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Abstract: Customer churn risk prediction is an important area of research
as it directly impacts the revenue stream of businesses. An ability to predict
customer churn allows businesses to come up with better strategies to retain
existing customers. In this research we perform a comprehensive comparison of
feature selection methods, upsampling methods, and machine learning methods
on the customer churn risk dataset. (i) Our research compares likelihood-based,
tree-based, and layer-based machine learning methods on the churn dataset. (ii)
Models built on the churn dataset without upsampling performed better than
oversampling methods. However, SMOTE and ADASYN helped stabilize model
performance. (iii) The models built on ADASYN dataset were slightly better
than the SMOTE counterparts. (iv) It was observed that XGBoost and Deep
Cascading Forest combined with XGBoost were consistently better across all
metrics compared to other methods. (v) Information Value analysis performed
better than PCA. In particular, IVR DCFX model has the best AUROC score
with 89.1%.
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1 Introduction

A major focus of businesses is to reduce the risk of customer churn and its negative impact
on revenue. For this reason, the data regarding risk of churn is reported directly to the
corporation’s upper-level management. Customer churn can be understood as a customer
discontinues buying a company’s products or services. Companies must proactively look
out for customers that have higher churn risk and retain them by offering discounts or
promotions. Hence, churn prediction and customer retention has an enormous business
value on the profitability of a business and thereby has an extremely important real-world
application.

The motivation of our research is the challenging nature of churn prediction due
to multiple factors that could impact the possibility of customer churn. Some of those
factors are product pricing, competition, changes in customer’s preference, product quality,
customer service, ease of buying, product availability, impact of inflation and other economic
conditions, etc. A business must continually assess the risk of customer churn due to
aforementioned situations and based on parameters related to the customer such as sales
volume, gender, age, changes to buying habit such as online vs in a store, income, location,
how frequently customer logs in the company’s website, complaint resolution, etc. Once
the customer churn risk is identified a business should create a plan to address the risk early
enough to maintain its customer base.

Previous systems for predicting churn risk were rule based expert systems, such systems
lacked the predictive ability in comparison to more modern machine learning based systems.
Machine learning methods such as logistic regression and random forests have been used
in the past to measure the risk of churn. In recent years several new techniques have
been created for data sampling, feature selection, and supervised machine learning. Recent
machine learning methods such as deep cascading forest and deep neural networks have been
successful in various domains on video, image, speech, and numerical data. These state-of-
the-art techniques have not been previously applied to churn prediction. Our research applies
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those techniques and compares the performance with several other traditional machine
learning techniques.

The objective of our study is to establish a comprehensive modeling pipeline and
demonstrate how the steps taken for coming up with predictions affect the performance,
this includes exploring feature selection methods to decrease the dataset’s dimensions.
Dimensionality reduction serves multiple purposes, such as selecting discriminative
features for classification, increasing the time or space efficiency for running machine
learning models or to mitigate potential overfitting during modeling. Our research
employs Information Value (IV) technique and Principal Component Analysis (PCA) for
dimensionality reduction.

We balance the churn dataset synthetically so that the machine learning models could
precisely fit the feature space. Our study delves into two key inquiries: (i) assessing
the superiority of upsampling compared to no-upsampling, and (ii) determining which
technique, between Synthetic Minority Oversampling Technique (SMOTE) Chawla et al.
(2002) and Adaptive Synthetic Sampling (ADASYN) He et al. (2008), yields better results
in terms of the metric area under the receiver operating characteristics curve (AUROC)
score. Additionally, our research places significant emphasis on comparing the performance
of conventional machine learning approaches with emerging methods like deep cascading
forest and deep neural networks using churn dataset. We describe machine learning methods
in Section 5. Research includes studying the effects of incorporating XGBoost method Chen
and Guestrin (2016) into the prediction layers of Deep Cascading Forests Zhou and Feng
(2017) and Deep Neural Networks.

This paper is structured as follows. Section 2 discusses the related work. Next, we
describe the churn dataset in Section 3. Sections 4 and 5 describe the proposed methodology.
Next, the experiment setup and results are discussed in Sections 6 and 7. Papes draws
conclusion and discusses future directions in Section 8 .

2 Related Work

While numerous studies have investigated churn risk prediction, only a limited number have
formally evaluated the efficacy of Deep Neural Networks (DNN) in this domain. Mena et
al. (2019) applied Long Short Term Memory (LSTM) to predict churn on sequential data.
They conclude that LSTM gives better results compared to the model built with Logistic
Regression by 25% on a set of static features. Recursive Neural Networks (RNNs) could
also be applied due to the sequential nature of data.

In their research, Vafeiadis et al. (2015) compare multiple machine learning models
to forecast customer churn risk. Their study encompasses models such as Naïve Bayes,
Support Vector Machines, Decision Trees, Logistic Regression, Adaptive Boosting, and
Neural Networks. The authors determine that SVM with a polynomial kernel, enhanced by
AdaBoost, achieves the highest performance in terms of F-1 score on their dataset. Due to
the rapid development in the area of machine learning, better methods have emerged since
the aforementioned study such as XGBoost and DNN.

A recent study by Ahmad et al. (2019) focused on predicting churn risk using machine
learning techniques. They utilized a dataset from a telecommunication company to develop
churn prediction models employing XGBoost, Decision Trees, Gradient Boosting, and
Random Forest algorithms. Their investigation reveals that XGBoost demonstrates a 2.5%
improvement in AUROC score compared to the Gradient Boosting method. Their research
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only investigates tree-based methods. We in our research investigate both tree-based and
other categories of machine learning methods.

In their study, Lalwani et al. (2022) examine various machine learning techniques
for predicting churn risk using data from a telecommunications company. Their analysis
encompasses machine learning models derived from statistical methods like Naïve Bayes,
likelihood-based approaches such as Logistic Regression, tree-based methodologies, and
ensemble methods including Random Forest, XGBoost, and Adaboost and SVM. They
determine that XGBoost and Adaboost yield the most effective performance, with no notable
difference between them.

