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Abstract— LiDAR based SLAM systems are often used 
because of their high precision and accuracy in 3D 
environments. LiDAR emits lasers to create detailed point 
clouds of the environment which helps the robot localize within 
the environment precisely. It is independent of the ambient 
light and weather conditions which makes it a perfect choice 
over visual based SLAM systems. We introduce a challenging 
campus tour robot navigation dataset that encompasses 
complex indoor and outdoor scenarios. Data was collected 
using custom sensor setup on two mobile robots SPOT and 
Husky. We propose and compare two state-of-the-art real-time 
LiDAR inertial odometry based SLAM system and only 
LiDAR based odometry system with the goal to deploy the 
system on the SPOT and Husky robots for the novel 
application of giving tours around CSUN university campus 
via a mobile robot. Experiment results prove that 
computationally the LiDAR based system took less time than 
the LiDAR inertial based system, but the LiDAR inertial 
system was more accurate in terms of the state estimation of 
the robot. 

Keywords—LiDAR inertial odometry, LiDAR mapping, point 
cloud, iterative closest point, Faster-LIO, F-LOAM, SLAM. 

I. INTRODUCTION 
 Simultaneous Localization and Mapping (SLAM) serves 
as an integral requirement for mobile robotic systems, which 
also include unmanned aerial vehicles (UAVs). Common 
visual odometry methods like stereo visual odometry [1] and 
monocular visual odometry [2, 3] are often deployed in 
mobile robotic systems because it is computationally less 
expensive and cost-effective. Visual odometry provides rich 
RGB and visual information from the environment but it is 
challenging to measure the depth of a scene directly. It has 
also been established to utilize substantial computational 
resources for the reconstruction of the 3D environment for 
planning of trajectory. In any kind of odometry system that 
relies solely on visual input, the system tends to be sensitive 
towards varying lighting conditions. Light Detection and 
Ranging (LiDAR) sensors can address these challenges 
because they are highly tolerant to different surrounding 
lighting conditions. 

Recent advancements in LiDAR technology, particularly 
solid-state LiDARs that are based on micro-electro-
mechanical-system (MEMS) [4] scanning and rotating 
prisms [5], have emerged as cost-effective, lightweight 

alternatives. These LiDARs can produce three dimensional 
measurements as well as active measurements with an 
accuracy spanning over a much longer range. This feature is 
significantly useful for smaller scale UAVs, especially in 
industrial applications such as aerial mapping or post-disaster 
search and inspection. 

When compared to visual SLAM systems, LiDAR 
SLAM offers higher accuracy in terms of estimating pose 
and robustness against variations in the environment, 
including changes in illumination and weather. Since LiDAR 
has proved to be very useful, it has led to widespread 
adoption in different applications in the robotics industry like 
autonomous driving [6, 7], inspection with drones [8], and 
manipulation of packages in warehouses [9]. 

Prior research on LiDAR SLAM [10] has established the 
fact that it has been performing well on publicly available 
dataset evaluations. However, practical applications come 
across certain challenges in terms of robustness while 
transitioning from an indoor to outdoor or static to dynamic 
environments. The fact that these systems need to be 
computationally efficient for easier deployment on resource 
constrained platforms like UAVs should also be taken into 
consideration. The most common approach to estimating the 
transformation of depth data between two scans involves 
Iterative Closest Point (ICP) method. ICP's prove to be 
computationally inefficient when dealing with a large 
number of points. LiDAR Odometry and Mapping (LOAM) 
is another approach that matches features more efficiently 
but due to iterative calculation it is computationally 
expensive. 

Our research focuses on testing the Faster LiDAR Inertial 
Odometry (Faster-LIO) [6, 7] and the Faster LiDAR 
Odometry and Mapping (F-LOAM) [11] algorithms on real-
time dataset. The subsequent sections of this paper are 
structured as: Section II focuses on the prior relevant works 
related to our research while section III provides details of 
our custom dataset. Section IV covers details of the two 
proposed systems on our custom dataset. Section V presents 
the findings of the experiments while section VI entails 
conclusion and future work. 

