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Abstract— Autonomous robot navigation relies on accurate 
motion estimation. Stereo Visual Odometry is used to estimate the 
motion of a camera by analyzing the visual information captured 
by a stereo pair of cameras. Visual odometry refers to the process 
of estimating the camera’s movement by tracking the visual 
features in consecutive frames of a video sequence. In a stereo 
camera system, two cameras are positioned at known baseline 
separation. The images captured by the cameras are used to create 
a 3D representation of a scene. Stereo visual odometry leverages 
the disparity between corresponding points in the pair of stereo 
images to estimate the motion of camera. 

We propose a stereo visual odometry pipeline and perform a 
comprehensive comparison of different trajectory computation 
approaches on the challenging KITTI dataset. Different feature 
detection methods, feature matching, filter matching distance, 
stereo matching, different types of motion estimation, 
optimization techniques such as loop closure and bundle 
adjustment were tested in terms of error metric and 
computational time. SGBM matcher performed better than the 
BM matcher on depth and disparity estimation. SIFT was found 
to outperform the ORB feature detector. Brute Force feature 
matcher outperformed FLANN matcher. The lowest MAE error 
rate of 32.54 was obtained with SGBM matcher, brute force 
approach, PnP RANSAC, and filter matching distance of 0.3 on 
SIFT features. 

Keywords-stereo visual odometry, KITTI, loop closure, bundle 
adjustment 

I. INTRODUCTION 
Mobile robotics and autonomous robot navigation is a vital 

research area due to its various applications such as self-driving 
vehicles, search and rescue, surveillance and security, deep sea 
exploration. Localization proves crucial for autonomous robot 
navigation, especially in environments lacking GPS signals or 
where identifying distinct landmarks is challenging, such as in 
indoor or underwater settings. Visual odometry (VO) emerges 
as a widely employed solution for robot localization, relying 
solely on camera input. Notably, cameras, being passive 
sensors, offer energy efficiency compared to active 
counterparts like sonar or LiDAR, thereby extending 
deployment durations and minimizing downtime. Visual 
odometry, depending on the camera configuration, is classified 
into monocular or multi-camera systems, with stereo VO being 
the predominant choice among the latter. 

Stereo VO [1, 2, 3] typically starts with stereo matching, 
seeking corresponding features between stereo frames. 
Triangulation swiftly estimates the 3D positions of objects, 
followed by the derivation of camera pose (position and 
orientation) in relation to those 3D points. While this method 
provides accurate results, stereo matching poses computational 
challenges. Moreover, many stereo matching algorithms 
involve rectifying the stereo pair, adding to the time 
complexity. Challenges also arise in scenes with repetitive, 
high-frequency textures, where multiple similar patches may 
lead to ambiguity in determining the best match. Such scenarios 
are common outdoors, presenting a significant hurdle for field 
robots like those navigating underwater or exploring mines. 

Related work is covered in Section II of this paper. The 
dataset used in our experiments is described in Section III. 
Section IV gives details of our proposed pipeline for stereo 
visual odometry computation that address some of the 
aforementioned challenges followed by the experiment results 
in Section V. Conclusion and future work is presented in Section 
VI. 

II. RELATED WORK 
 Approaches that rely on stereo matching are widely explored 
in stereo visual odometry. Recent advancements include S-
PTAM [4], which is an extension of PTAM where stereo 
matching is incorporated to generate 3D points [5]. ORB SLAM 
[6, 7, 8] incorporates stereo matching to perform stereo visual 
odometry. LSD SLAM [9] was further expanded to a stereo 
visual odometry system. Monocular LSD SLAM [10] relies on 
direct method where the photometric error is reduced without 
relying on feature matching. However, certain drawbacks of 
stereo matching include failures in repetitive scene textures and 
computational inefficiency. The stereo matching methods 
mainly rely on patch appearances like normalized cross-
correlation or feature descriptors for determination of the stereo 
correspondence. To further enhance the process of stereo 
matching research has been done on global stereo matching to 
incorporate non-local constraints like smoothness. This can be 
seen in the stereo VO developed by Stereolab for the ZED stereo 
camera [11]. Even though this approach is capable of enhancing 
the localization accuracy, the real time performance is attained 
through GPU based stereo matching thereby increasing the 
power consumption and the system complexity. 

