-images. The images in
VisDrone-split do not overlap with their adjacent images. This
means the number of training annotations in the new dataset,
VisDrone-split, is 295,677. Since the only objects that were
trained to be identified are objects that are completely in the
frame, the annotations for cropped objects were removed. The
images without annotations from both image inconsistencies
and removed cropped annotations were also removed. This
means there are fewer instances of each class due to all the
cropped objects in each image.

IV. REARCH METHODOLOGY

A. Base Models (Level-0): YOLOv5, YOLOv7, YOLOv8
The level-0 object detection models were trained on the

VisDrone dataset variation, VisDrone-split. The four level-0
models are YOLOv5x, YOLOv7x, YOLOv8x, and EVA02L.
YOLO models can be characterized by their backbone, neck,
and head. YOLOv5 [3] has the same backbone as YOLOv4. The
neck is Spatial Pyramid Pooling Fusion (SPPF) [12] and CSP-
Path Aggregation Network (CSP-PAN) [13], [14]. CSP-PAN
uses the features that were learned in the backbone and preserves
the information into the lower layers. The activation function is
Sigmoid Linear Units (SiLU), which is defined as the following:

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 𝑥𝑥/(1 + 𝑒𝑒−𝑥𝑥). (1)

By default, the optimizer is Stochastic Gradient Descent (SGD).
The model head is the same as YOLOv3 [15] with has three
output heads, which correspond to bounding boxes, objectness,
and class. The three output heads and loss functions correspond
to bounding boxes, objectness, and class. Location loss uses
Complete Intersection over Union (CIOU) loss defined in [16].
Objectness and class loss both use Binary Cross Entropy (BCE)
loss. BCE for m classes and n predictions is:

 𝐵𝐵𝐵𝐵𝐵𝐵 = − 1
𝑛𝑛
∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖))𝑚𝑚

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 , (2)

where 𝑃𝑃(𝑦𝑦𝑖𝑖𝑖𝑖) is the probability of class j. CIOU for two
detection boxes a and b is:

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎, 𝑏𝑏) = 1 − 𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎, 𝑏𝑏) + 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(a, b)2/𝑐𝑐2 + 𝛼𝛼 (3)

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) is the Euclidean distance, c is the length of the
diagonal of the smallest box covering both a and b, and α is the
aspect ratio.

YOLOv7 and YOLOv8 architectures are similar to YOLOv5
with a few differences. YOLOv7 [4] modified Efficient Layer
Aggregation Network (ELAN) [17] as the backbone, called
Extended ELAN. CSPSPP and PAN form the neck, followed by
YOLOR [18] as the head. The SiLU activate function is used
and, by default, SGD with momentum 0.937 is used for the
optimizer. The image augmentation that is used includes mosaic,
where portions of images are combined into one. There are three
losses from the output head for bounding boxes, objectness, and
class. YOLOv7 used the same losses for bounding boxes,
objectness, and class as YOLOv5. The backbone for YOLOv8
[5] is a modified YOLOv4 backbone with a Feature Pyramid
Network (FPN) [19], and the neck is PAN. One output head
identifies the bounding boxes, objectness, and class. The loss
functions are CIOU with Distribution Focal Loss (DFL) [20] for
bounding box loss and BCE for class loss. DFL is a specific form
of Focal Loss which is calculated using a weighted cross entropy
where there is more weight on predictions closer to the ground
truths.

B. Base Models (Level-0): EVA02L
One of the two EVA methods is EVA02 [6]. EVA02L uses

Transform Vision (TrV), a type of Vision Transformer (ViT)
[21]. TrV follows Contrastive Language-Image Pre-training
(CLIP) [22] to pretrain the TrV. The improved ViT include
multi-head self-attention (MHSA) layers + 2D rotary position
embedding (RoPE) [23], random weight initialization in a

Figure 2. One of the proposed Stacking models- YOLOv7x + YOLOv8x + EVA02L. For an input image dataset, the output of YOLOv7x, YOLOv8x, and
EVA02L level-0 models are used as the dataset to train the meta-learner regressors. But first, the data must be combined and processed so that predictions
with the highest IOU from each level-0 model are grouped with the same class, any ungrouped predictions are removed, and incomplete groups are filled.
Once the data is separated based on the four coordinates, each dataset can be used to train an XGBoost or MLP Meta-learner regressor. Each of the four
resulting level-1 models provide a single coordinate for a new set of final predictions. Combining the coordinates provides the final output.

feedforward network (FFN) with a SiLU activation function,
and a normalization layer further explained in [6]. Before the
inputs can be used in the MSHA layer, they need to be separated
into tokens, where input embeddings convert them into vectors.
The position of each token is important to the relationship
between the elements, so positional embeddings include
information about each position of the tokens to create the query,
key, and value vectors. So, RoPE modifies only the query and
key vectors.