Rahman et al. (2020) perform customer churn prediction using KNN, SVM, Decision
Tree, and Random Forest. The dataset used in their study is from the banking sector.
The authors conclude that Random Forest gave best accuracy when combined with
oversampling. Sisodia et al. (2017) build machine learning models to predict employee churn
on human resource analytics dataset. They construct a heatmap and correlation matrix to
illustrate the relationships between attributes. For prediction purposes, they employ various
machine learning models, including Linear Support Vector Machine, C 5.0 Decision Tree
classifier, Random Forest, k-nearest neighbor, and Naïve Bayes classifier. Bhatnagar et al.
(2019) implement two classification models based on supervised machine learning. They
find that KNN outperforms Logistic Regression in predicting customer churn, achieving a
2.0% higher accuracy rate.

Our research aims to provide a comparison of most up to date machine learning methods,
which includes XGBoost and Deep Cascading Forest. Several preprocessing techniques
are applied on the churn dataset. It also includes the comparison of traditional machine
learning methods to more recent Deep Neural Networks, such a comparison fills the gap
from previous research.

3 Description of Churn Risk Dataset and Research Hypothesis

For this research, HackerEarth's customer churn dataset from a business offering products
and services online was selected HackerEarth’s Churn Dataset (2021). This dataset contains
various demographic and aggregated transaction details for training purposes, along with
a target feature indicating whether the customer is at risk of churn. The dataset comprises
35,829 data points with 19 training features. Notably, the dataset exhibits class imbalance,
with only 5,393 true labels assigned for the churn class, accounting for 17.72% of the data.
This dataset characteristic influenced our decision-making process regarding reshaping
training data and selecting appropriate model evaluation metrics. Preprocessing steps were
necessary, involving cleaning missing or inaccurately populated data, encoding categorical
features for usability, and upsampling training data to address the imbalance issue. Detailed
descriptions of the preprocessing steps are provided later in this paper.

The research hypothesis in this paper is to evaluate various machine learning
methdologies along with data preprocessing and feature selection strategies to be able to
correctly classify if a customer would churn or not based on the training data from the
preprocessed churn dataset. The model performance is compared using several different
metrics for an in depth analysis of churn prediction detailed in the experiment results section
of this paper. Another goal of this research is to compare the runtime of the various machine
learning models. In addition, we compare the impact of various preprocessing and feature
extraction techniques on the perfomance of the machine learning models.
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4 Proposed Feature Selection and Data Preprocessing Methodology

4.1 Handling Missing Data or Inaccurate Data

Initially, values for avg_frequency_login_days below zero are substituted with zero. This
decision stems from the belief that these values are erroneous, and zero is selected as the
nearest non-negative integer. Data points corresponding to days_since_last_login with
values below zero are excluded. This action is justified by the data description indicating
that these customers have already churned. Incorporating such data points could introduce
noise into the model.

Additionally, 9.48% of the values for the avg_frequency_login_days feature were
found to be missing. Downey and King (1998) propose in their research that filling missing
values with the mean of their respective categories is a suitable method for features with
less than 20% missing values. Upon implementing this strategy on the churn dataset, the
dataset size is reduced to 30,977 data points.

4.2 Categorical Feature Encoding

In our research, we utilized three commonly known encoding methods to convert categorical
features into numerical features: (1) Ordinal Encoding, (2) Binary Encoding, and (3)
One-Hot Encoding. Notably, both Binary Encoding and One-Hot Encoding methods are
optimized within Python’s Category Encoder module. This optimization automatically
excludes newly generated features that exhibit no variation McGinnis et al. (2018). This
feature is extremely helpful to reduce computer memory requirement and it enabled us to
fit our models in the RAM.

4.2.1 Ordinal Encoding (OE)

Ordinal Encoding involves transforming non-numerical data into numerical data by
assigning an integer value to each category. However, a drawback of this method is its
assumption of order and its inability to accommodate newly introduced categories in the
data Potdar et al. (2017). In the churn dataset, Ordinal Encoding resulted in the creation of
12 new features.

4.2.2 Binary Encoding (BE)

Binary Encoding is an alternative encoding method that represents categories in binary
format. Initially, categories are converted to integers, starting from zero, which are then
transformed into their binary equivalents. Binary Encoding results in the creation of log2(d)
new columns for each categorical feature with d unique values Seger (2018). In the customer
churn dataset, Binary Encoding led to the generation of 41 new features.

4.2.3 One-Hot Encoding (OH)

One-Hot Encoding is a method that shares some similarities with Binary Encoding.
However, the main distinction lies in One-Hot Encoding’s creation of a single additional
feature for each category, rather than converting features into binary representations.
Consequently, a significant drawback of One-Hot Encoding is its production of features
equal in number to the unique values of a categorical variable Seger (2018). Despite this
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drawback, One-Hot Encoding features is included in the dataset due to its potential for
providing additional informative value compared to other encoding methods. In our dataset,
One-Hot Encoding resulted in the creation of 38 new features. When considering the features
generated from Ordinal Encoding, Binary Encoding, and One-Hot Encoding together, the
total number of features amounts to 91.

4.3 Training and Test Data Partitions

Stratified data splitting is a technique that maintains the balance of true class label ratios
in both training and test partitions while preserving randomness Vilarino et al. (2005).
The stratified partitioning method provided by Scikit-learn Pedregosa et al. (2011) was
employed, ensuring that the data remained closely distributed in both the training and test
partitions, 15.08% in training and 15.07% in test. Additionally, 20% of the data was allocated
for the test partition. Following the partitioning, the training and test partitions comprised
24,781 and 6,196 data points respectively.