Forster et al. improved SVO [12, 13] for systems with 
multiple cameras but not primarily for stereo cameras. Rather 



than depending on stereo matching, all the cameras are brought 
together into a single function to minimize the photometric error 
which involves projecting 3D points onto all visible image 
frames, thereby enhancing the accuracy. The drawback is that it 
increases the computational cost. Stereo DSO [13] represents a 
hybrid model that initializes the depth for each keyframe via 
stereo matching [14] along with stereo images integrated into 
the error function. 

Visual Odometry solely relies on stereo cameras to estimate 
the depth and motion of features in the environment and might 
struggle to extract sufficient depth information or features from 
the environment. Visual inertial odometry [16, 17, 18] combines 
information from both visual and inertial sensors for better 
motion estimation while leveraging the data from the inertial 
measurement unit. The fusion of visual data along with inertial 
data helps in mitigating the limitations of visual sensors in low-
lighting conditions or lack of distinctive features in the 
environment. 

III. DATASET DESCRIPTION 
 The KITTI dataset [18] is a very widely used benchmark 
dataset used in the field of computer vision and robotics with its 
primary focus being on autonomous vehicles. Hence, we test our 
proposed visual odometry pipeline on this dataset. It includes a 
variety of sensor data collected from a moving vehicle. The 
following sensor data are collected: 

• LiDAR: This data contains point cloud data collected 
from Velodyne HDL-64E LiDAR. 

• Stereo Camera: This data contains images captured 
from multiple stereo pairs mounted on the vehicle 
which helps capture images from different viewpoints. 

• GPS and IMU: This data help in precise localization 
and state estimation. 

• Object detection and tracking: KITTI dataset provides 
ground truth annotations for objects such as cars, 
pedestrians, cyclists, etc. It includes 3D bounding box 

for objects allowing researchers to focus on 3D object 
detection models. 

Fig. 1 shows the first frame of the sequence 0 of the KITTI 
dataset, which we use in our experiments. 

IV. RESEARCH METHODOLOGY 
The KITTI dataset consists of both RGB and grayscale 

images. For this research, grayscale images were used. There are 
4,541 frames in the dataset along with 12 columns that comes 
from flattening a 3x4 transformation matrix of the left and right 
cameras with respect to the global coordinate frame, which is 
established according to the first position of the camera’s frame. 
The transformation matrix is a 3x3 rotation matrix stacked with 
a 3x1 translation vector. The ground truth poses are extracted 
from the pose sequence of the KITTI dataset. Fig. 2. represents 
the ground truth data of the sequence 0 of the KITTI dataset. Fig. 
4 shows the proposed stereo visual odometry pipeline, its 
various components are explained below. 

A. Data Acquisition 
 The trajectory in Fig. 2 ends and starts at the same point. The 
motion of the camera is tracked with respect to the first camera 
frame and the timing of the camera is around 10 frames per 
second.  

The sensor calibration data is loaded that gives information 
about the 3x4 projection matrices for four cameras as well as the 
transformation matrix for the LiDAR data. It gives us 
information about the projection matrix of the camera which can 
be decomposed using singular value decomposition to extract 
the intrinsic and extrinsic attributes of the camera. Fig. 3 shows 
the sensor infrastructure for the KITTI dataset. 

Finally, all the grayscale images are loaded in the dataset 
handler and the ground truth frames are compared with the 
camera frames, the number of rows comes to 4,541. 

 
Fig. 2. Ground truth trajectory plot of sequence 0 of the KITTI dataset. 

 
 

 
Fig. 4. Architecture of the proposed stereo visual odometry pipeline. 

 
Fig. 1. An example of the first frame of sequence 0 of the KITTI dataset [18]. 

 
 
 

 
Fig. 3. Sensor configuration of the KITTI dataset. 

 



B. Tracking 
 The transformation matrix is a 3x4 matrix that is generated 
from the horizontal stacking of the rotation matrix and the 
translation vector. Following the transformation, the 
reprojection residuals are computed that allows to extract the 
difference between the actual and estimated transformation. The 
following parameters are considered for residual computation – 
transformation between two frames, feature points in an image, 
feature points in the subsequent image, 3D points generated 
from the prior image frame and the 3D points generated from 
the image frame that follows. 