II. RELATED WORK 
 Besl et al. [12] introduced an iterative closest point (ICP) 
algorithm for registration of LiDAR scans that serves as the 



foundation for dealing with LiDAR based odometry systems, 
and it is very effective in handling 3D scans. While handling 
sparse point clouds from LiDAR measurements it is very 
difficult to achieve exact point matching. To address this 
issue, Segal et al. [13] proposed a more generalized approach 
for the ICP method, which leverages the distance between 
the points and the planes. It was further improved by Zhang 
et al. [14] where the previous ICP method was integrated 
with the distance between the points and edges, subsequently 
leading to the development of the LiDAR odometry and 
mapping (LOAM) algorithm. Various variations of the 
LOAM algorithm have been introduced since then which 
include Lego-LOAM [15] and LOAM-Livox [9]. Lego-
LOAM and LOAM-Livox are effective in structured 
environments with LiDARs featuring large field of view, but 
they prove inaccurate in featureless environments or where 
there is a smaller field of view for the LiDARs. 

Incorporation or fusion of inertial measurement units 
(IMU) to address the challenges of LiDAR degeneration is a 
common and effective method. The systems where the 
LiDAR data and the IMU data are processed separately are 
called loosely coupled LiDAR inertial odometry systems. 
Even though the LiDAR and IMU data are processed 
separately, they are fused eventually. The LOAM algorithm 
when integrated with the IMU data also takes into 
consideration the positional and orientational measurements 
from the IMU to account for the initial estimate of the 
registration of the LiDAR scan. Zhen et al. [16] worked on 
fusing the IMU data with the output of the Gaussian particle 
filter of the LiDAR data, eventually using the error state 
extended Kalman filter. Balazadegan et al. [17] enhanced 
LiDAR scan registration by incorporation of the gravity 
model of the IMU for estimating the ego motion involving 6-
DOF (degrees of freedom). Zuo et al. [18] makes use of a 
multi-state constraint Kalman filter for integrating the output 
of the scan registration with visual and IMU data. A classical 
approach in the loosely coupled method involves acquiring 
pose data by new scan registration, which is followed by 
fusion of the IMU measurements. This reduces 
computational time by separating the scan registration and 
data fusion, but it does not consider the robot’s velocity 
along with the new scan pose. In environments where the 
features are limited, there is a possibility that the scan 
registration will be poor in certain directions, which could 
impact the fusion in the later stages. 

In the case of tightly coupled LiDAR inertial odometry 
methods, the raw feature points of the LiDAR and the IMU 

data are fused together. Optimization based and particle-
based methods are the two main approaches to the tightly 
couple LiDAR inertial odometry system. Geneva et al. [19] 
employs graph-based optimization method while pre-
integrating constraints of IMU and the plane constraints from 
the LiDAR. LIOM [20] package utilizes a similar graph-
based optimization method on edge and planar features. 

III. DATASET DESCRIPTION 
 We introduce in this paper the Campus Tour Robot 
Navigation (CTRNavi) dataset, which is a custom dataset 
gathered at California State University, Northridge (CSUN). 
The objective of this dataset is to test mobile robots to 
perform a tour of the CSUN campus. We present the results 
of our experiments on the CTRNavi dataset in Section V. 
The dataset encompasses diverse environment and covers the 
following scenarios. 

A. Indoor Mapping 
This subset of CTRNavi was specifically curated for 

indoor mapping using the LiDAR system. It includes various 
elements such as the robotics lab, conference room, corridor, 
courtyard, and office spaces. It is about 12 minutes 51 
seconds long and the mapping result is represented in Fig. 4 
of Section IV. 

B. Outdoor Mapping 
The focus of this subset is to map the outdoor parking lot 

of the Reseda Annex building at CSUN. The scene elements 
include two buildings, two alleys and cars parked in the 
parking lot. It is about 12 minutes 10 seconds long and the 
mapping result is illustrated in Fig. 5 of Section IV. 

C. Campus Mapping 
Collected on the premises of Jacaranda Hall at CSUN, 

this subset originated from the HAAS lab, serving as the 
starting point for the robot's manual operation. The robot 
covered diverse areas, including corridors, classrooms, 
courtyard, and the food court. The data collection involved 
the use of LiDAR and IMU sensors. The dataset is about 1 
hour 59 seconds long and the mapping result is illustrated in 
Fig. 6 of Section V. The HAAS lab is a machine shop on the 
university premises, which is a challenging warehouse 
industrial environment with industry grade equipment setup 
and provided rich features for mapping. 