4.4 Feature Selection Methodology

After partitioning the cleaned data into training and test sets, we apply two distinct feature
selection methods: (1) Information Value (IV) and (2) Principal Component Analysis (PCA).
Subsequently, we construct several machine learning models using the features selected by
these two approaches and compare their performance.

4.4.1 Information Value (IV)

Information Value (IV) serves as a tool for exploratory data analysis, allowing assessment
of a given factor on the target feature. It is applicable to both categorical and continuous
features Verma. (2020). Weight of Evidence (WOE) is employed to compute IV, which
represents the natural logarithm of the ratio of distributions of non-events to events. In
our study, events correspond to churned customers, represented as 1, while non-events are
represented by retained customers as 0.

An IV less than 0.02 is deemed non-informative and should be excluded during
modeling. Conversely, an IV exceeding 0.5 may lead to overfitting. Out of the 91 categorical
features generated with category encoders, only 33 features exhibited an IV score greater
than 0.02.

Categorical Features. IV was applied using encoded features. For each categorical
feature, a bubble graph displaying the population size and target distribution per category
was generated. For instance, Figure 1 illustrates the differentiation of churned customers
per category for the feature named BE_membership_category_1.

Continuous Features. The IV calculation for continuous features involves an additional
step known as binning. This process can be conceptualized as converting continuous features
into categorical features. However, in the modeling stage, the raw forms of continuous
features are utilized. The binning process involved several steps:

1. The number of bins was set to 10 to ensure an adequate number of data points in each
bin.
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Figure 1 Information Value (IV) analysis graph for the binary-encoded categorical feature
membership_category. The category "0" constitutes 49% of the dataset with 13% churn
rate, while the category "1" constitutes the remaining 51% of the dataset with 17%
churn rate. The IV for this feature is 0.024.

2. The maximum value within a feature was capped at the 95th percentile, and the
minimum value was capped at the 5th percentile.

3. The feature values were sorted in ascending order, and a bin number was assigned to
each data point.

4. Each bin number was treated as a category, and IV calculation was applied.

This process enabled the calculation of Information Value for continuous features by
treating them as categorical features after binning.

Figure 2 shows a visualization of each bin and the corresponding churn ratio for the
feature avg_frequency_login_days. This graph is useful for understanding how binning
works and how the feature is correlated to the target. A linear decreasing trend of the churn
rate in the graph means there is a negative correlation while an increasing trend means a
positive correlation. Sinusoidal or polynomial-like trends are considered weak correlation.
Out of the seven continuous features, five features had an IV value higher than 0.02. Total
number of features are 38.

Discarding Highly Correlated Features. As the final step of feature selection using IV,
the features are initially ranked based on their IV values in descending order. Subsequently,
for each feature pair (fi, fj), the correlation between the pairs is computed. We discard those
features where the correlation exceeds 95%. Figures 3 and 4 illustrate the correlation matrix
constructed before and after removing highly correlated features, respectively. Following
the elimination of highly correlated features, the final training set for IV comprises a total
of 31 features of those 26 are categorical and 5 are continuous features.

The overall data preprocessing steps on the churn dataset are visualized in Figure 5. As
can be seen in the figure, the raw data is first cleaned by handling incorrect value and missing
values. This step includes discarding some data points and filling missing values with
category mean or with the best approximate approach. Then, the encoded datasets produced
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Figure 2 Information Value (IV) analysis graph for the feature avg_frequency_login_days. The
blue bar represents the bin's distribution in the whole population. The reason why the bins
have different distribution is that during the ranking stage of binning, same values are
assigned to one-higher bin, causing the number of data points for that bin to be higher.
The light blue colored bar aims to show the minimum and maximum values for that
specific bin. Finally, the churn rate decreases as the value on x− axis increases.

from Ordinal, Binary, and One-Hot encoding are concatenated to create the preprocessed
dataset that is clean and ready for modeling directly, or for further processing.

4.4.2 Feature Selection Using Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is an unsupervised method for reducing feature
dimensionality. Its objective is to maximize variance with fewer features. PCA involves
calculating eigenvectors from the normalized dataset and selecting the eigenvector with
the highest eigenvalue, representing the direction along which the data is most dispersed
Alpaydin et al. (2014).

PCA was applied to 91 features of the churn dataset. A minimum variance of 95% was
chosen for the resulting features to minimize loss in informative components. Application
of PCA resulted in selecting 40 features. Notably, the number of features selected via PCA
exceeds that of the IV approach, which selected 31 features.

4.5 Training Datasets Generated by Applying Sampling Techniques

We generate three datasets by applying IV feature selection and no upsampling, SMOTE,
upsampling, ADASYN upsampling named as IVR, IVS, and IVA respectively. The fourth
dataset is named as PCAS generated by applying PCA feature selection and SMOTE
upsampling.

4.5.1 Random Oversampling (ROS)

Random Oversampling is a straightforward technique used to address class imbalance in a
dataset. It involves randomly duplicating instances of the minority class until the number
of minority and majority class instances are equalized. This method simplifies the task of
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Figure 3 Correlation matrix before dropping highly correlated features. Dark brown areas
represent high correlation.

balancing an imbalanced dataset by creating new instances of the minority class through
random duplication He and Ma (2013).

4.5.2 Synthetic Minority Oversampling Technique (SMOTE)

SMOTE (Synthetic Minority Over-sampling Technique) has been widely utilized as an
upsampling method since its introduction by Chawla et al. (2002). The method creates
pseudo-random data in the feature space by following these steps:

1. Select a random instance of the minority class

2. Create a synthetic instance by:

(a) Select K neighbors (K = 5 in this research)

(b) Choose a random neighbor amongst K neighbors

(c) Randomly selecting a point along the linear distance from the source point to the
neighbor.

3. Repeat above steps until the number of instances in the nminority = nmajority
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Figure 4 Correlation matrix after dropping highly correlated features. The features that are less
significant are discared.