To identify the distinct points in an image, feature detection 
and matching are done either with SIFT [20] or ORB [21] 
followed by matching the features with the corresponding ones 
in the other image. The good features are stored as per the David 
Lowe’s ratio test and the filter matching distance was set to 0.3. 

The keypoints between the frames are tracked using the 
Lucas Kanade method for optical flow. The keypoints are first 
converted into a vector of points and the dimensions are 
expanded to select the good matches. The parameters for 
tracking keypoints are an image followed by the subsequent 
image. The first image’s keypoints are considered along with a 
threshold for maximum acceptable error. The status vector is 
converted to Boolean to make it usable as a mask, which is later 
used to select the keypoints. Finally, the keypoints lying outside 
the image are deleted and the tracking points are returned. 

C. Loop Closure and Visual Odometry 
 Two methods have been used for estimating the motion. One 
of those is using optical flow while the other uses PnP 
RANSAC. Lucas Kanade method has been used for the optical 
flow-based motion estimation. Dense and sparse optical flow are 
two types of optical flow estimation techniques. Dense optical 
flow computes motion vectors for every pixel in the image, 
providing a continuous and dense field of motion information. 
The result is a dense matrix of motion vectors where each pixel 
has an associated motion vector. Sparse optical flow computes 
motion vectors for a subset of feature points in the image. 
Instead of calculating the motion for every pixel, it focuses on 
specific, manually or automatically selected interest points. The 
result is a set of motion vectors corresponding to the selected 
feature points, providing information about the movement of 

these points in the scene. Using sparse optical flow saves 
computation time where a large number of features are 
considered. 

PnP RANSAC is used to compute a pose that relates points 
in the global coordinate frame to the pose of the camera. The 
pose of the camera in the first image has been considered as the 
global coordinate frame to reconstruct the 3D points of the 
features using stereo depth estimation. Then a pose is found, 
which relates the camera in the next frame to those 3D points. 
While tracking the pose of the vehicle over time, the goal is to 
relate the points in the camera’s coordinate frame to the global 
coordinate frame and requires computation of the inverse of the 
transformation matrix. Furthermore, the vehicle is being tracked 
from the first camera pose for which the cumulative product of 
the inverses of each estimated camera pose is required. 

The parameters of the 3D reconstruction model are refined 
to minimize the difference between the observed image features 
and the features predicted by the model. The goal is to improve 
the accuracy of the 3D reconstruction by adjusting the 
parameters to better align with the observed data. Sparse bundle 
adjustment is used here where only a subset of points in the 
scene are considered. It is useful while dealing with large-scale 
reconstruction where considering all the features in all images 
might prove to be computationally extensive. The focus is to 
refine the parameters for a sparse set of features. 
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Equation 1 denotes the perspective projection of the left 
camera in a stereo camera configuration and equation 2 
represents the perspective projection equation of the right 
camera. (𝑢𝑢𝑙𝑙, 𝑣𝑣𝑙𝑙) and (𝑢𝑢𝑟𝑟, 𝑣𝑣𝑟𝑟) are points on the image plane of the 
left and right cameras respectively. 𝑓𝑓𝑥𝑥  and 𝑓𝑓𝑦𝑦  denote the focal 
lengths across the x and y axis, whereas 𝑜𝑜𝑥𝑥 and 𝑜𝑜𝑦𝑦 represent the 
optical center. b is the baseline, which is the distance between 
the optical centers of the stereo pair of cameras. To determine 
the 3D location of a point in a scene, the x, y and z values need 
to be determined from equations 1 and 2. Equation 3 represents 

  
(a) Disparity computation using Block-matching (BM). (b) Depth computation using Block-matching (BM). 

  
(c) Disparity computation using Semi-global Block-matching (SGBM). (d) Depth computation using Semi-global Block-matching (SGBM). 

Fig. 5. Comparison between the disparity computation using BM in (a) and SGBM in (c) along with the corresponding depth map estimation using BM in (b) 
and SGBM in (d) on sequence 0 of the KITTI dataset. 



the coordinates of the point in the 3D environment. Here z is also 
known as the depth of the scene and the denominator, which is 
the difference between 𝑢𝑢𝑙𝑙  and 𝑢𝑢𝑟𝑟  represents the disparity. The 
depth z is always inversely proportional to the disparity. 

