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Abstract— Autonomous mobile robot navigation is a 
challenging area of research due to various physical, hardware, 
and software issues. In this research, an autonomous robot system 
has been developed, which incorporates a visual inertial 
navigation system (VINS) with the goal that the robot could 
conduct automated university campus tours. Mapping and state 
estimation rely on the accuracy acquired from fusing the data 
from the cameras and inertial measurement units (IMU). The 
fusion of these two sensors makes VINS systems more accurate 
and robust. 

We created a custom stereo inertial system and performed 
extensive evaluation to mitigate calibration issues such as noise 
and bias for accurate state estimation. The custom sensor 
infrastructure can be mounted on any mobile system. 
Furthermore, we tested our evaluation methodology on two 
challenging benchmark datasets, namely, EuRoC and TUM to 
determine the precision of the state estimator. Experiments show 
that VINS achieved highly accurate results in terms of calibration, 
reprojection, and trajectory estimation. 

Keywords— visual inertial navigation system, MSCKF, 
calibration, state estimation, EKF, UKF. 

I. INTRODUCTION 
Autonomous ground based mobile robotic systems and 

unmanned aerial vehicles (UAVs) are increasingly widespread. 
Their extensive use can be attributed, in part, to a significant 
surge in computational capabilities coupled with a simultaneous 
reduction in the cost and power consumption. Empowering such 
robotic systems with the capability to comprehend and interpret 
their positions within local surroundings is essential for various 
applications ranging from augmented reality and virtual reality 
to self-directed navigation that frequently incorporates the 
utilization of visual inertial navigation systems (VINS). Those 
systems leverage information from onboard cameras and inertial 
measurement sensors, which are subsequently fused together to 
provide accurate state estimation for the robotic system. 

Creating an operational visual inertial navigation system 
algorithm from the ground up is challenging. There is a lack of 
available open-source codebases with comprehensive 
documentation and derivations. Such a situation has caused the 
progress to be slow in this domain and it also inhibits the scope 
of extended research. There are various open-source visual 
inertial codebases [1, 2, 3] but they do not prioritize extensibility 
and suffer from inadequate documentation and evaluation tools. 
However, open VINS [4] has been essential in bridging that gap. 

We evaluate a visual inertial navigation system pipeline for 
autonomous robots with the goal that the robot can conduct 
automated university campus tours. Our research is focused on 
extending the application of such VINS systems to a more 
modular setup, so that it could be deployed on any robotic 
system. Our research also focuses on creating custom stereo 
inertial sensor configuration to facilitate the evaluation of the 
simultaneous localization and mapping (SLAM) system in real 
time. We focus on calibration of the sensors to mitigate noise 
and bias while also comparing the results on two challenging 
benchmark datasets to assess the competence of the system. 

The subsequent sections of the paper are organized in the 
following manner. Section II focuses on the prior relevant works 
related to our research. Section III provides details of the 
benchmark datasets used for conducting the experiments. 
Section IV covers details of the evaluation methodology of this 
research, while section V outlines the experimental findings, 
results, and discussions. Section VI gives the conclusion and the 
probable areas to extend this research. 

II. RELATED WORK 
Over the preceding few decades, state estimation has been 

the center of immense attention in research. Numerous methods 
have been proposed to address the accurate estimation of 6-DoF 
(Degrees of Freedom) poses. Several methods have been 
proposed focusing on different types of sensors such as visual-
based [5, 6, 7], LiDAR-based [8], RGB-D-based [9] and event-
based [10]. Achieving 6-DoF pose estimation with a monocular 
camera could be challenging due to the inherent inability to 
recover absolute scale from a single camera. To enhance the 
dependability of the system, it is a common practice to integrate 
multiple sensors. 

There are two prevalent trends that exist in multi-sensor 
fusion approaches and VINS systems, these are optimization 
based and filter-based methods. Filter-based methods are known 
to utilize the extended Kalman filter (EKF). In such methods, 
inertial and visual measurements are often filtered together to 
estimate the state of the robotic system. High-rate inertial 
sensors are responsible for facilitating state propagation, while 
visual measurements provide updates [11, 12]. The multi-state 
constraint Kalman filter (MSCKF) [13, 14], maintains various 
poses of the camera and utilizes various camera viewpoints for 
a multi-constraint update. However, methods relying on filter-
based approaches often come across challenges due to early 
linearization of states, which leads to errors caused by imprecise 
linear points. 