Figure 5 Data preprocessing steps applied to churn dataset.

Those steps are visualized for a two-feature case in Figure 6. Figure 7 demonstrates an
example of before and after visualization of SMOTE method applied on the churn dataset.
As can be seen from the figure, newly generated data instances have expanded the original
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Figure 6 An example iteration of SMOTE method. Assuming the red-colored class is the minority,
one instance is randomly selected (Step 1). Then, the nearest K = 5 neighbors are
identified and one of them is randomly picked (n2). Lastly, a random point in the
Euclidean space between origin point and n2 was selected and generated as the synthetic
instance.

data. Chawla et al. (2002) observed that the area under the ROC curve benefits from SMOTE
upsampling and concludes that SMOTE may increase minority class recognition. Chawla
et al. also suggests developing a method to select K in an adaptive and automated manner,
and other strategies to generate synthetic instances. The training sets created by SMOTE
method are notated as IVS and PCAS, which also indicates the feature selection method in
the abbreviation.

4.5.3 Adaptive Synthetic Sampling (ADASYN) Technique

He et al. (2008) introduced ADASYN (Adaptive Synthetic Sampling), which builds upon
the SMOTE method with a slightly different approach to creating new instances. ADASYN
aims to balance the minority class by generating synthetic instances and assigning a weight
to each minority class instance, representing its level of difficulty to learn. This method
creates a “thickness” in instances by assigning higher weight to them and thereby generates
more instances around a data point. Consequently, it shifts the decision boundary in the
modeling stage towards the underrepresented extremes.

Figure 7 and Figure 8 show the class balances after applying the three upsampling
methods on the training set. Figure 8 shows ROS and SMOTE equalize the minority and
majority classes exactly while ADASYN results in a slightly (negligible) less balanced
dataset. Additionally, as can be seen from Figure 7, ROS generates an equalized dataset while
condensing the minority class, while the generated instances of SMOTE and ADASYN are
more spread out.
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Figure 7 Visual representation of sample generation: x− axis represents the continuous feature
points_in_wallet and y − axis represents avg_time_spent. Class distribution after
ROS is more condensed than SMOTE and ADASYN as expected since ROS does not add
offset to generated instances. Also, notice the red circle in SMOTE and ADASYN graphs.
In SMOTE, the distant instances are treated the same way as instances that are close to
other minority instances. Therefore, SMOTE produces only one extra instance inside the
red circle, while ADASYN produces four extra instances for the same data point.

Figure 8 Class balance after applying upsampling methods. In the original dataset, the data
belonging to class 1 in the training set was 15.08%, which is risen exactly to 50% after
ROS and SMOTE, and close to 50% after ADASYN.

5 Proposed Methodology for Churn Risk Classification Based on Machine
Learning

This section describes methods used for modeling. Common machine learning methods
such as Logistic Regression and Random Forest are chosen to have a basis for comparison
rather than to investigate their performance. Recent methods are chosen to investigate their
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performance, such as the Deep Cascading Forest Zhou and Feng (2017) and its modification.
Deep Neural Networks are included to have a deeper comparison between tree-based models
and neural networks. This way, the research manages to compare likelihood-based, tree-
based, and layer-based methods on the churn dataset.

5.1 Logistic Regression (LR)

Logistic Regression seeks to maximize the likelihood function, which in the case of binary
classification is binary cross-entropy, achieved using the sigmoid function. Convergence
in Logistic Regression can be determined by either a predefined number of iterations or a
minimum required improvement on the error. In our research, we employ a maximum of
1,000 iterations or stop early if there is no improvement or convergence.

5.2 Random Forest (RF)

Random Forest is an ensemble model that utilizes bagging to create a predetermined number
of base estimators, often referred to as decision trees. These base estimators generate
predictions independently, and the final predictions are obtained by averaging the predictions
made by each base estimator Alpaydin et al. (2014). Ultimately, bagging generates L datasets
which are independently used for creating decision trees. Once decision trees are built,
majority agreement is used for voting. The predictions generated from the base learners
(decision trees) are counted and the class that gets most votes is the final prediction for a
given data point.

5.3 XGBoost (XGB)

XGBoost is an optimized method built on top of the Gradient Boosting method. The
optimization is made by parallelly boosting the trees so that the XGBoost’s performance is
highly efficient and accurate. As Chen and Guestrin (2016) describes, the Gradient Boosting
method is a tree-based method where instead of creating ensemble of trees, the model runs in
an additive manner where L estimators are generated in each iteration and the best estimator
among L that minimizes the objective function is chosen, this is a binary logistic function.
A set of prespecified parameters are used to define the L and the number of iterations to be
made for convergence. Although there are rule-of-thumb parameters, our research makes
use of randomized search to find the best combination among possible parameter sets.

5.4 Deep Cascading Forest (DCF)

Zhou and Feng (2017) proposed an ensemble tree-based method called Deep Cascading
Forest (DCF). This method was shown to give good results when the available training data
is not enough to train large deep learning models. The layered architecture of DCF can be
found in Figure 9.

We build DCF model on the churn dataset, and replace the predictor layer of DCF with
XGBoost to further improve the performance. This approach was chosen since XGBoost
has shown good performance on various machine learning tasks. The XGBoost combined
with DCF method is referenced as DCFX in our research.
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Figure 9 Architecture of Deep Cascading Forest (DCF) model used in this research. Each level has
a default configuration of two random forests and two completely random forests. DCF is
an ensemble of ensembles method that combines the scores produced at each layer to
create the next layer’s forests Zhou and Feng (2017). For the Random Forests (RF) the
features are selected based on the best Gini index. In Completely Random Forests (CRF)
features are selected randomly in each split and uses all features in training set. The
predictor layer produces final predictions by averaging output scores at the level N.