C. Proposed Stacking Models
After training four level-0 models, the stacking ensemble

method was implemented to combine multiple object detectors.
The meta-learning models learned from the output of several
combinations of the level-0 models on the VisDrone datasets.
The outputs are all combinations of YOLOv5x, YOLOv7x,
YOLOv8x, and EVA02L trained on VisDrone-split. The meta-
regressors trained as level-1 models were XGBoost and
Multilayer Perceptron (MLP). Four datasets were created from
the output of the level-0 models, one for each coordinate to
meta-learn the detection boxes, like StackBox [9]. Even though
the datasets used in this research were multiclass, meta-learning
the class label may have created a problem in the end results
since the dataset is imbalanced. So, each class prediction was
not used in each of the meta-learner datasets. To create the
datasets to train the level-1 models, the data was first prepared.

The first step was converting the images and annotations into
tables for each image in the dataset. The features of the table are
the bounding box, confidence score, class label, image number,
and model name. Next, ground truths were paired with
predictions of the same class with the highest Intersection over
Union (IOU) from each level-0 model. If there were no
predictions from a model to be paired with a ground truth, then
a null value is used for that prediction. The third step was to drop
a ground truth from training if only null predictions were paired
with it. For each ground truth, if there were still any null
predictions, it would be filled with the prediction from another
model with the highest IOU. The last step was to create the four
datasets for each meta-learner, which contains the detection box
coordinates of each level-0 model, their confidences, and the
IOUs between each other.

The learners trained as meta-learners were XGBoost and
MLP. Since each level-1 regressor needed to learn the
coordinates of the detection box, four models were trained after
the dataset was separated into four datasets for each coordinate
of a detection box - X min, Y min, X max, and Y max. To train
each XGBoost, four-fold cross-validation was used to find the
optimal set of hyperparameters. To train each MLP, the number
of layers and the number of nodes had to be determined. Each
MLP had two deeply connected layers because having one or
three layers did not improve the results. However, the number
of nodes in each layer of each MLP was determined by the
number of level-0 models that were being combined. This is
because more level-0 models mean more features. The number
of nodes in the first layer was number of features plus one and
output layer had one node. The number of nodes in the second
layer was between the number of nodes in the first and last layer.
There were no signs of significant overfitting, so there was no

need for a dropout layer or any other techniques to reduce
overfitting.

The level-0 output predictions from the test dataset were
grouped differently than the level-0 output predictions from the
training dataset. Each level-0 model was paired with the other
level-0 models instead of the ground truth being paired with the
level-0 models. Any prediction without a group was removed
from testing. Any other missing predictions left were filled in
the same manner as for the training dataset. The next step was
to remove the test dataset’s duplicate rows. The same
predictions were not always paired together so, rows with
repeated predictions were also removed. Next, the test dataset
was split into the four coordinate datasets as inputs to the four
separate level-1 models. Lastly, the outputs were combined to
get a finalized set of predictions to calculate the metrics to
compare the results of the level-0 and level-1 models. Figure 2
shows one of the Stacking models.

V. EXPERIMENT SETUP
A. Hardware and Software

There were two GPUs used in this research. All the level-1
models were trained using the NVIDIA GeForce RTX 3060
with 6 GB. The level-0 models that were trained using the
NVIDIA Titan XP with 12 GB were YOLOv7x and YOLOv8x.
The cloud computing platform, Amazon Web Services (AWS),
was used to train the largest models – YOLOv5x and EVA02L.
Two instances of Amazon Sagemaker were created with a
NVIDIA A10G Tensor Core GPU with 24 GB. YOLOv5x
trained with one GPU and EVA02L trained with four GPUs.
Even though the level-0 and level-1 models were trained using
GPUs, the meta-data was preprocessed using the CPU.