In order to address the inconsistencies resulting from the 
linearized errors, the observability constrained EKF [15] was 
suggested to enhance precision and stability. An alternative 
approach using the unscented Kalman filter (UKF) [16] was 
introduced, which integrated LiDAR, visual and GPS. The UKF 
is an extension of the EKF without the analytic Jacobians and it 
aims to mitigate sensitivity to time synchronization inherent in 
filter-based methods. Delayed measurements in those methods 
can disrupt the filtering procedure as states cannot be 
retroactively propagated. Therefore, a specific sequencing 
mechanism is essential to ensure that data from multiple sensors 
are sequenced in the proper manner. 

III. DATASET DESCRIPTION 

A. EuRoC 
EuRoC [17] is a publicly available dataset used for research 

and is primarily designed to assess and benchmark the 
effectiveness of various methods within the context of micro 
aerial vehicles and their sensor infrastructure. The data was 
generated from several sensors including stereo cameras and 
inertial measurement units. It was collected using micro aerial 
vehicles in diverse indoor and outdoor settings. It is a benchmark 
dataset for conducting experiments in visual odometry, SLAM, 
sensor fusion, and other applications in computer vision and 
robotics. 

B. TUM VI 
Fusing sensor and inertial data improves the precision and 

resilience in visual inertial odometry methods. TUM visual 
inertial dataset [18] consists of a varied range of data sequences 
captured in distinct scenarios for evaluation of visual inertial 
odometry algorithms. It has stereo pairs of images with a 
resolution of 1,024 x 1,024. The images are captured at 20 
frames per second with HDR and photometric calibration. The 
inertial measurement unit (IMU) calculates the acceleration and 
angular velocities at 200 frames per second along the three axes. 
The IMU along with the camera data are synchronized in time 
within the hardware. To assess the precision of the trajectory, 
they provide the ground truth data that is collected while 
utilizing a motion capture system operating at a frequency of 
120 Hz. It also provides color and depth data including the 
ground truth. It contains the color and the depth images captured 
at a frequency of 30 frames per second (FPS) and a sensor 
resolution of 640 x 480. The accelerometer data was collected 
from the Kinect sensor. Fig. 1 illustrates sample frames for the 
EuRoC V103 and TUM VI room 1 datasets. 

IV. RESEARCH METHODOLOGY 
We created custom stereo inertial sensor configuration to 

facilitate the evaluation of VINS in real time for autonomous 

robots with the goal that the robot could conduct automated 
university campus tours. Furthermore, we tested our evaluation 
methodology on two challenging benchmark datasets such as 
EuRoC and TUM to determine the precision of the state 
estimator. Fig. 2 presents evaluation methodology of the VINS. 
One of the goals of our research is to implement camera IMU 
calibration and improve the time synchronization amongst the 
cameras and IMU. This helps in real time accurate state 
estimation and localization. The rest of this section discusses the 
implementation details of the evaluation methodology to 
ascertain the accuracy of a SLAM system or any state estimator. 

A. Source Data 
The source data consists of the ground truth data from the 

open-source benchmark datasets such as EuRoC and TUM VI 
along with the estimated trajectory of the camera generated from 
the state estimator. The evaluation methodology implemented in 
our research can incorporate open-source methods such as open 
VINS. The dataset format is in the following format: 
timestamps, position of the robot in 3D space, and quaternion 
rotation of the robot. 

B. Evaluation Parameters 
The evaluation parameters in the implemented methodology 

comprise of the mean absolute error (MAE), root mean squared 
error (RMSE), absolute trajectory error (ATE), and mean 
squared error (MSE). RMSE is a widely used metric used for 
evaluating the accuracy of a predictive model or the quality of 
estimation or reconstruction. MAE exhibits lower sensitivity to 
outliers compared to RMSE and MSE. This is a suitable choice 
when the data contains extreme values capable of 
disproportionately influencing other error metrics. ATE is a 
metric used to assess the precision of predicted trajectory when 
compared to the ground truth data in SLAM systems. Given a 
ground truth and a predicted path, the ATE is calculated as an 
average of the Euclidean measures amongst the corresponding 
poses along the trajectories. 