The CTRNavi dataset was instrumental in evaluating and 
validating the performance of the proposed system pipelines 
in diverse environmental settings, encompassing both indoor 
and outdoor spaces at the CSUN campus. The dataset was 
carefully gathered employing both the Husky and the SPOT 
robots, and the corresponding sensor configuration as 
illustrated in Fig. 1. This comprehensive setup allowed for 
the acquisition of diverse data, ensuring a thorough 
evaluation of the proposed system pipelines across different 
robotic platforms and sensor arrangements. 

IV. RESEARCH METHODOLOGY 
 In this paper, we propose the Faster-LIO based system 
illustrated in Fig. 2 and F-LOAM based system in Fig. 3, for 
real-time mapping. Faster-LIO system pipeline is described 

 
(a) Sensor setup on Husky robot. 

 
(b) Sensor setup on SPOT robot. 

Fig. 1. Sensor configuration of the robots used for collecting the Campus 
Tour Robot Navigation (CTRNavi) dataset. 



in subsections A-D and F-LOAM system pipeline is 
described subsections E-G. The two systems were evaluated 
on the CTRNavi dataset. 

A. iVox Data Structure for Faster-LIO 
In the iVox system, the initial step is to store the point 

clouds within the sparse voxels, which are indexed and 
hashed into an unordered map. Unlike volumetric 
representations, iVox is based on the utilization of a hash 
map that is sparse and also capable of storing selected voxels 
containing one point at a minimum given that the point cloud 
is sparse in nature. Different algorithms for spatial hashing 
can be utilized to compute the index of the hash function. 
The different points contained inside each of the voxels are 
retained in the form of a vector or inside a structure called 
the Pseudo Hilbert Curve (PHC). Those type of retention 
methods are known as linear iVox and iVox-PHC, 
respectively. The complexity of the k-Nearest Neighbors (k-
NN) scan inside every voxel is O(n) or O(k) when either 
linear iVox or iVox-PHC is being used. Here, n represents 
the quantity of points retained within each voxel, while k 
represents the discrete PHC curve order. During the 
incremental mapping in the LiDAR inertial odometry, certain 
measures are taken to avoid insertion of excessive number of 
points into the same voxel. Equation 1 is the hash function 
used for the Faster-LIO algorithm, 

p = [𝑝𝑝𝑎𝑎 , 𝑝𝑝𝑏𝑏 ,𝑝𝑝𝑐𝑐]𝑇𝑇 , v = 1
𝑠𝑠

[𝑝𝑝𝑎𝑎 ,𝑝𝑝𝑏𝑏 ,𝑝𝑝𝑐𝑐]𝑇𝑇 , i𝑑𝑑𝑣𝑣 =
hash(𝑣𝑣) = (𝑣𝑣𝑎𝑎𝑛𝑛𝑎𝑎) xor (𝑣𝑣𝑏𝑏𝑛𝑛𝑏𝑏) xor (𝑣𝑣𝑐𝑐𝑛𝑛𝑐𝑐) mod N, (1) 

where 𝑝𝑝𝑎𝑎 , 𝑝𝑝𝑏𝑏 ,𝑝𝑝𝑐𝑐  determine the coordinates of p ∈  ℝ3 , s 
denotes the voxel size, 𝑛𝑛𝑎𝑎 , 𝑛𝑛𝑏𝑏 , 𝑛𝑛𝑐𝑐  are very large prime 
numbers, and N denotes the size of the hash map. 

B. kNN Search for Faster-LIO 
The search for the k-NN algorithm is confined amid a 

predetermined scope and can be formulated in three 
consecutive steps. While considering a data structure for 
iVox V integrated with a point for query P, the process is 
going to involve: 1) Identifying the index of each voxel 
along with the voxels in close proximity specifically, 18, 26 
or 6 voxels, denoted as S. 2) Iterating across each voxel 
scanning for K neighbors at maximum for each voxel. 3) 
Consolidating the scan outcomes and deciding on the K 
optimal neighbors. It is essential to highlight the fact that 
while step 2 can be independently parallelized in the case of 

each voxel, the existing parallelization for the point clouds 
renders parallel searching across every voxel unnecessary. 
The k-NN scan in the case of iVox is characterized by 
simplicity and effectiveness, although it may not be as strict 
as tree-like algorithms. Nevertheless, it proves to be 
sufficient for applications in LIO. 