B. Model Evaluation Metrics
An object detection metric is Average precision (AP), which

is the area under the precision-recall curve [24]. The precision
and recall are calculated as the following:

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

 = 𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (4)

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

 = 𝑇𝑇𝑇𝑇
𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑠𝑠

 (5)

where TP is true positive, FP is false positive, and FN is false
negative. A prediction is considered TP if its Intersection over
Union (IOU) with a ground truth is greater than given threshold.
The mean AP (mAP) is the average of each class AP. The most
used IOU thresholds mAP uses are 50%, 75%, and 50:5:95%.
The first two mAPs with IOU thresholds 50% and 75% are
labeled as mAP50 and mAP75, respectively. mAP50:5:95 is the
average of the ten mAPs from an IOU of 50% to 95% with
increments of 5%.

TABLE I. STACKING MODEL RUNTIME IN MINUTES BASED ON THE
NUMBER OF LEVEL-0 MODELS

Number of Level-0 Models 2 3 4

XGBoost Stacking Runtime (min) 51 93 155

MLP Stacking Runtime (min) 60 100 171

C. Base Models (Level-0) Parameter Setups
The four base models which were trained were YOLOv5x

[3], YOLOv7x [4], YOLOv8x [5], and EVA02L [6]. Due to time
constraints and computational limitations for the larger models,
the four models were only trained on the VisDrone-split dataset.
They all used the default parameters. The batch size and number
workers were based on the space available. The main
complication was overfitting. YOLOv8x had a 20% dropout rate
but, adding more image augmentation helped slow done
overfitting the most across all models. The augmentations that
were applied were image rotation, translation, scale, flip across
both x and y axes, mosaic, and mixup. The training stopped
when the training and testing mAP50 results differed more than
0.05.

D. Meta Model (Level-1) Parameter Setups
Before training and testing XGBoost and Multilayer

Perceptron (MLP) level-0 models, the final predictions for the
training and testing datasets were saved from all four level-0
models. An IOU threshold of 0.0 or 0.1 was put on the overlap
of each pair of base models. This was because some of the
objects in the images were close together, so the IOU threshold

attempts to make sure that the paired predictions were detecting
the same object. Although the training predictions were paired
using the ground truth, that was not the case for the testing
predictions. So, the meta-learners were trained and tested using
predictions that have some overlap between them. Table I shows
the time to preprocess the data, train, and test was based on the
number of level-0 models for Stacking models. The average
runtime of the Stacking models with two and three level-0
models including EVA02L was calculated to find the runtime
for two and three level-0 models, respectively. The runtimes for
YOLOv5x + YOLOv7x + YOLOv8x + EVA02L XGBoost and
MLP are the runtimes for four level-0 models. Each runtime is
rounded to the nearest whole minute.

As mentioned in the previous chapter, four-fold cross-
validation was used to find the optimal set of hyperparameters
to train each XGBoost. The hyperparameters that were tested to
find the optimal set of measurements were n estimators for the
number of trees, max depth for the maximum depth of each tree,
and learning rate. The default values for each hyperparameter
were 100 estimators, a max depth of 6, and a learning rate of 0.3.
All the models for any combination of level-0 models used a

TABLE II. Proposed XGBoost Stacking Models mAP per Class and mAP50 With VisDrone-Split

Method mAP50 mAP pedes-
trian

people bicycle car van truck tricycle awning-
tricycle

bus motor

Level-0 Models
YOLOv5x-s 0.560 0.337 0.340 0.236 0.195 0.631 0.426 0.300 0.242 0.170 0.508 0.326

YOLOv7x-s 0.563 0.341 0.337 0.227 0.206 0.629 0.428 0.316 0.262 0.147 0.528 0.330

YOLOv8x-s 0.579 0.362 0.367 0.262 0.215 0.656 0.453 0.337 0.285 0.172 0.514 0.357