 
 

(a) EuRoC V103 dataset frame. (b) TUM VI Room 1 dataset 
frame. 

Fig. 1. Examples of EuRoC [17] and TUM VI [18] dataset frames used for 
evaluation of VINS. 

 
Fig. 2. Evaluation methodology of the visual inertial navigation system. 

 
Fig. 3. Custom stereo inertial sensor configuration using Intel RealSense 
D455 and MicroStrain IMU. 



C. Trajectory Alignment 
We use two alignment methods, the Kabsch method and the 

Horn method. The Kabsch method calculates the optimized 
rotation matrix that minimizes the root mean squared deviation 
between a pair of points. It also requires the translation vector to 
align two sets of points in three-dimensional space. The steps 
include centering where the sets of points are centered around 
the centroids and covariance matrix computation where the 
covariance matrix between the two centered points are 
calculated. Application of singular value decomposition to the 
covariance matrix allows for the extraction of the rotation 
matrix. The determination of the translation vector is based on 
the centroids of the point sets. 

The Horn method extracts the optimal rotation and 
translation amongst a group of points in three-dimensional 
space. It relies on the usage of unit quaternions for 
representations of rotations and minimization of the sum of 
squared differences between corresponding points. The Horn 
method does not account for the scale factor because of which 
the Kabsch method is preferred in certain scenarios. The results 
are plotted for a better visual representation of the aligned and 
unaligned data for comparison between the two methods. 

D. Camera IMU Calibration 
For conducting the experiments in this research, we used a 

custom stereo-inertial configuration comprising of two Intel 
RealSense D455 cameras and a MicroStrain IMU as illustrated 
in Fig. 3. The monocular RGB module of each RealSense 
camera was used to create a stereo configuration. The open-
source toolbox Kalibr [19] was used for calibrating the cameras. 
Kalibr supports multiple camera calibration, camera-IMU 
calibration, multi IMU calibration and rolling shutter camera 
calibration [20]. The purpose of performing camera calibration 
is to extract the intrinsic and the extrinsic parameters of the 
camera along with the lens distortions, which are crucial to 
accurate state estimation. The transformation between each 
sensor is also determined from the calibration process. 

The calibration tool for the camera IMU system establishes 
the temporal and spatial attributes of a camera system in relation 
to the IMU, which is intrinsically calibrated. The IMU data and 
the image must be supplied in the rosbag format. The calibration 
attributes are measured through a comprehensive batch 
optimization process, utilizing splines to represent the system’s 
poses. 

Calibration of intrinsic attributes of the IMU is essential and 
the correction measurements are implemented on the raw 
measurements. The noise density and the bias random walk for  
the gyroscope and accelerometer of the IMU need to be 
calculated. This was done using the Allan variance ROS [21] 
package. The Allan variance serves as a statistical metric 
employed to describe the stability and noise properties of a time 
series signal. It is a measure of how the variance of a signal 
changes as the average time increases. We collected more than 
22 hours of IMU data to compute the Allan deviation. 

A rosbag was created to collect the direct image streams 
from the sensors. The calibration target was fixed while the 
camera IMU configuration was being shifted in front of the 
calibration target to stimulate every axis of the IMU. During this 

process, the calibration target was evenly illuminated, and the 
camera shutter durations were minimized to prevent motion 
blur. 