C. Incremental Mapping for Faster-LIO 
The incremental mapping process in iVox involves two 

main categories: incremental addition and deletion. The 
addition phase involves the straightforward insertion of new 
points and the creation of new voxels where necessary. To 
prevent an excessive accumulation of points within a single 
voxel, a VoxelGrid-like filter is employed, similar to the 
approach used in FastLIO2. Leveraging precomputed voxel 
indices of nearest neighbors, faster LIO refrains from 
insertion of the recent point while any of the neighboring 
points are in close proximity to the middle of the grid of the 
voxel. The pivotal variable for tuning the compromise 
between precision and efficiency in this filter is the leaf size. 
A larger leaf size, such as 0.5 m, where m is meters, 
generally strikes a balance that works well across various 
datasets, limiting insertions into a voxel without sacrificing 
k-NN accuracy. 

In contrast, incremental deletion differs from the 
framework of the k-d tree, as navigating through the entire 
hash map of the voxel proves to be computationally 
extravagant. Rather than proactively removing points beyond 
the present Field of View (FoV) within the spatial viewport, 
a Least Recently Used cache (LRU cache) approach is 
implemented to handle the management of the local map. 
Alongside the voxel hashmap, a queue of recently visited 
voxels is maintained with a predetermined maximum size. 
Should the number of voxels exceed the threshold limit, the 
outdated voxels in memory are eliminated. The addition and 
removal operations in a hash map exhibit O(1) complexity, 
thereby it is computationally inexpensive and suitable for 
real-time LiDAR inertial odometry algorithms. 

D. iVox PHC for Faster-LIO 
iVox PHC serves as an alternative rendition of iVox 

where a modification is introduced by substituting the 
sequential arrangement layout within every voxel with a 
pseudo-Hilbert curve (PHC). In the LIO pipeline efforts are 
made to control the quantity of points within a voxel but the 
k-NN search performance decreases linearly when there is a 

 
Fig. 2. Proposed Faster-LIO based system pipeline for real-time 
mapping. 

 
Fig. 3. Proposed F-LOAM based system pipeline for real-time mapping. 



steady rise in the total count of points. To tackle this 
problem, spatial filling curves such as PHC are utilized that 
offers mapping from a lower dimensional to a higher 
dimensional space while maintaining the proximity. This 
characteristic makes them suitable for approximating nearest 
neighbors within a particular voxel or a complete point 
cloud. 

In this arrangement, a voxel is divided into 2K^3 
diminutive cubes with K denoting an adjustable PHC order. 
It is adjusted based on the physical size of the voxel. Every 
cube retains the central point of all encompassed points, and 
the central point undergoes modification when a newly 
inserted point falls within the cube’s range. 

E. Sensor Model and Feature Extraction for F-LOAM 
A LiDAR scan that consists of a large quantity of points 

presents computational inefficiencies for methods like ICP. 

Feature matching proves to be more reliable and efficient in 
practical scenarios. To enhance both efficiency and matching 
accuracy, surface and edge features are used to discard noisy 
or less relevant points. The 3D mechanical LiDAR derived 
point cloud exhibits scarcity in the vertical dimension and 
abundance in the horizontal dimension. Horizontal features, 
therefore become more discernible, minimizing the potential 
for erroneous feature detection along the horizontal plane. 
The F-LOAM algorithm focuses on the horizontal plane for 
each point cloud evaluating the local surface evenness. For 
flat surfaces the smoothness value is relatively less whereas 
for the corners and edges the smoothness value is large. 

𝜎𝜎𝑘𝑘
(𝑚𝑚,𝑛𝑛) = 1

�𝑆𝑆𝑘𝑘
(𝑚𝑚,𝑛𝑛)�

∑ (||𝐩𝐩𝑘𝑘
(𝑚𝑚,𝑗𝑗) − 𝐩𝐩𝑘𝑘

(𝑚𝑚,𝑛𝑛)||)p𝑘𝑘
(𝑚𝑚,𝑗𝑗)∈𝑆𝑆𝑘𝑘

(𝑚𝑚,𝑛𝑛) , (2) 

The smoothness of the local surface is evaluated using 
equation 2, where 𝑆𝑆𝑘𝑘

(𝑚𝑚,𝑛𝑛) denotes the adjacent set of points 
for 𝐩𝐩𝑘𝑘

(𝑚𝑚,𝑛𝑛)  and �𝑆𝑆𝑘𝑘
(𝑚𝑚,𝑛𝑛)� denotes the number of points for a 

localized point cloud. 𝐩𝐩𝑘𝑘  is the scan plane where feature 
points at the edge are determined with high 𝜎𝜎 but for points 
at the surface a lower 𝜎𝜎 is used. 