EVA02L-s 0.587 0.374 0.358 0.281 0.247 0.604 0.437 0.395 0.309 0.213 0.544 0.352

Proposed XGBoost Stacking models With Only YOLOs
YOLOv5x +
YOLOv7x-s

0.577 0.353 0.344 0.241 0.214 0.630 0.442 0.331 0.267 0.180 0.539 0.342

YOLOv5x +
YOLOv8x-s

0.586 0.361 0.355 0.257 0.221 0.635 0.452 0.337 0.279 0.189 0.533 0.351

YOLOv7x +
YOLOv8x-s

0.587 0.364 0.355 0.254 0.228 0.639 0.450 0.351 0.290 0.176 0.542 0.358

YOLOv5x +
YOLOv7x +
YOLOv8x-s

0.590 0.366 0.358 0.256 0.227 0.639 0.456 0.347 0.285 0.188 0.544 0.357

Proposed XGBoost Stacking models With EVA02L
YOLOv5x +
EVA02L-s

0.603 0.377 0.354 0.277 0.247 0.626 0.456 0.377 0.306 0.213 0.555 0.359

YOLOv7x +
EVA02L-s

0.605 0.382 0.361 0.277 0.256 0.629 0.453 0.383 0.324 0.209 0.563 0.366

YOLOv5x +
YOLOv7x +
EVA02L-s

0.605 0.382 0.365 0.277 0.253 0.634 0.460 0.378 0.317 0.212 0.555 0.369

YOLOv5x +
YOLOv8x +
EVA02L-s

0.605 0.383 0.370 0.283 0.252 0.637 0.461 0.382 0.312 0.211 0.550 0.370

YOLOv5x +
YOLOv7x +
YOLOv8x +
EVA02L-s

0.604 0.384 0.371 0.281 0.252 0.640 0.464 0.378 0.316 0.211 0.553 0.374

YOLOv7x +
YOLOv8x +
EVA02L-s

0.606 0.385 0.373 0.283 0.254 0.640 0.459 0.386 0.322 0.208 0.553 0.373

YOLOv8x +
EVA02L-s

0.608 0.385 0.365 0.282 0.254 0.634 0.461 0.394 0.324 0.209 0.553 0.370

Note: The “-s” means the level-0 models were trained on VisDrone-split. Bold values are the most improved class per method and the bold method is the
best performing model in the table. The green and blue cells show the highest metrics.

max depth of either 4, 6, or 8, and they all used a learning rate
of 0.05. The number of estimators for most models for all
combinations of level-0 models used 200 estimators.

To train and to more efficiently find the optimal MLP, 0.25
of the training was used as a validation dataset to find the models
with the lowest mean squared error. Each MLP used the Adam
optimizer, a learning rate of 0.001, the number of features plus
one as the number of nodes in the first layer and one node for
the output layer. The number of nodes in the second layer was
between the number of nodes first layer and output layer. Each
model ran for a maximum of 100 epochs with early stopping and
a batch size of 128 with eight workers. Early stopping monitored
the validation loss with a patience of ten epochs as a stopping
point.

VI. RESULTS AND DISCUSSION
The results of Stacking models with level-1 models trained

on the level-0 models are analyzed. Between the level-1 models,
Multilayer Perceptron (MLP) provides the highest average
precision results.

A. Level-0 Models: YOLOv5x, YOLOv7x, YOLOv8x, EVA02L
The metric results of YOLOv5x, YOLOv7x, YOLOv8x, and

EVA02L are shown in Table II, where “-s” is for models trained
on VisDrone-split. EVA02L had the highest mAP50 and mAP
scores of the level-0 models. Class 3 (car) had the highest mAP
class score for every level-0 model. However, EVA02L had the
lowest scoring car class, 0.052 below YOLOv8x’s car mAP.
EVA02L had the highest scoring class 5 (truck), whose mAP is
0.058 above YOLOv8x’s truck mAP. Given the differences, the
car and truck mAPs between models affected some Stacking
models.

B. XGBoost Stacking Models
The set of base models were stacked to create eleven

combinations of models with XGBoost. The XGBoost Stacking
models that trained on the output of level-0 models were tested
on VisDrone-split. Table II show the average mAP50, average
mAP, and mAP per class of all the Stacking models with
XGBoost trained on each combination of level-0 models. The
XGBoost Stacking models tested on VisDrone-split improved

on nearly all the combinations of the level-0 models. The most
improved XGBoost Stacking model in terms of mAP was
YOLOv5x-s + YOLOv7x-s which had both their mAP50 and
mAP increase from YOLOv7x. The most improved class was
the least accurate class, awning-tricycle. The only negative
percent change was the most accurate class, car, but the car class
for nearly every Stacking model had no improvement. Figure 3
shows percent change from EVA02L’s metrics to their XGBoost
Stacking model’s metrics in the green boxes. The most accurate
XGBoost Stacking model is YOLOv8x-s + EVA02L-s since it
has the highest mAP50 and mAP. The most improved class was
tricycle but, the class with the smallest percent change was car.
The class improvements of YOLOv8-s + EVA02L-s XGBoost
were less significant than YOLOv5x-s + YOLOv7x-s XGBoost,
and the class deteriorations of YOLOv8-s + EVA02L-s
XGBoost were more significant than YOLOv5x-s + YOLOv7x-
s XGBoost. This is why the best XGBoost model in terms of
mAP was also not the most improved.