E. Open VINS System 
The state vector in VINS encompasses the present inertial 

navigation state, a group of past IMU poses, a group of intrinsic 
and extrinsic parameters of cameras along with a set of 
landmarks in the environment. The representation of the 
environment landmarks simplifies things because it exclusively 
contains global 3D positions. The open VINS framework 
accommodates various representations such as inverse MSCKF 
[22, 23], complete inverse depth [24] as well as anchored 3D 
positions [25]. The calibration vector encompasses the intrinsic 
attributes of the camera that includes focal length, optical center, 
lens distortions as well as camera IMU extrinsic parameters, 
which is also referred to as the relative orientation or the spatial 
transformation from the IMU towards each camera. To take into 
account the synchronization of the camera clocks, a single time 
offset is incorporated between the camera clock and the IMU 
into the calibration vector.  

x𝑘𝑘 = [x𝐼𝐼T  x𝐶𝐶T  x𝑀𝑀T   x𝑊𝑊T   𝑐𝑐𝑡𝑡𝐼𝐼]T (1) 

x𝐼𝐼 = [ 𝑞𝑞𝑇𝑇 𝐺𝐺
𝐼𝐼𝑘𝑘  𝐺𝐺p𝐼𝐼𝑘𝑘𝑇𝑇   𝐺𝐺v𝐼𝐼𝑘𝑘𝑇𝑇   b𝜔𝜔𝑘𝑘

𝑇𝑇   b𝑎𝑎𝑘𝑘
𝑇𝑇 ]T (2) 

x𝐶𝐶 = [ 𝑞𝑞𝑇𝑇  𝐺𝐺
𝐼𝐼𝑘𝑘  𝐺𝐺p𝐼𝐼𝑘𝑘−1𝑇𝑇 …  𝑞𝑞𝑇𝑇  𝐺𝐺

𝐼𝐼𝑘𝑘−𝑐𝑐 𝐺𝐺p𝐼𝐼𝑘𝑘−𝑐𝑐𝑇𝑇 ]T (3) 

x𝑀𝑀 = [𝐺𝐺p𝑓𝑓1𝑇𝑇 … 𝐺𝐺p𝑓𝑓𝑚𝑚𝑇𝑇 ]T (4) 

x𝑊𝑊 = [ 𝑞𝑞𝑇𝑇  𝐶𝐶1

𝐼𝐼
 𝐶𝐶1p𝐼𝐼𝑇𝑇   𝜁𝜁0𝑇𝑇 … 𝑞𝑞−𝑇𝑇 𝐶𝐶𝑤𝑤

𝐼𝐼   𝐶𝐶𝑤𝑤p𝐼𝐼𝑇𝑇 𝜁𝜁𝑤𝑤𝑇𝑇 ]T (5) 

Equations 1 to 5 represent the state of VINS. It consists of 
the present state estimation with a set of past IMU poses denoted 
by c and landmarks denoted by m. 𝑞𝑞𝐺𝐺

𝐼𝐼𝑘𝑘  determines the quaternion 
unit that parameterizes the rotation with respect to the global 
frame G and the local frame of the IMU denoted by 𝐼𝐼𝑘𝑘  where k 
is time. x𝐼𝐼 denotes the inertial state. b𝜔𝜔 and b𝑎𝑎 represent bias of 
the gyroscope and accelerometers respectively. x𝑐𝑐  denotes the 
historic IMU poses and x𝑀𝑀  denotes the landmarks in the 
environment.x𝑤𝑤 represents the calibration attributes. 

The forward propagation of the inertial state involves the 
utilization of incoming IMU measurements in the form of linear 
accelerations and angular velocities. This propagation is 
achieved through a nonlinear general IMU kinematics 
framework, which advances the state from the previous 
timestamp to the next. The covariance matrix of the state is 
generally advanced by linearizing the nonlinear model based on 
the current estimation. The pose clones, environmental 
landmarks, and calibration states remain constant over time. 
Consequently, the associated state Jacobian entries maintain an 
identity status with no propagation noise. This helps in the 
utilization of the sparsity for efficient computation. 