Loop detection involves identifying when a robot or a 
camera revisits a location previously visited. Bag of Words 
(BoW) is a technique for feature representation. As the vehicle 
navigates the environment local features are extracted using 
SIFT or ORB. K-Means clustering algorithm is used to quantize 
the extracted features into a predefined number of visual words. 
Each image in the frame is represented as a histogram of visual 
words. As the camera explores further the environment, the 
BoW representations of the visited locations are stored into a 
database. Once one of the frames is revisited, the BoW 
representation is computed for that frame. The current BoW 
representation is compared to the ones already stored in the 
database. The Euclidean distance is used to measure the 
similarities between the BoW histograms. A threshold for the 
similarity metric is decided. If the similarity between the current 
BoW representation and any stored representation exceeds the 
threshold, a potential loop is detected. The threshold may 
depend on factors such as the environment, sensor noise and the 
desired level of detection sensitivity. Refinement techniques are 
further applied to reduce false positives. The goal for loop 
closure is to improve the overall map consistency. 

Once the loop detection is done, the initial visual odometry 
is computed followed by loop fusion to increase the odometry 
consistency. The final output is the optimized visual odometry 
after loop detection and bundle adjustment. The end-to-end 
system pipeline is shown in Fig. 4. 

V. EXPERIMENT SETUP, RESULTS AND DISCUSSION 
The following hardware configuration was used to conduct 

the experiments – Ryzen 9 5900 HX for the CPU, Nvidia RTX 
3080 for the GPU, GPU VRAM of 16 GB and the standard 
RAM of 32 GB. The software libraries include NumPy, Pandas, 
OpenCV, Matplotlib, and SciPy.  

Visual odometry can be computed using feature-based 
methods and intensity of the image pixel in the sequence can be 

leveraged to conduct experiments. It is also referred to as the 
direct method. 

A. Dataset Handling 
 The grayscale data from the KITTI dataset is used for the 
experiments. Storing the dataset sequences as lists in attachment 
with the dataset handling class takes around 20 GB of memory. 
This can be bypassed by making the low memory argument true, 
which will create a class with generators rather than lists. The 
dataset handler takes care of the following components of the 
sequence – check device for low memory, loading the ground 
truth poses, loading the calibration details for a scene, loading 
the images along with the LiDAR data. 

B. Disparity Computation 
 The apparent motion between a pair of stereo images is 
referred to as disparity. For a stereo pair of images, the pixels in 
the left and right images are to be matched with each other and 
the distance between the matching pixels is calculated. The 
result is a disparity map that represents the distance values as an 
intensity image. Considering the stereo image pair from left and 
right cameras of the KITTI dataset, the disparity map is 
generated using Block-matching (BM) and Semi-global Block-
matching (SGBM) algorithms. Fig. 5 (a) and (c) show the 
comparison of results for depth computation using the BM 
matcher and the SGBM matcher respectively. 

 
(a) Feature detection and matching using ORB. 

 
(b) Feature detection and matching using SIFT. 

Fig. 6. Comparison of the features detected by ORB in (a) and SIFT in (b) on sequence 0 of the KITTI dataset. 

 
Fig. 7. Histogram analysis demonstrating depth information distribution 
on sequence 0 of the KITTI dataset. 



Stereo SGBM matching takes around three times longer to 
compute the disparity map when compared to BM matching but 
produces a much more contiguous map with minimum gaps in 
depth information. 

C. Depth Computation 
 The projection matrix is decomposed from the dataset and 
the intrinsic matrix, rotation matrix and the 3D translation vector 
were obtained. This is eventually used to calculate the baseline 
between stereo pair of cameras, which is then used for 
calculating the depth map. Fig. 5. (b) shows the depth 
computation when BM matcher was used where there are plenty 
of gaps in the depth information as is evident from the figure. 
Fig. 5 (d) shows the depth computation when SGBM matcher 
was used where the depth information is a lot more consistent 
with less gaps in the depth information. 

Fig. 7 shows the histogram analysis that was done to check 
the distribution of depths in the depth map. This information is 

used to extract relevant depth information from the depth map 
and discard noisy depth data.  