C. MLP Stacking Models
Next, the set of four level-0 models were stacked to create

eleven combinations of models with MLP, the same as with
XGBoost. The MLP Stacking models that trained on the output
of level-0 models were tested on VisDrone-split. Table III show
the average mAP50, average mAP, and mAP per class of the
most improved and best performing MLP Stacking models
trained on each set of level-0 models trained on VisDrone-split.
The best performing model overall in the table according to
mAP50 and mAP came from YOLOv8x + EVA02L-s MLP, the
same as with an XGBoost meta-model.

These MLP Stacking models tested on VisDrone-split
improved on all the combinations of the level-0 models when
measuring both mAP50 and mAP. The most improved model in
terms of mAP in Table III is YOLOv5x-s + YOLOv7x-s MLP.
The most improved class was awning tricycle. This model was
one of the few Stacking models that experienced an increase in
the car class from their level-0 models. Every class from the
YOLOv5x-s + YOLOv7x-s MLP model improved more than
every class from the YOLOv5x-s + YOLOv7x-s XGBoost model.
Figure 4 shows percent change from EVA02L’s metrics to their
MLP Stacking model’s metrics. Each green box shows a

Figure 3. Metric comparison between EVA02L and proposed XGBoost Stacking models. The green boxes show the positive percent changes between each
Stacking model and EVA02L. The percent changes shown are all from the metric scores of EVA02L

positive percent change. The most efficient model with the most
improved mAP50 metric was YOLOv8x + EVA02L-s MLP.
The YOLOv8x + EVA02L-s MLP model had all but three of
their classes improved from its level-0 models, including the car
and truck classes. However, each class in the YOLOv8x +
EVA02L-s MLP model improved at least as much as its
XGBoost counterpart. The YOLOv8x + EVA02L-s MLP
model’s most improved class was tricycle and the smallest
percent change was car. The decrease in the car class from
YOLOv8x was expected since YOLOv8x had a significantly
better car mAP than EVA02L.

VII. CONCLUSION AND FUTURE WORK
The proposed Stacking models used XGBoost and

Multilayer Perceptron (MLP) meta-models to learn from and
improve multiple multiclass object detectors. The XGBoost and
MLP level-1 models were trained on the predictions of two sets
of level-0 models each. Improvements were seen in nearly all
XGBoost and all MLP Stacking models. The most improved
Stacking model was the YOLOv5x-s + YOLOv7x-s with an
MLP level-1 model whose mAP improved 4.99% from
YOLOv7x. The model with the highest mAP between both

level-0 sets was the YOLOv8x-s + EVA02L-s MLP model with
an mAP50 of 0.609, with an mAP of 0.389, and whose mAP
improved 4.01% from EVA02L. Therefore, the YOLOv8x-s +
EVA02L-s MLP Stacking model is the best performing models
of all proposed models.

In order to further refine and examine these models, future
work should include updating the process for the Stacking and
selecting other metrics. First, the dataset used could be another
version of the VisDrone dataset to improve the imbalanced
number of objects per class. Second, new data preprocess
techniques should be researched to better minimize the number
of false positives. Next, other models could also be used as meta-
learners trained from object detection predictions, such as
Support Vector Machine or Cascade Forest [25]. Lastly, other
metrics should be included in the results to get a better picture
of how the Stacking models improved from their level-0 models.
These metrics could be based on the size of the object, such as
mAP-large, mAP-medium, and mAP-small. So, there are many
paths on which to move forward to improve on multiclass object
detection models.

TABLE III. Proposed MLP Stacking Models mAP per Class and mAP50 With VisDrone-Split

Method mAP50 mAP pedes-
trian

people bicycle car van truck tricycle awning-
tricycle

bus motor

Level-0 Models
YOLOv5x-s 0.560 0.337 0.340 0.236 0.195 0.631 0.426 0.300 0.242 0.170 0.508 0.326

YOLOv7x-s 0.563 0.341 0.337 0.227 0.206 0.629 0.428 0.316 0.262 0.147 0.528 0.330

YOLOv8x-s 0.579 0.362 0.367 0.262 0.215 0.656 0.453 0.337 0.285 0.172 0.514 0.357