The fundamental element of this visual inertial navigation 
system is the indexing method, which is based on types. 
Drawing inspiration from a popular graph-based optimization 
framework like GTSAM [26], the users don’t need to 
manipulate the covariance directly but are instead presented 
with tools, which are capable of handling the state and its 
covariance autonomously. Adopting such an approach result in 
a substantial decrease of implementation time and a diminished 
susceptibility to developmental errors arising from explicit 



access to covariance and state. Each internal state variable type 
contains details about the position in the error state, 
automatically adjusting during operations such as initialization, 
cloning, marginalization, which impact the ordering of 
variables. A type is characterized by its size of state, position in 
covariance and prevailing estimations. The present value might 
not exclusively be a vector and can also be represented as a 
matrix. The error state remains consistently represented as a 
vector for all types,, which prompts each type to establish the 
boxplus mapping that connects its error state and representation 
of manifold, essentially serving as a function for update. A 
primary benefit of this system is its capability to ease the 
incorporation of new features while creating sparse Jacobians. 
Rather than generating a Jacobian encompassing every state 
element, the sparse Jacobian is utilized to incorporate every state 
element specific to the function of measurement. This not only 
conserves computational resources in instances where a 
measurement is linked to a select few state elements but also 
permits measurement functions to remain indifferent to the 
overall state as long as the requisite state variables are present. 

The objective is to efficiently calculate the primary 
estimation of a fresh state variable along with its associations 
and covariance with state variables that are already in place. To 
illustrate, the process of initializing a new SLAM landmark is 
described thereby providing a generalized approach to any new 
state variable. The initial step involves conducting QR 
decomposition [27]. 

The landmark measurement model accommodates diverse 
feature parameterizations such as 3D positions, inverse depth, 
and others. The measurement functions pertain to the inherent 
projection, distortion, and transformation operations and the 
associated measurement Jacobians can be determined using a 
straightforward application of the chain rule. The errors are 

calculated on the original uv pixels enabling the adjustments of 
camera intrinsics through calibration. The function can also be 
modified to accommodate other camera models such as 
equidistant and radial tangential. 

V. EXPERIMENT SETUP, RESULTS, AND DISCUSSION 
The hardware setup includes Intel RealSense D455 camera, 

Microstrain IMU and the integrated inertial measurement unit 
(IMU) of the RealSense camera. The software was set up on 
Ubuntu 20.04 and the libraries used were Matplotlib, NumPy, 
SciPy and Math. The calibration of the monocular and the stereo 
pair of cameras was done using Kalibr, which is an open-source 
calibration tool developed for the purpose of multi camera 
calibration, visual-inertial calibration, multi-inertial calibration, 
and rolling shutter camera calibration. The Allan variance ROS 
package was employed to process an extensive IMU data 
sequence, determining the bias instability, gyro random walk, 
angle random walk for the gyroscope, bias instability, velocity 
random walk, and accelerometer random walk. This package is 
compatible with Kalibr and ROS Noetic, which was also used 
for conducting the experiments. 

The depth parameter of the RealSense camera was set to true 
with a resolution of 840 x 480. The gyroscope and accelerometer 
frames per second (FPS) were set to 400 and 250. The 
calibration was done for both monocular and stereo 
configuration. The custom stereo inertial system was used for 
the stereo calibration process. The AprilTag used for the 
calibration process had the following configuration: size of each 
tag is 0.088 m, number of AprilTags in each row and column is 
six, space between each tag is 0.3 m. 

A. Monocular Calibration 
For the monocular calibration, the integrated IMU of the 

RealSense D455 camera was used, which published the data at 
400 FPS and the rosbag color image data was recorded at 30 
FPS. The monocular RGB color module was utilized and the 
pinhole camera model was used for the calibration. Fig. 4 
illustrates the calibration of the monocular camera configuration 
along with the reprojection error. The figure illustrates the April 
Tag detection along with the corner detection, which helps in 

 
 

(a) Estimated poses of the 
monocular camera configuration. 

(b) Camera coverage along the 
AprilTag and the reprojection 
error along x and y axis. 

Fig. 5. Estimated camera poses of the monocular camera while capturing 
calibration data along with the resultant reprojection errors after 
calibration. 

  
(a) Stereo camera configuration. (b) Estimated poses of the stereo 

system. 

  
(c) Reprojection error of first 
camera  

(d) Reprojection error of second 
camera 

Fig. 6. Stereo camera system reprojection error and estimated poses. 

 
(a) AprilTag detection 

using RealSense 
D455. 

 
(b) Reprojection 

error. Mean is 0.295. 
Std. Dev. is 0.183. 

 
(c) Corner detection of 

the AprilTag. 