5.5 Deep Neural Network (DNN)

Deep Neural Networks (DNNs) consist of multiple hidden layers, with each layer’s output
serving as an input to the subsequent layer. This hierarchical structure allows DNNs to learn
features at various levels of abstraction, ultimately producing classification probabilities or
regression values in the final layer. The primary advantage of DNNs lies in minimizing
human oversight by automatically learning relevant features from the data Alpaydin et al.
(2014). DNNs can have multiple hidden layers, with each layer potentially containing a
different number of nodes or neurons. The activation function used in each layer determines
how a single node will be activated for a given input instance, playing a crucial role in the
network’s ability to learn complex patterns and relationships within the data. Lastly, the
predictor layer combines probabilities produced in the next-to-last dense layer to come up
with a single prediction for a data instance. This research also investigates the effect of
the predictor layer’s activation function, comparing Rectifier Linear Unit (ReLU) Nair and
Hinton (2010), Sigmoid function, and XGBoost.

Deep Neural Networks (DNNs) are more susceptible to overfitting compared to
simpler models. One approach to mitigate the overfitting problem is to reduce model
complexity by introducing a dropout layer between dense layers. A dropout layer randomly
deactivates a fraction of neurons during training, effectively reducing the interconnections
between neurons and preventing over-reliance on specific features or patterns in the
data. By randomly dropping out neurons, the model learns more robust and generalized
representations, thus reducing the risk of overfitting. This technique encourages the network
to learn more diverse and robust features, improving its ability to generalize to unseen data.
As can be seen from DNN-Model 1 results in a smooth convergence after 50 epochs. On
the other hand, if the performance does not improve over epochs, the learning rate could be
reduced by a factor such as 0.1 to help reach the local optima. Additionally, DNN-Model 3
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Figure 10 Three-Fold Cross Validation (CV) example. Data is split in such a way that one instance
may be present in more than one-fold and some instances may not be present in any of
the folds. Each fold has a validation set and training set. The final result is the average
score produced from three-fold validation.

includes the sigmoid activation in prediction layer while in DNNX we replace the prediction
layer by XGB estimator.

5.6 Cross Validation (CV)

Cross Validation is a validation method where the data is split into K fold and for each fold
i, all the folds except fold i are included in the training and fold i is used as an out-of-sample
validation set to minimize possible overfitting. K = 3 was picked for this research to have
enough data points for each fold to eliminate bias. The split method used in this research
is stratified and shuffled split. Stratification preserves the class ratios across splits while
shuffling adds randomization to the splits. An example of K-Fold CV is shown in Figure
10.

5.7 Randomized Search Cross Validation (RSCV)

Grid Search is a searching method that generates all permutations from a given parameter
set with multiple options. For example, if there is a set of nestimators with a size of K
and another set of mmax _nodes with a size of L, Grid Search will run K ×M models
with the given parameters (Figure 11). To run all combinations is time consuming and
could be inefficient, because (1) each iteration takes some amount of time and (2) if a
parameter combination gives poor results, then it is likely that its neighbors could give
similar results. A Randomized Search, however, is a Grid Search method with a constraint of
maximum number of combinations. Randomized Search runs exactly the given the number
of combinations by choosing randomly from the parameter grid, which is the set of all
possible combinations of parameters. CV is continuously applied during the randomized
search and test scores are computed for each parameter combination. Finally, we select the
combination that returns the best test score.
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Figure 11 Example of a Grid Search and Randomized Search. Grid Search considers all possible
combinations while Randomized Search only picks a given number of combinations. The
number of combinations can get extremely large if more parameters are added to the grid.

Figure 12 Diagram showing the experiment setup. There are four model sets generated at the end.
Each of them consists of six machine learning models. This leads to a comprehensive
comparison across various feature selection, oversampling, and machine learning
methods.

6 Experiment Setup and Model Evaluation Metrics

There are three main experiment comparisons that our research aims to perform:

• The effect of IV and PCA feature selection

• No oversampling. SMOTE and ADASYN oversampling over raw data

• Machine Learning methods compared to each other, namely, Logistic Regression
(LR), XGBoost (XGB), Random Forest (RF), Deep Cascading Forest (DCF), Deep
Cascading Forest with XGBoost (DCFX), Deep Neural Networks (DNN), Deep Neural
Networks with XGBoost (DNNX).

The modeling approach followed in this research is shown in Figure 12. A detailed
description of parameter set used in the experiment is presented in Table 1.
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6.1 Model Evaluation Metrics

The metrics used for model evaluation are briefly described as follows:

• Accuracy answers the question “How accurately does the model predict the label
correctly?” and its formula is (TP + TN)/(TP + TN + FP + FN).

• Precision is used to answer, “When the model predicts true, how many times is it
actually true?” and calculated by TP/(TP + FP ).

• Recall or TP-Rate answers, “From all true labels, how many times the model predicts
true?” and therefore calculated by TP/(TP + FN).

• Specificity answers, “From all false labels, how many times the model predicts false?”
and thus calculated by TN/(TN + FP ).

• F-1 score is the harmonic mean of precision and recall metrics such that it produces
a single metric that benefits from both metrics. The formula for F-1 score is 2×
(Precision×Recall)/(Precision+Recall). Notice that the maximum value of F-1
score can be 1 and minimum can be 0. Also, note that a score closer to 1 means better
performance in terms of both precision and recall. If one of them is significantly lower
than the other, then the F-1 score will also be lower.

• AUROC is the area under the Receiver Operating Characteristics (ROC) curve. The
ROC curve is drawn by calculating recall (or TP-Rate) and specificity (or FP-Rate)
for every possible threshold in prediction probabilities. Note that when threshold is set
to 1, both TP-Rate and FP-Rate must be 1, and similarly, when threshold is set to 0,
both TP-Rate and FP-Rate must be 0. Therefore, the ROC curve always starts at (0,0)
and ends at (1,1). A random model therefore will result in 50% AUROC score and the
perfect model will have a 100% AUROC score.