EVA02L-s 0.587 0.374 0.358 0.281 0.247 0.604 0.437 0.395 0.309 0.213 0.544 0.352

Proposed MLP Stacking Models With Only YOLOs
YOLOv5x +
YOLOv7x-s

0.578 0.358 0.356 0.247 0.219 0.637 0.447 0.334 0.271 0.182 0.544 0.348

YOLOv5x +
YOLOv8x-s

0.587 0.366 0.367 0.263 0.223 0.644 0.456 0.339 0.284 0.189 0.541 0.358

YOLOv7x +
YOLOv8x-s

0.588 0.369 0.366 0.262 0.230 0.648 0.455 0.352 0.294 0.178 0.543 0.365

YOLOv5x +
YOLOv7x +
YOLOv8x-s

0.591 0.369 0.366 0.262 0.230 0.643 0.456 0.347 0.289 0.188 0.547 0.361

Proposed MLP Stacking Models With EVA02L
YOLOv5 + EVA02L-s 0.608 0.384 0.369 0.284 0.253 0.633 0.461 0.383 0.312 0.216 0.562 0.367

YOLOv5x +
YOLOv7x +
YOLOv8x +
EVA02L-s

0.605 0.386 0.380 0.284 0.257 0.642 0.463 0.380 0.318 0.210 0.550 0.378

YOLOv7x +
YOLOv8x +
EVA02L-s

0.606 0.386 0.377 0.283 0.256 0.642 0.462 0.385 0.322 0.209 0.549 0.374

YOLOv5x +
YOLOv8x +
EVA02L-s

0.607 0.387 0.380 0.288 0.254 0.642 0.464 0.384 0.316 0.212 0.555 0.376

YOLOv5 + YOLOv7x
+ EVA02L-s

0.608 0.387 0.377 0.285 0.256 0.639 0.461 0.381 0.319 0.212 0.556 0.375

YOLOv7x +
EVA02L-s

0.608 0.388 0.375 0.286 0.261 0.637 0.460 0.389 0.329 0.212 0.563 0.373

YOLOv8x +
EVA02L-s

0.609 0.389 0.375 0.290 0.257 0.640 0.463 0.394 0.324 0.211 0.559 0.374

Note: The “-s” means the level-0 models were trained on VisDrone-split. Bold values are the most improved class per method and the bold method is the
best performing model in the table. The green and blue cells show the highest metrics.

REFERENCES

[1] A. Casado-Garcia and J. Heras, "Ensemble Methods for Object
Detection," in Frontiers in Artificial Intelligence and Applications
(ECAI 2020), vol. 325, G. D. Giacomo, A. Catala, B. Dilkina, M.

Milano, S. Barro, A. Bugarín and J. Lang, Eds., Logrono, La Rioja:
IOS Press Ebooks, 2020, pp. 2688-2695.

[2] K. M. Ting and I. H. Witten, "Issues in Stacked Generalization,"
Journal of Articial Intelligence Research, vol. 10, pp. 271-289, 1999.

[3] G. Jocher, A. Chaurasia, J. Borovec, A. Stoken, Y. Kwon, J. Fang and
e. al, "yolov5," [Online]. Available:

https://github.com/ultralytics/yolov5. [Accessed Nov 2022].
[4] C.-Y. Wang, A. Bochkovskiy and H.-Y. M. Liao, "YOLOv7: Trainable

bag-of-freebies sets new state-of-the-art for real-time object detectors,"
in 2023 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), Los Alamitos, CA, USA, 2023.
[5] D. Reis, J. Kupec, J. Hong and A. Daoudi, Real-Time Flying Object

Detection with YOLOv8, arXiv:2305.09972, 2023.
[6] Y. Fang, Q. Sun, X. Wang, T. Huang, X. Wang and Y. Cao, EVA-02: A

Visual Representation for Neon Genesis, arXiv:2303.11331, 2023.
[7] A. Vogiatzis, S. Orfanoudakis, G. Chalkiadakis, K. Moirogiorgou and

M. Zervakis, "Novel Meta-Learning Techniques for the Multiclass
Image Classification Problem," Sensors, vol. 23, no. 1, 2023.