F. Distortion Compensation and Motion Estimation for F-
LOAM 
In prior studies like LOAM and LeGO-LOAM, distortion 

correction is commonly accomplished through scan-to-scan 
alignment, wherein the iterative estimation of the 
transformation between a couple of sequential laser scans is 
employed. This iterative computation for determining the 
transformation matrix proves to be computationally 
inefficient. F-LOAM uses a dual phase distortion alleviation 
method to mitigate the computational costs. 

Since most of the current 3D LiDARs function at 
frequencies surpassing 10 Hz and the time interval between 
successive LiDAR scans is frequently minimal, F-LOAM 
leverages the assumption of consistent angular and linear 
velocity within these brief durations to anticipate motion and 
rectify distortion in the initial phase. Subsequently, in the 
phase that follows, distortion is recalculated following the 
pose estimation procedure, and the newly computed 
undistorted features are integrated into the final map. F-
LOAM demonstrates that the dual phase distortion 
alleviation method achieves comparable localization 
accuracy while significantly reducing computational 
overhead. 

 
(a) Real-time indoor mapping of the robotics lab, conference room and 

the office space. 

 
(b) Estimated trajectory of the mobile robot. 

Fig. 4. Real-time indoor mapping and estimated trajectory using Faster-
LIO on CTRNavi dataset. 

TABLE I.  TIME COMPARISON IN MILLISECOND ACROSS INDOOR, OUTDOOR AND CAMPUS MAPPING USING FASTER-LIO ON CTRNAVI DATASET 

 Indoor 
Mapping 

Total Time for 
Indoor Mapping 
on 7643 seconds 

Outdoor 
Mapping 

Total Time for 
Outdoor Mapping 
on 7234 seconds 

Campus Mapping 
Total Time for 

Campus Mapping 
on 36041 seconds 

Frames Per Second 585 NA 213 NA 417 NA 

iVox Addition 0.007 ms 53.501 ms 0.048 ms 347.232 ms 0.120 ms 4324.92 ms 

Incremental Mapping 0.036 ms 53.501 ms 0.194 ms 1403.396 ms 0.181 ms 6523.421 ms 

Standard Preprocessing 0.351 ms 2682.693 ms 0.383 ms 2770.622 ms 0.387 ms 13947.867 ms 

Undistort function in Point 
Cloud Library (PCL) 

0.195 ms 1490.385 ms 0.386 ms 2792.324 ms 0.247 ms 8902.127 ms 

 



G. Pose Estimation for F-LOAM 
The pose estimation procedure involves the alignment of 

the undistorted edge characteristics and the planar attributes 
with the global attribute map. The global attribute map 
comprises separate representations for planar and edge 
characteristics which are revised and maintained 
independently. To improve the computational efficiency 
during the search process, the organization of planar and 
edge features is optimized through the utilization of 3D k-d 
trees. The determination of global lines and planes is 
achieved by the aggregation of adjacent points from the maps 
of edge and planar features. 

For every edge feature point, the covariance matrix 
pertaining to the surrounding points is derived from the 
global attribute map. The regions where the points are 
aligned in a linear fashion, the covariance matrix displays a 
singular eigenvalue notably greater than the rest. After 
acquiring the optimal edges and planes, the link between 
each feature point to the corresponding global edges or 
planes is established. This connection is leveraged to deduce 
the optimized pose between the global map and the present 
frame by reducing the separation between global planes or 
edges and feature points. 

H. Mapping for F-LOAM 
The overall map comprises of a global planar map and a 

global edge map, and it undergoes modifications triggered by 
keyframes. Keyframes are selected when the translational 
shift surpasses a predefined limit or when a rotational change 
surpasses a predefined limit. This approach improves 
computational efficiency when compared to a frame-by-

frame update approach. Distortion correction is dependent on 
a model of consistent velocity model rather than iterative 
estimation of motion. This helps in reducing the 
computational costs but it is less precise than the iterative 
distortion alleviation utilized in LOAM. In the next stage, 
distortion is recalibrated depending on the optimization 
outcome. The newly computed undistorted edge 
characteristics and planar attributes are eventually refreshed 
to the global planar map and the global edge map, 
respectively. After each refresh, the map undergoes 
downsizing using a 3D voxel grid method to avert overflow 
of memory. 