Fig. 4. AprilTag detection and corner detection for the calibration process 
using the RealSense D455 camera. 



identifying the intrinsic and extrinsic attributess of the camera 
along with the coefficients of distortion. However, since the 
pinhole camera is used for the experiments, distortion 
coefficients are almost equivalent to zero. 

Fig. 5 (a) shows the estimated poses of the monocular 
camera configuration and the reprojection error along the x and 
y axes is represented in (b). It also represents the coverage area 
of the camera while collecting the calibration data. Once the 
monocular camera is calibrated separately, the IMU needs to be 
calibrated as well. A 22 hour 59 seconds long static IMU data 
was collected to estimate the transformation between the camera 
and the integrated IMU of the RealSense camera. The gyroscope 
and the accelerometer bias of the IMU was calculated using the 
Allan variance ROS package. Fig. 7 (a) represents the estimated 

poses of the IMU while collecting the rosbag data. The same 
rosbag data was used for both the camera and camera IMU 
calibration. Fig. 7 (b) represents the sample inertial rate of the 
IMU, which is a measure of the angular velocity of the IMU at 
a specific sampling rate. During calibration, the IMU is often 
subjected to static positions and the inertial rate measurements 
are collected at regular intervals. These measurements help in 
characterizing the performance by compensating for the errors 
and biases. The accelerometer and gyroscope errors and biases 
are represented in (c), (d), (e), and (f) respectively. The fact that 
all of these are within the 3𝜎𝜎 bound, which is marked with the 
red-dashed line suggest accurate calibration results. Fig 8 (a) and 
(b) represents the Allan standard deviation of the accelerometer 
and gyroscope respectively. 

B. Stereo Calibration 
To calibrate the stereo pair of cameras, the same intel 

RealSense D455 cameras were used but an external MicroStrain 
IMU was used for the visual inertial system calibration. The 

   
(a) Estimated poses for the integrated IMU in the 

RealSense camera. 
(b) Sample inertial rate of the IMU. (c) Accelerometer error within the 3𝜎𝜎 bound (red 

dashed line). 

   
(d) Accelerometer bias within the 3𝜎𝜎 bound (red 

dashed curve). 
(e) Gyroscope error within the 3𝜎𝜎 bound (red 

dashed line). 
(f) Gyroscope bias within the 3𝜎𝜎 bound (red 

dashed curve). 
Fig. 7. IMU estimated poses along with the sample inertial rate of the IMU demonstrating steady flow of data with the corresponding accelerometer and 
gyroscope errors and biases. 

 
(a) Allan standard deviation of accelerometer. 

 
(b) Allan standard deviation of gyroscope. 

Fig. 8. Allan standard deviation of accelerometer and gyroscope with 
manually identified noise processes. 

 
Fig. 9. Sparse map generation of the EuRoC V103 dataset. 



same calibration process was followed as done for the 
monocular calibration, but both cameras had to be calibrated 
separately. One camera was considered to be the global camera 
coordinate frame and the transformation of the other camera was 
determined with respect to the first camera. The IMU 
transformations were determined with respect to both cameras 
to determine the exact orientation and position of the IMU in the 
sensor configuration. This is very important for accurate state 
estimation. 

The IMU data was published at 100 Hz whereas the stereo 
camera pair published the color image data at 30 frames per 
second (FPS). The scale misalignment model was used for 
calibrating the IMU for both the stereo and monocular sensor 
configurations. Fig. 6 (a) shows the stereo camera sensor 
configuration along with the estimated poses of the stereo 
system in (b), while the reprojection errors of the first and 
second cameras are represented in (c) and (d) respectively. 

C. Evaluation on EuRoC V103 Dataset 
The visual inertial navigation system pipeline was evaluated 

on the V103 dataset from EuRoC. A similar pinhole radtan 
model was used for the calibration of the stereo camera system. 
A sparse map was also generated along with the state estimation, 
but the map is not stored. The sparse map was a result of 
delaying the feature decay value to an extended period of time. 
Fig. 9 shows the sparse map generated from the V103 dataset 
from EuRoC. Once the entire rosbag file was executed we 
acquired the corresponding timestamp values with the position 
and orientation of the robot in three-dimensional space. 
Leveraging that data, it was possible to generate the estimated 
trajectory and evaluate the results with respect to the ground 
truth trajectory. Fig. 10 shows the ground truth trajectory and the 
estimated trajectory generated from the open VINS system. 