When the LiDAR data was considered with the camera 
depth information, some discrepancies were noticed for a few 
results but for most of the data it was found that the LiDAR and 
the camera depth information were close to each other. Table I 
shows the comparison between the camera depth and the 
LiDAR depth on a subset of pixels from the Sequence 0 of the 
KITTI dataset. LiDAR is a more reliable source of depth 
information but the primary areas of outlier for the stereo 
camera lie in the blurry regions or where the camera viewpoint 
angle does not cover the scene properly. Ignoring the outliers, 
the depth values between the LiDAR and the stereo were 
approximately within 10% of each other, hence in real world 
applications camera can be a cost saving option in comparison 
to the expensive LiDAR equipment. 

D. Feature Detection and Matching 
 Feature detection and matching is the process of identifying 
distinct points or features in an image for purposes of matching 
with other images. The goal is to find correspondence between 
the features of two images. SIFT and ORB were used for feature 
detection and matching. The ratio test was applied to determine 
the uniqueness of SIFT features. Fig. 6 (a) shows feature 
detection and matching between two frames of sequence 0 of the 
KITTI dataset using the ORB feature detector and fig. 6 (b) 

   
(a) Visual odometry computation using the 

following parameters-feature detector: SIFT, 
feature matching: Brute Force (BF), filter 

matching distance: 0.5, stereo matcher: BM. 
 

(b) Visual odometry computation using the 
following parameters-feature detector: SIFT, 
feature matching: FLANN, filter matching 

distance: 0.5, stereo matcher: BM. 

(c) Visual odometry computation using the 
following parameters-feature detector: SIFT, 
feature matching: FLANN, filter matching 

distance: 0.5, stereo matcher: SGBM. 

   
(d) Visual odometry computation using the 

following parameters-feature detector: SIFT, 
feature matching: BF, filter matching distance: 

0.5, stereo matcher: SGBM. 

(e) Visual odometry computation using the 
following parameters-feature detector: SIFT, 
feature matching: FLANN, filter matching 

distance: 0.3, stereo matcher: SGBM. 

(f) Visual odometry computation using the 
following parameters-feature detector: SIFT, 

feature matching: BF, filter matching distance: 
0.3, stereo matcher: SGBM. 

Fig. 8. Comparison of visual odometry trajectory using varying parameters of feature detector, feature matching, filter matching distance, and stereo matcher 
using PnP RANSAC on sequence 0 of the KITTI dataset. FLANN - Fast Approximate Nearest Neighbor Searches. 

TABLE I.  COMPARISON BETWEEN STEREO DEPTH AND LIDAR DEPTH ON 
SEQUENCE 0 OF THE KITTI DATASET IN METERS 

Stereo 
Depth 24.04 24.04 24.04 24.04 24.04 24.04 24.04 

LiDAR 
Depth 25.08 25.08 25.08 25.08 25.08 25.08 25.08 

 



shows the feature detection and matching using the SIFT feature 
detector and the ratio was set to 0.3. 

In the case of ORB, the number of matches before filtering 
was 500 and after filtering the matches were reduced to 206. As 
is evident from figures 8 and 9, SIFT performed significantly 
better than ORB in our experiment. The number of matches 
before filtering for the SIFT feature detector was 3,206 whereas 
after applying the filtering method, the number of unique 
features were reduced to 446. 

E. Motion Estimation 
Motion estimation is the process of analyzing consecutive 

frames of the video sequence to determine the motion or 
movement of objects within a scene. Two approaches were 
taken for the motion estimation process. The PnP RANSAC 
involves estimating the pose of a camera given a set of 3D points 
in a scene and their corresponding 2D projections in the image. 
Another motion estimation process involved optical flow where 
the motion of each pixel is estimated. The displacement vectors 
between the pixels on sequence of two frames represent apparent 

motion. The poses are optimized using sparse bundle adjustment 
that is used to minimize the reprojection errors. 

Based on the motion estimation, the visual odometry was 
computed using several varying parameters to compare the 
results. Fig. 8 shows the visual odometry computation using the 
different evaluation parameters to gather conclusive evidence of 
which combination of parameters works best. Fig. 8 (f) shows 
results corresponding to the lowest error rate in Table II where 
SGBM matcher, brute force approach, and filter matching 
distance of 0.3 are used on SIFT features of the sequence 0 of 
KITTI dataset.  