V. EXPERIMENT SETUP, RESULTS AND DISCUSSION 
 Velodyne VLP-16 16 channel spinning LiDAR and 
MicroStrain IMU were used for the experiments. The 
LiDAR supports dual return mode that helps in capturing 
details of complex environments like trees, buildings, 

 
(a) Real-time outdoor mapping of the parking lot. 

 
(b) Estimated trajectory of the robot. 

Fig. 5. Real-time outdoor mapping and estimated trajectory using Faster-
LIO on CTRNavi dataset. 

 
Fig. 7. Indoor mapping using F-LOAM system pipeline on CTRNavi 
dataset. 

 
(a) Campus mapping using Faster-LIO 

 
(b) Food court and building 2 mapping. 

Fig. 6. Real-time campus mapping using Faster-LIO based system on 
CTRNavi dataset. 



 
Fig. 9. Campus mapping using F-LOAM system pipeline on CTRNavi 
dataset. 

infrastructures, etc. The advantage of dual return upon single 
return is that multiple returns significantly increase the 
number of points available to map, this is true even for 
smaller objects and non-opaque surfaces. The dataset was 
collected in the rosbag format. The LiDAR topic and the 
IMU topic were subscribed during dataset collection. LiDAR 
topic was published at 10 Hz and the IMU data was 
published at 100 Hz. The data was collected using the Husky 
and SPOT robots. The sensor configuration of the robots is 
illustrated in Fig. 1. The experiments were conducted on a 
laptop with Ryzen 9 5900 HX (8 cores, 3.3 GHz). The 
software configuration included Ubuntu 20.04, ROS Noetic. 
Rviz was used for visualization of the data. Matplotlib and 
NumPy libraries were used to visualize the trajectory plot. 

A. Indoor Mapping using Faster-LIO 
The robotics lab, conference room, courtyard and the 

office space were mapped in this scenario. The real-time 
mapping is illustrated in Fig. 4 along with the estimated 
trajectory of the robot. Even though the data was collected at 
100 Hz for the IMU and 10 Hz for the LiDAR, the mapping 
was processed at twice the actual clock speed. During the 
mapping, the LiDAR data was published at 20 Hz and the 
IMU data was published at 200 Hz.  

The average frames per second (FPS) was 585. The 
LiDAR points need to be added to the iVox data structure in 
Faster-LIO to update the point cloud. This is crucial for the 
incremental mapping process. The average time for the 
addition of each point to the iVox data structure took about 
0.007 ms and the incremental mapping process took an 
average time of 0.036 ms. The standard average 
preprocessing time took 0.351 ms. Undistort PCL is a 
process to correct the distortion between LiDAR and IMU 
sensors, which occurs due to non-linear mapping. The 
average time it took was 0.195 ms as shown in Table I. 

B. Outdoor Mapping using Faster-LIO 
The outdoor mapping only focuses on the parking lot of 

the Reseda Annex building at CSUN. The real-time 
mapping is illustrated in Fig. 5 where the LiDAR data was 
published at 20 Hz and the IMU data was published at 200 
Hz. The average FPS was 213. The average time for the 
addition of each point to the iVox data structure took about 
0.048 ms and the incremental mapping process took an 
average time of 0.194 ms. The standard average 
preprocessing time took 0.383 ms. The average time it took 
to correct the distortion between the LiDAR and IMU 
sensors was 0.386 ms. 

C. Campus Mapping using Faster-LIO 
The campus mapping focuses on mapping the corridors, 

classrooms, HAAS Lab, courtyard, and the food court. It 
covers a more dynamic environment with different elements 
and diverse features. The real-time mapping is illustrated in 
Fig. 6 where the different mapped regions are marked. Like 
the previous datasets, the LiDAR and IMU data were 
published at 20 Hz and 200 Hz respectively. 