6.2 Determining an Optimal Cutoff Point for Assigning a Category

Determining the optimal threshold for classifying the minority class, i.e., churned customers
involves calculating the True Positive Rate (TP-Rate) and False Positive Rate (FP-
Rate) for every possible threshold. Subsequently, the Area Under the Receiver Operating
Characteristic (AUROC) curve is calculated for each threshold. The threshold that
maximizes the AUROC is considered optimal. In essence, the point where the TP-Rate
intersects with the FP-Rate represents the optimal threshold for a given model. This threshold
strikes a balance between correctly identifying positive instances (True Positives) while
minimizing false alarms (False Positives).

Table 1: Description of Parameters used in Various Models on the Churn Dataset

Model Name, Datasets, Parameter(s)

Model Name: LR
Datasets: IVR, IVS, IVA, PCAS

Continued on next page
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Table 1: Description of Parameters used in Various Models on the Churn Dataset
(Continued)

max_iter=1000. Maximum number of iterations for running update function.

penalty=l2. The regularization type is used to penalize the loss function in each iteration.
L2 is equal to the squared magnitudes of coefficients.

Model Name: RF
Datasets: IVR, IVS, IVA, PCAS
n_estimators=50. Number of decision trees to be used in the forest.

max_depth=6. Maximum depth of a decision tree.

min_samples_split=100. Minimum number of data instances required to make a split
from a node.

min_samples_leaf=40. Minimum number of data instances required in a leaf node.

max_leaf_nodes=45. Maximum number of leaf nodes. Note that a tree structure with a
depth N usually has 2N nodes.

bootstrap=True. Use bootstrapping when generating subset for each estimator.

Model Name: XGB
Datasets: IVR, IVS, IVA
n_estimators: [100, 200]. Number of decision trees.

learning_rate: [0.01, 0.05, 0.1]. The value is used to determine how fast the estimator
will learn the target features. A very high learning rate could result in missing the local
optima while a very low learning rate may take too long to converge.

min_split_loss: [0, 1, 5]. The gamma value to be used for limiting the creation of new
splits by setting a minimum threshold. Split aims to reduce the loss.

max_depth: [3, 4, 5]. Maximum depth of a decision tree.

max_leaves: [4, 8, 12]. Maximum number of leaf nodes.

Model Name: XGB
Dataset: PCAS
Modifications below are added the IV models to improve performance.

n_estimators: [200, 300]

max_depth: [4, 5, 6]

Model Name: DCF
Datasets: IVR, IVS, IVA

Continued on next page
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Table 1: Description of Parameters used in Various Models on the Churn Dataset
(Continued)

n_estimators: [2, 3, 4]. Number of estimators in each layer.

n_trees: [100, 200]. Number of decision trees to be built in each estimator.

max_layers: [2, 3]. Number of layers to be used in the deep forest.

max_depth: [3, 4, 5]. Maximum depth of a decision tree.

min_samples_leaf: [50, 100]. Maximum number of leaf nodes.

Model Name: DCF
Dataset: PCAS
Modifications below are added the IV models to improve performance.

n_estimators: [200, 300]

max_depth: [4, 5, 6]

Model Name: DCFX
Datasets: IVR, IVS, IVA
Same parameter set as that in DCF-IV model.

Model Name: DCFX
Datasets: PCAS
Same parameter set as that in DCF-PCA model.

Model Name: DNN
Datasets: IVR, IVS, IVA, PCAS
Model 1:
Normalization Layer

Dense Layer with 200 nodes and ReLU activation

40% Dropout Layer

Dense Layer with 100 nodes and ReLU activation

30% Dropout Layer

Dense Layer with 50 nodes and ReLU activation

Prediction Layer

Model 2:

Continued on next page
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Table 1: Description of Parameters used in Various Models on the Churn Dataset
(Continued)

Normalization Layer

Dense Layer with 512 nodes and ReLU activation

60% Dropout Layer

Dense Layer with 256 nodes and ReLU activation

60% Dropout Layer

Dense Layer with 128 nodes and ReLU activation

Prediction Layer

Model 3:
Normalization Layer

Dense Layer with 128 nodes and ReLU activation

Dense Layer with 64 nodes and ReLU activation

40% Dropout Layer

Dense Layer with 32 nodes and sigmoid activation

Prediction Layer

Model 4:
Normalization Layer

Dense Layer with 128 nodes and ReLU activation

Dense Layer with 64 nodes and ReLU activation

Prediction Layer

7 Experiment Results and Discussion

The subsections below discuss the results of machine learning models generated on churn
dataset using IV and PCA for feature selection and no upsampling, SMOTE and ADASYN
for oversampling.

7.1 DNN Loss Convergence

Figure 13 shows the loss by epoch plot of each of the four DNN models on IVS dataset. For
Model 1, a desirable convergence of loss between training and validation sets is observed.
Starting from high amount of loss, the model converges to 0.21 after ~30 epochs. On the
other hand, Model 2 fails to converge and underfits. The DNN model losses suggests that
the dropout layers in Model 2 cause a vast amount of information loss, therefore the DNN
cannot learn at all. On the other hand, Model 3 results in overfitting although the amount
of loss in the final epoch is less than the Model 1. Lastly, Model 4 shows a fluctuating loss
between epochs. This is because of the low number of nodes in both layers of Model 4.
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Figure 13 Epoch-by-epoch training and validation loss for four different configurations of DNN
models on the IVS dataset.

With the low number of nodes, the model becomes unsteady and is undesirable. Ultimately,
we include Model 1 in our evaluation since it has the most appropriate loss plots.