[8] E. J. Santana, F. Rodrigues dos Santos, S. M. Mastelini, F. L.
Melquiades and S. Barbon Jr, "Improved prediction of soil properties

with multi-target stacked generalisation on EDXRF spectra,"
Chemometrics and Intelligent Laboratory Systems, vol. 209, p. 104231,

2021.
[9] C. Albuquerque, R. Henriques and M. Castelli , "A stacking-based

artificial intelligence framework for an effective detection and
localization of colon polyps," Scientific Reports, vol. 12, 2022.

[10] J. Liao, Y. Liu, Y. Piao, J. Su, G. Cai and Y. Wu, "GLE-Net: A Global
and Local Ensemble Network for Aerial Object Detection,"

International Journal of Computational Intelligence Systems, vol. 15,
no. 2, 2022.

[11] D. Du, P. Zhu, L. Wen, X. Bian, H. Lin, Q. Hu and e. al, "VisDrone-
DET2019: The Vision Meets Drone Object Detection in Image

Challenge Results," in 2019 IEEE/CVF International Conference on
Computer Vision Workshop (ICCVW), 2019.

[12] "Ultralytics YOLOv5 Architecture," 2023. [Online]. Available:
https://docs.ultralytics.com/yolov5/tutorials/architecture_description/.

[Accessed Sep 2023].

[13] S. Liu, L. Qi, Q. Haifang, J. Shi and J. Jiaya, "Path Aggregation
Network for Instance Segmentation," in Conference on Computer

Vision and Pattern Recognition (CVPR), 2018.
[14] C.-Y. Wang, L. H.-Y. Mark, Y.-H. Wu, P.-Y. Chen, J.-W. Hsieh and I.-

H. Yeh, "CSPNet: A New Backbone that can Enhance Learning
Capability of CNN," in IEEE Computer Society Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), 2020.
[15] J. Redmon and A. Farhadi, YOLOv3: An Incremental Improvement,

arXiv:1804.02767, 2018.
[16] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye and D. Ren, "Distance-IoU

Loss: Faster and Better Learning for Bounding Box Regression," in The
AAAI Conference on Artificial Intelligence (AAAI), 2020.

[17] C.-Y. Wang, H.-Y. M. Liao and I.-H. Yeh, Designing Network Design
Strategies Through Gradient Path Analysis, arXiv:2211.04800, 2022.

[18] C.-Y. Wang, I.-H. Yeh and H.-Y. M. Liao, You Only Learn One
Representation: Unified Network for Multiple Tasks,

arXiv:2105.04206, 2021.
[19] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie,

"Feature Pyramid Networks for Object Detection," in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),

2017.
[20] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li and e. al, "Generalized

Focal Loss: Learning Qualified and Distributed Bounding Boxes for
Dense Object Detection," in Advances in Neural Information

Processing Systems, 2020.
[21] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai and

T. Unterthiner, An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale, arXiv:2010.11929, 2021.

[22] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal
and e. al, "Learning Transferable Visual Models From Natural

Language Supervision," in Proceedings of the 38th International
Conference on Machine Learning, 2021.

[23] J. Su, Y. Lu, S. Pan, A. Murtadha, B. Wen and Y. Liu, RoFormer:
Enhanced Transformer with Rotary Position Embedding,

arXiv:2104.09864, 2022, pp. 418-434.
[24] R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto and E. A. B. da

Silva, "A Comparative Analysis of Object Detection Metrics with a
Companion Open-Source Toolkit," Electronics, vol. 10, no. 3, 2021.

[25] Z.-H. Zhou and J. Feng, "Deep Forest," National Science Review, vol.
6, no. 1, pp. 74-86, 2019.

Figure 4. Metric comparison between EVA02L and proposed MLP Stacking models. The green boxes show the positive percent changes between each
Stacking model and EVA02L. The percent changes shown are all from the metric scores of EVA02L.

	I. Introduction
	II. Related Work
	III. Dataset Description
	A. VisDrone
	B. VisDrone-split

	IV. Rearch Methodology
	A. Base Models (Level-0): YOLOv5, YOLOv7, YOLOv8
	B. Base Models (Level-0): EVA02L
	C. Proposed Stacking Models

	V. Experiment Setup
	A. Hardware and Software
	B. Model Evaluation Metrics
	C. Base Models (Level-0) Parameter Setups
	D. Meta Model (Level-1) Parameter Setups

	VI. Results and Discussion
	A. Level-0 Models: YOLOv5x, YOLOv7x, YOLOv8x, EVA02L
	B. XGBoost Stacking Models
	C. MLP Stacking Models

	VII. Conclusion and Future Work
	References