The average FPS was 417. The average time for the 
addition of each point to the iVox data structure took about 
0.120 ms and the incremental mapping process took an 
average time of 0.181 ms. The standard average 
preprocessing time took 0.387 ms. The average time it took 
to correct the distortion between the LiDAR and IMU 
sensors was 0.247 ms. When the motion of the robot was too 
abrupt, a few points were dropped in the middle of the 
mapping process because there were too few points to add to 
the iVox data structure. 

Table I shows the comparison across the average time 
taken to process the indoor, outdoor and campus mapping for 
the Faster-LIO based system. It gives a vivid idea about the 
FPS, distortion correction, iVox addition, and incremental 
mapping times between the three real-time mappings. It also 
illustrates the total time taken for the mapping process to 
complete. When compared with Table II, the average 
odometry estimation time for F-LOAM is clearly faster than 
that of Faster-LIO but Faster-LIO is more precise in terms of 
mapping and state estimation. The distinction between the 
details captured using Faster-LIO and F-LOAM in terms of 
the mapping is clearly visible in Fig. 5 and Fig. 8 
respectively. In Fig. 5 the cars in the parking lot can be 
clearly identified whereas in Fig. 8 it is relatively difficult to 
identify the different elements of the environment even 

 
Fig. 8. Outdoor mapping of parking lot using F-LOAM system pipeline 
on CTRNavi dataset. 

TABLE II.  AVERAGE ODOMETRY ESTIMATION COMPARISON 
BETWEEN INDOOR, OUTDOOR AND CAMPUS MAPPING USING F-

LOAM ON CTRNAVI DATASET. 

 Indoor 
Mapping 

Outdoor 
Mapping 

Campus 
Mapping 

Average Odometry 
Estimation Time 4.83 ms 13.84 ms 26.82 ms 

 



though the experiments were conducted in the same outdoor 
parking lot. Fig. 6 and Fig. 9 illustrate the campus mapping 
scenario using the Faster-LIO and the F-LOAM algorithms 
respectively. Faster-LIO has proved to be more robust in 
terms of mapping and the different elements of the point 
cloud are more distinguishable than F-LOAM. The state 
estimation for the robot is also more precise in Faster-LIO 
because of the fusion of IMU data with the LiDAR data 
whereas in F-LOAM, the focus is more on improving the 
computational time while compromising on the quality of the 
mapping to some extent. 

D. Indoor mapping using F-LOAM 
To further validate the LiDAR inertial odometry, the 

results were compared with F-LOAM where the mapping is 
based only on LiDAR and no IMU sensors were used. F-
LOAM is a compromise between computational efficiency 
and quality of mapping of the environment. The indoor 
mapping is illustrated in Fig. 7 where the different elements 
of the environment are marked. The average odometry 
estimation time for each point in the indoor mapping was 
about 4.83 ms. The pixel size for each point was reduced for 
easier understanding of the mapping. 

E. Outdoor Mapping using F-LOAM 
The outdoor mapping of the parking lot at Reseda Annex 

building of CSUN is illustrated in Fig. 8. The average 
odometry estimation time for each point in the outdoor 
mapping scenario was about 13.84 ms. 

F. Campus Mapping using F-LOAM 
The campus mapping was also done using the F-LOAM 

system pipeline to illustrate the different elements of the 
mapping. The outdoor results proved to be better than the 
indoor results for the F-LOAM system. Fig. 9 illustrates the 
campus mapping and each section of the mapping is marked 
for easier understanding. The average odometry estimation 
time for each point in the campus mapping was about 26.82 
ms. Table II shows the comparison between the odometry 
estimations between the indoor, outdoor and campus 
mapping scenarios. 

VI. CONCLUSION AND FUTURE WORK 
 We introduced a challenging campus tour robot 
navigation dataset that encompasses complex indoor and 
outdoor scenarios. Data was collected using custom sensor 
setup on two mobile robots SPOT and Husky. Two state-of-
the-art real-time LiDAR inertial based SLAM system and 
only LiDAR based system were proposed with the goal to 
deploy the system on the SPOT and Husky robots for giving 
tours around campus. Experiment results prove that 
computationally the LiDAR based system took less time than 
the LiDAR inertial based system, but the LiDAR inertial 
system was more accurate in terms of the state estimation of 
the robot. This research can be further extended to 
autonomous waypoint-based navigation in the mapped 
environment along with obstacle avoidance. 
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