
Novel Stereo Visual Odometry Pipeline for
Autonomous Robot Navigation on Video Data

Subhobrata Chakraborty
Department of Computer Science

California State Universitye
Northridge, CA, USA

subhobrata.chakraborty.026@my.csun.edu

Abhishek Verma
Department of Computer Science

California State University
Northridge, CA, USA

abhishek.verma@csun.edu

Abstract— Autonomous robot navigation relies on accurate
motion estimation. Stereo Visual Odometry is used to estimate the
motion of a camera by analyzing the visual information captured
by a stereo pair of cameras. Visual odometry refers to the process
of estimating the camera’s movement by tracking the visual
features in consecutive frames of a video sequence. In a stereo
camera system, two cameras are positioned at known baseline
separation. The images captured by the cameras are used to create
a 3D representation of a scene. Stereo visual odometry leverages
the disparity between corresponding points in the pair of stereo
images to estimate the motion of camera.

We propose a stereo visual odometry pipeline and perform a
comprehensive comparison of different trajectory computation
approaches on the challenging KITTI dataset. Different feature
detection methods, feature matching, filter matching distance,
stereo matching, different types of motion estimation,
optimization techniques such as loop closure and bundle
adjustment were tested in terms of error metric and
computational time. SGBM matcher performed better than the
BM matcher on depth and disparity estimation. SIFT was found
to outperform the ORB feature detector. Brute Force feature
matcher outperformed FLANN matcher. The lowest MAE error
rate of 32.54 was obtained with SGBM matcher, brute force
approach, PnP RANSAC, and filter matching distance of 0.3 on
SIFT features.

Keywords-stereo visual odometry, KITTI, loop closure, bundle
adjustment

I. INTRODUCTION
Mobile robotics and autonomous robot navigation is a vital

research area due to its various applications such as self-driving
vehicles, search and rescue, surveillance and security, deep sea
exploration. Localization proves crucial for autonomous robot
navigation, especially in environments lacking GPS signals or
where identifying distinct landmarks is challenging, such as in
indoor or underwater settings. Visual odometry (VO) emerges
as a widely employed solution for robot localization, relying
solely on camera input. Notably, cameras, being passive
sensors, offer energy efficiency compared to active
counterparts like sonar or LiDAR, thereby extending
deployment durations and minimizing downtime. Visual
odometry, depending on the camera configuration, is classified
into monocular or multi-camera systems, with stereo VO being
the predominant choice among the latter.

Stereo VO [1, 2, 3] typically starts with stereo matching,
seeking corresponding features between stereo frames.
Triangulation swiftly estimates the 3D positions of objects,
followed by the derivation of camera pose (position and
orientation) in relation to those 3D points. While this method
provides accurate results, stereo matching poses computational
challenges. Moreover, many stereo matching algorithms
involve rectifying the stereo pair, adding to the time
complexity. Challenges also arise in scenes with repetitive,
high-frequency textures, where multiple similar patches may
lead to ambiguity in determining the best match. Such scenarios
are common outdoors, presenting a significant hurdle for field
robots like those navigating underwater or exploring mines.

Related work is covered in Section II of this paper. The
dataset used in our experiments is described in Section III.
Section IV gives details of our proposed pipeline for stereo
visual odometry computation that address some of the
aforementioned challenges followed by the experiment results
in Section V. Conclusion and future work is presented in Section
VI.

II. RELATED WORK
 Approaches that rely on stereo matching are widely explored
in stereo visual odometry. Recent advancements include S-
PTAM [4], which is an extension of PTAM where stereo
matching is incorporated to generate 3D points [5]. ORB SLAM
[6, 7, 8] incorporates stereo matching to perform stereo visual
odometry. LSD SLAM [9] was further expanded to a stereo
visual odometry system. Monocular LSD SLAM [10] relies on
direct method where the photometric error is reduced without
relying on feature matching. However, certain drawbacks of
stereo matching include failures in repetitive scene textures and
computational inefficiency. The stereo matching methods
mainly rely on patch appearances like normalized cross-
correlation or feature descriptors for determination of the stereo
correspondence. To further enhance the process of stereo
matching research has been done on global stereo matching to
incorporate non-local constraints like smoothness. This can be
seen in the stereo VO developed by Stereolab for the ZED stereo
camera [11]. Even though this approach is capable of enhancing
the localization accuracy, the real time performance is attained
through GPU based stereo matching thereby increasing the
power consumption and the system complexity.

Forster et al. improved SVO [12, 13] for systems with
multiple cameras but not primarily for stereo cameras. Rather

than depending on stereo matching, all the cameras are brought
together into a single function to minimize the photometric error
which involves projecting 3D points onto all visible image
frames, thereby enhancing the accuracy. The drawback is that it
increases the computational cost. Stereo DSO [13] represents a
hybrid model that initializes the depth for each keyframe via
stereo matching [14] along with stereo images integrated into
the error function.