Table II shows the detailed comparison between the 
evaluation parameters and the corresponding evaluation results 
determined by root mean squared error (RMSE) and the mean 
absolute error (MAE). The time taken to perform visual 
odometry using Brute Force (BF) feature matcher was observed 
to be a little less than the FLANN feature matcher, certain 
frames were dropped when the FLANN matcher was used. 
While keeping the filter matching distance and the stereo 

TABLE II. COMPARISON OF RESULTS ACROSS DIFFERENT EVALUATION PARAMETERS FOR VISUAL ODOMETRY COMPUTATION USING SIFT AND PNP 
RANSAC ON SEQUENCE 0 OF THE KITTI DATASET 

Stereo Matcher | Feature Matching | Filter Matching Distance 
Error Metric BM | BF | 0.5 BM | FLANN | 0.5 SGBM | FLANN | 0.5 SGBM | BF | 0.5 SGBM | FLANN | 0.3 SGBM | BF | 0.3 

MAE 45.92 45.88 37.91 37.98 37.12 32.54 

RMSE 58.00 57.87 47.26 47.37 46.14 39.99 

Note: MAE: Mean Absolute Error; RMSE: Root Mean Squared Error; BM: Block-matching; SGBM: Semi-global Block-matching; BF: Brute Force; FLANN: 
Fast Library for Approximate Nearest Neighbors 

  
(a) Visual odometry using Lucas Kanade method without bundle adjustment 

and loop closure. 
(b) Visual odometry using Lucas Kanade method with bundle adjustment and 

loop closure. 

  
(c) Error accumulation while iterating over the frames of the sequence using 

Lucas Kanade method without bundle adjustment and loop closure. 
(d) Error accumulation while iterating over the frames of the sequence when 
Lucas Kanade method was used with bundle adjustment and loop closure. 

Fig. 9. Comparison between the visual odometry computation without bundle adjustment and loop detection in (a) and (c) and with bundle adjustment and 
loop detection in (b) and (d) on sequence 0 of the KITTI dataset. GT is ground truth, Pred is prediction. 



matcher same, lower error rate was observed with BF when 
compared to FLANN particularly as observed in the last two 
columns of Table II. Furthermore, replacing the BM matcher 
with SGBM improved the performance. The key difference was 
observed when the filter matching distance was changed to 0.3. 
There was not much improvement noticed with the FLANN 
matching but when BF was used there was a significant 
improvement over the other combinations as is evident from the 
RMSE and MAE values in Table II. 

Fig. 9 (a) shows the visual odometry computation using the 
Lucas Kande method for optical flow and no bundle adjustment 
or loop closure was used to optimize the trajectory. All the 
experiments using the optical flow were conducted on 1,103 
frames of the sequence 0 of the KITTI dataset. Fig. 9 (c) shows 
the error accumulation while iterating over the frames of the 
sequence. Fig. 9 (b) shows the visual odometry computation 
using the Lucas Kanade method with bundle adjustment and 
loop closure to optimize the trajectory. Fig. 9 (d) shows the error 
accumulation while iterating over the frames of the sequence 
when optical flow was used with bundle adjustment and loop 
closure. It is evident that bundle adjustment and loop closure 
when coupled with optical flow provided much more accurate 
and optimized trajectory. 

VI. CONCLUSION AND FUTURE WORK 
 We proposed a stereo visual odometry pipeline and 
performed a comprehensive comparison of different trajectory 
computation approaches on the challenging KITTI dataset. 
Different feature detection methods, feature matching methods, 
filter matching distance, stereo matching along with different 
types of motion estimation, optimization techniques such as loop 
closure and bundle adjustment were tested in terms of error 
metric and computational time. SGBM matcher performed 
better than the BM matcher on depth and disparity estimation. 
SIFT was found to outperform the ORB feature detector. Brute 
Force feature matcher marginally outperformed FLANN 
matcher. The key component for the PnP RANSAC based 
motion estimation has been the filter matching distance that 
significantly improved the results. The Lucas Kande method for 
optical flow coupled with bundle adjustment and loop closure 
were used to optimize visual odometry. It improved 
performance as the drift was reduced significantly. The work 
could be further extended to fuse other kinds of sensor data like 
inertial measurement units, LiDAR, and GPS to further reduce 
the disparity between the ground truth and estimated trajectory. 
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