7.2 IVR Model - Information Value Features and No Oversampling

In the IVR dataset the features are selected via the IV method without oversampling.
Machine learning methods described in Section 5 were applied to the IVR dataset. Following
parameter optimization, a 2% threshold was implemented for the AUROC score to prevent
overfitting. Table 2 displays the test set performance of machine learning models on the
IVR dataset. According to the table, the DCFX model achieved the highest AUROC
score of 89.1%. This score notably outperforms other models, with the exception of the
XGBoost model, which attained a score of 88.7%. The Random Forest (RF) model produced
competitive results, ranking fourth among all models in terms of AUROC. However, the
DNN model for IVR failed to converge with the given parameter set. This indicates that
further adjustments or exploration may be necessary to achieve convergence with the DNN
model. Although DNNX model had slightly better AUROC score than the DNN model, it
is behind the XGB and DCFX.

Table 2: Performance of IVR Model Set

Model Accuracy Precision FPR TPR F1 AUROC

LR-IVR 89.0% 71.2% 3.3% 45.6% 55.6% 71.2%
XGB-IVR 89.8% 61.6% 9.6% 86.9% 72.1% 88.7%
RF-IVR 87.1% 54.4% 13.1% 88.0% 67.2% 87.5%
DCF-IVR 87.8% 56.0% 12.4% 88.9% 68.7% 88.2%
DCFX-IVR 89.5% 60.3% 10.4% 88.7% 71.8% 89.1%
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Model Accuracy Precision FPR TPR F1 AUROC

DNN-IVR 85.1% 50.3% 15.1% 85.7% 63.3% 85.3%
DNNX-IVR 86.5% 53.3% 13.3% 85.7% 65.7% 86.2%

It is useful to analyze results based on various other metrics to gain a comprehensive
understanding of model performance. For instance, XGBoost has a better accuracy with
89.8% but the imbalance of the dataset may create a bias in accuracy. On the other hand,
Logistic Regression (LR) exhibits the best precision and specificity, however, the low recall
indicates that LR fails to capture a significant portion of actual positive instances, resulting
in a lower F-1 score and AUROC compared to other methods. This scenario underscores the
importance of considering multiple metrics when evaluating model performance. Relying
solely on one metric can be misleading and may not provide a comprehensive understanding
of a model’s capabilities.

Lastly, the resultant confusion matrix from IVR models suggest that LR has achieved
a higher accuracy score by simply predicting most of data points as false, missing several
actual true classes. On the other hand, XGB and DCFX catches many of the datapoints
belonging to the true class with a minimal number of misclassifications. Additionally, while
DCF manages to correctly classify datapoints belonging the true class, it also misclassifies
a lot of data points, resulting ina a lower TP-Rate.

7.3 IVS Models - Information Value Features and SMOTE Oversampling

The SMOTE models utilizing features selected from the IV method are presented in Table
3. In contrast to the IVR model set, this time DCFX and DNNX yielded the best results,
albeit slightly lower than their counterparts in IVR models. For instance, the AUROC for
DCFX-IVS is 0.5% lower than DCFX-IVR. This is a good example of how DNNs perform
better when fed with more data instances. On the other hand, XGB performed slightly
worse than it did for IVR, reason being somewhat overfitting of the model causing more
misclassification in test data.

Table 3: Performance of IVS Model Set

Model Accuracy Precision FPR TPR F1 AUROC

LR-IVS 83.4% 46.5% 13.8% 67.5% 55.1% 76.8%
XGB-IVS 85.6% 51.3% 14.7% 87.4% 64.6% 86.3%
RF-IVS 86.3% 52.8% 13.7% 86.5% 65.6% 86.4%
DCF-IVS 85.3% 50.8% 14.8% 86.3% 63.9% 85.7%
DCFX-IVS 88.1% 56.8% 12.0% 89.2% 69.4% 88.6%
DNN-IVS 84.8% 49.8% 15.5% 86.7% 63.3% 85.6%
DNNX-IVS 88.5% 58.3% 10.6% 83.9% 68.8% 86.6%

The confusion matrix for LR has significantly higher number of true positives than it
had in IVR model set, resulting a 5.7% increase in AUROC score. The highest number
of true positives are predicted by DCFX model, which also is the best model in terms of
AUROC score. Although the closest model, XGB has only 17 less true positives, the high
difference in false positives for XGB caused a 2.2% lower AUROC score.
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7.4 IVA Models - Information Value Features and ADASYN Oversampling

The models constructed on the ADASYN dataset demonstrated slightly better performance
than SMOTE based models, although they still fell short of the IVR models. The difference is
minimal, with only a 0.3% variance between the AUROC scores of DCFX-IVA and DCFX-
IVR. It’s evident that for the churn dataset, oversampling had no significant positive impact
on model performance. Other than the impact of oversampling methods, it is observed that
XGB and DCFX were consistently better across all metrics compared to other methods,
LR, RF, DCF and DNN. DNNs peformance suffered due to lack of data points leading
to a lower activation in network layers. As a result, DNNs may produce weaker models
compared to ensemble methods like Random Forests or XGBoost, which are more robust
to data scarcity. This highlights the importance of having a sufficiently large and diverse
dataset to effectively train complex models like DNNs.. Table 4 shows the performance of
IVA model set.

Table 4: Performance of IVA Model Set

Model Accuracy Precision FPR TPR F1 AUROC

LR-IVA 80.9% 42.0% 17.3% 70.4% 52.6% 76.6%
XGB-IVA 87.9% 56.3% 12.1% 88.0% 68.7% 88.0%
RF-IVA 85.7% 51.6% 14.5% 86.7% 64.7% 86.1%
DCF-IVA 86.1% 52.4% 13.9% 86.2% 65.2% 86.1%
DCFX-IVA 88.4% 57.5% 11.7% 89.4% 70.0% 88.8%
DNN-IVA 84.9% 50.0% 15.6% 87.7% 63.7% 86.1%
DNNX-IVA 85.0% 50.2% 15.3% 86.8% 63.6% 85.8%

DCFX has 17 less false positives and 2 more true positives compared to IVS DCFX
model, which translates into a higher AUROC for this model in the ADASYN generated
dataset. Still, the number of false positives is greater than it was in IVR DCFX model by
72 data points.