The estimated trajectory and the ground truth trajectory are 
then subsequently aligned using the Kabsch method and the root 
mean squared error and the mean absolute trajectory is 
calculated. The RMS error is ca lculated to be approximately 
0.052. Fig. 11 (a) shows the aligned trajectory of the ground 
truth and estimated trajectory and the mean absolute trajectory 
error plot in (b). 

D. Evaluation on TUM VI Room 1 Dataset 
The visual inertial navigation system was also evaluated on 

the TUM VI room 1 dataset where a similar set of experiments 
were conducted. A sparse map was generated with a 45 second 
decay time for the features. Fig. 12 illustrates the sparse map 
generated by the open VINS system. The sparse map is the 
projection of features on the three-dimensional plane, but the 
map is not stored in this scenario. The features will disappear 

  
(a) Ground truth trajectory. (b) Estimated trajectory. 

Fig. 10. Ground truth and estimated trajectory of EuRoC V103 dataset. 

  
(a) Aligned data for estimated and 

ground truth trajectory. 
(b) Mean absolute trajectory error 

of the OpenVINS system. 
Fig. 11. Aligned trajectory and the mean absolute trajectory error of the 
EuRoC V103 dataset. 

  
(a) Ground truth trajectory. (b) Estimated trajectory. 

Fig. 13. Ground truth and estimated trajectory of TUM VI room 1 dataset. 

TABLE 1. COMPARISON OF TRAJECTORY ALIGNMENT ERROR BETWEEN 
KABSCH AND HORN METHODS ON EUROC AND TUM VI DATASETS. 

 Kabsch (RMSE) Horn (RMSE) 
EuRoC 0.052 0.051 
TUM VI 0.057 0.009 

 

 
Fig. 12. Sparse map generation of the TUM VI room 1 dataset. 

  
(a) Aligned data for estimated 

and ground truth trajectory. 
(b) Mean absolute trajectory error 

of the OpenVINS system. 
Fig. 14. Aligned trajectory and the mean absolute trajectory error of the 
TUM VI room 1 dataset. 



with time increments. After the entire rosbag data was executed 
successfully, the estimated trajectory was obtained. Fig. 13 
shows the plot of the estimated trajectory and the ground truth 
trajectory. The estimated trajectory and the ground truth 
trajectory w  ere aligned using the Kabsch method, which is 
represented in Fig. 14 (a) along with the mean absolute 
trajectory error. The RMS error was evaluated to be 0.057 and 
the mean absolute trajectory error plot is also represented in (b). 

Table I shows the comparison between the Kabsch method 
and the Horn method used for the evaluation of the accuracy of 
the algorithm. For the EuRoC dataset, the Kabsch and the Horn 
method showed similar performance but for the TUM VI 
dataset, the Horn method performed better than the Kabsch 
method. Both methods have achieved highly accurate results as 
is evident from Fig. 11 (a) and Fig. 14 (a). The ground truth and 
the estimated trajectory are well aligned thus representing the 
accuracy of the algorithm. 

VI. CONCLUSION AND FUTURE WORK 
The real time camera and IMU calibration was performed 

and evaluation methodology was used for the alignment of the 
estimated and ground truth trajectories. The evaluation 
methodology was created to account for the RMS, rotational 
error, timebound error, and mean absolute trajectory error. This 
methodology provides an extensive evaluation toolkit for any 
SLAM system provided the source data format is preserved. 
Furthermore, two challenging benchmark datasets, EuRoC and 
TUM VI were evaluated. The alignment of the data proved to be 
very accurate. This state estimation process was used for both 
indoor and outdoor robot navigation. The custom sensor 
configuration shown in Fig. 3 can be mounted on any robot for 
accurate state estimation. The open VINS system can be further 
extended to generate full scale dense maps of the environment 
to make it a complete SLAM system. 
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