7.5 PCAS Models - Principal Component Analysis Features and SMOTE
Oversampling

The test set results of the PCAS model set are depicted in Table 5. In comparison to other
experiment results presented previously, the performance of PCAS is inferior across all
models. This experiment highlights that DNNs excel in extracting information when there
are more features available. The increase in the number of features by 9 for the PCA dataset
compared to the IV dataset made DNN superior over other methods in terms of performance.
Also, another comparison may be made within DNN models, DNN and DNNX, which had
extremely close performance. It can be concluded that XGBoost predictor layer had slight
to no impact on model performance on PCA reduced dataset.
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Table 5: Performance of PCAS Model Set

Model Accuracy Precision FPR TPR F1 AUROC

LR-PCAS 82.5% 45.7% 18.0% 85.5% 59.6% 83.8%
XGB-PCAS 84.0% 48.2% 15.9% 83.1% 61.0% 83.6%
RF-PCAS 82.4% 45.5% 17.9% 84.2% 59.1% 83.1%
DCF-PCAS 83.1% 46.6% 17.2% 84.3% 60.0% 83.6%
DCFX-PCAS 84.8% 49.8% 15.1% 84.0% 62.5% 84.5%
DNN-PCAS 84.8% 49.8% 15.3% 85.4% 62.9% 85.1%
DNNX-PCAS 85.5% 51.3% 14.0% 83.1% 63.4% 84.5%

A conclusion drawn from the PCAS model set is that the models tend to predict more
instances as true compared to the IV model sets. For example, the PCAS DCFX model
predicts 1,577 data points as true, whereas the corresponding IVR DCFX model predicts
only 1,374 data points as true. Consequently, the PCA method could potentially result in a
lower True Positive Rate (TP-Rate), indicating that the models trained on the PCAS dataset
may have a tendency to classify more instances as positive, including false positives.

7.6 Model Runtimes

The fastest running method was LR as expected, only 44 seconds for a single iteration.
Second fastest method was RF since it only creates 50 decision trees with a maximum
depth of 6. The remaining models are iteration or epoch based since. The total runtime of
XGB and DCF methods exceeded one hour with the RSCV exploring different parameter
combinations.

As the model results suggests, DCFX seemed to outperform other methods in most
settings. On the other hand, one drawback of DCFX could be its speed. Table 6 shows the
total time elapsed to run whole model and averages for one iteration for each model type on
a 4-core CPU, and DCFX is clearly the least-efficient method among all. This is expected
as: (1) LR is a base estimator that benefits from training only once, (2) RF and XGB run
only one ensembling while DCF (and DCFX) runsNlayers times ensembling, and (3) Keras
is a highly optimized package that was used to run the DNN models, in comparison the
implementation of DCF is not optimized for parallel processing.

Table 6: Runtime Analysis of Machine Learning Models

Model Type
RSCV Iterations /
Epochs Total Runtime

Average
Runtime/Iteration

LR 1 00:00:44 00:00:44
RF 1 00:01:04 00:01:04
XGB 50 01:02:47 00:01:15
DCF 20 01:47:06 00:05:21
DCFX 20 02:14:33 00:06:43
DNN 50 00:54:40 00:01:06
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Table 7 indicates that most of the machine learning methods performed best on dataset
without upsampling. The only notable improvement in model performance was observed
for Logistic Regression (LR) on the PCAS dataset, where the AUROC score increased by
12.6% compared to the IVR dataset. Still, the remaining methods like XGBoost or DCFX
suggests that the churn dataset should not be oversampled for modeling purposes.

Another conclusion drawn from Table 7 is that the IV feature selection method
outperforms PCA feature selection. This observation aligns with expectations, as PCA
primarily serves as a dimensionality reduction method, where some information loss may
occur during the process. Interesting enough, the number of features for IV datasets were
lower than the PCA, 31 versus 40.

Table 7: AUROC Comparison of Models Across Generated Datasets

Dataset LR RF XGB DCF DCFX DNN DNNX

IVR 71.2% 87.5% 88.7% 88.2% 89.1% 85.3% 86.2%
IVS 76.8% 86.4% 86.3% 85.7% 88.6% 85.6% 86.6%
IVA 76.6% 86.1% 88.0% 86.1% 88.8% 86.1% 85.8%
PCAS 83.8% 83.1% 83.6% 83.6% 84.5% 85.1% 84.5%

8 Conclusion and Future Work

We performed a detailed comparison of feature selection methods, upsampling methods,
and machine learning methods on the customer churn risk dataset. Deep Neural Networks
are included to have a deeper comparison between tree-based models and neural networks.
Our research manages to compare likelihood-based, tree-based, and layer-based machine
learning methods on the churn dataset.

The first conclusion drawn from the experiments is that models built on the churn
dataset without upsampling performed better than oversampling methods. It’s notable
that both SMOTE and ADASYN helped stabilize model performance, suggesting their
effectiveness in mitigating the impact of class imbalance on model training. The models built
on the ADASYN dataset slightly outperformed their SMOTE counterparts. Furthermore, the
consistent superiority of XGBoost (XGB) and DCFX across all metrics underscores their
robustness and reliability in handling churn prediction tasks. IV model set results performed
better than PCA model set. In particular, IVR DCFX model has the best AUROC score with
89.1%. This score is significantly better than any other models except for XGBoost model
which produced 88.7%. As the model results suggest, DCFX seemed to outperform other
methods in most settings.

Future work shall involve increasing the size of the dataset and implementing variants
of Deep Neural Networks and Deep Cascading Forest to further improve churn prediction.
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