Visual Odometry solely relies on stereo cameras to estimate
the depth and motion of features in the environment and might
struggle to extract sufficient depth information or features from
the environment. Visual inertial odometry [16, 17, 18] combines
information from both visual and inertial sensors for better
motion estimation while leveraging the data from the inertial
measurement unit. The fusion of visual data along with inertial
data helps in mitigating the limitations of visual sensors in low-
lighting conditions or lack of distinctive features in the
environment.

III. DATASET DESCRIPTION
 The KITTI dataset [18] is a very widely used benchmark
dataset used in the field of computer vision and robotics with its
primary focus being on autonomous vehicles. Hence, we test our
proposed visual odometry pipeline on this dataset. It includes a
variety of sensor data collected from a moving vehicle. The
following sensor data are collected:

• LiDAR: This data contains point cloud data collected
from Velodyne HDL-64E LiDAR.

• Stereo Camera: This data contains images captured
from multiple stereo pairs mounted on the vehicle
which helps capture images from different viewpoints.

• GPS and IMU: This data help in precise localization
and state estimation.

• Object detection and tracking: KITTI dataset provides
ground truth annotations for objects such as cars,
pedestrians, cyclists, etc. It includes 3D bounding box

for objects allowing researchers to focus on 3D object
detection models.

Fig. 1 shows the first frame of the sequence 0 of the KITTI
dataset, which we use in our experiments.

IV. RESEARCH METHODOLOGY
The KITTI dataset consists of both RGB and grayscale

images. For this research, grayscale images were used. There are
4,541 frames in the dataset along with 12 columns that comes
from flattening a 3x4 transformation matrix of the left and right
cameras with respect to the global coordinate frame, which is
established according to the first position of the camera’s frame.
The transformation matrix is a 3x3 rotation matrix stacked with
a 3x1 translation vector. The ground truth poses are extracted
from the pose sequence of the KITTI dataset. Fig. 2. represents
the ground truth data of the sequence 0 of the KITTI dataset. Fig.
4 shows the proposed stereo visual odometry pipeline, its
various components are explained below.

A. Data Acquisition
 The trajectory in Fig. 2 ends and starts at the same point. The
motion of the camera is tracked with respect to the first camera
frame and the timing of the camera is around 10 frames per
second.

The sensor calibration data is loaded that gives information
about the 3x4 projection matrices for four cameras as well as the
transformation matrix for the LiDAR data. It gives us
information about the projection matrix of the camera which can
be decomposed using singular value decomposition to extract
the intrinsic and extrinsic attributes of the camera. Fig. 3 shows
the sensor infrastructure for the KITTI dataset.

Finally, all the grayscale images are loaded in the dataset
handler and the ground truth frames are compared with the
camera frames, the number of rows comes to 4,541.

Fig. 2. Ground truth trajectory plot of sequence 0 of the KITTI dataset.

Fig. 4. Architecture of the proposed stereo visual odometry pipeline.

Fig. 1. An example of the first frame of sequence 0 of the KITTI dataset [18].

Fig. 3. Sensor configuration of the KITTI dataset.

B. Tracking
 The transformation matrix is a 3x4 matrix that is generated
from the horizontal stacking of the rotation matrix and the
translation vector. Following the transformation, the
reprojection residuals are computed that allows to extract the
difference between the actual and estimated transformation. The
following parameters are considered for residual computation –
transformation between two frames, feature points in an image,
feature points in the subsequent image, 3D points generated
from the prior image frame and the 3D points generated from
the image frame that follows.

To identify the distinct points in an image, feature detection
and matching are done either with SIFT [20] or ORB [21]
followed by matching the features with the corresponding ones
in the other image. The good features are stored as per the David
Lowe’s ratio test and the filter matching distance was set to 0.3.

The keypoints between the frames are tracked using the
Lucas Kanade method for optical flow. The keypoints are first
converted into a vector of points and the dimensions are
expanded to select the good matches. The parameters for
tracking keypoints are an image followed by the subsequent
image. The first image’s keypoints are considered along with a
threshold for maximum acceptable error. The status vector is
converted to Boolean to make it usable as a mask, which is later
used to select the keypoints. Finally, the keypoints lying outside
the image are deleted and the tracking points are returned.

C. Loop Closure and Visual Odometry
 Two methods have been used for estimating the motion. One
of those is using optical flow while the other uses PnP
RANSAC. Lucas Kanade method has been used for the optical
flow-based motion estimation. Dense and sparse optical flow are
two types of optical flow estimation techniques. Dense optical
flow computes motion vectors for every pixel in the image,
providing a continuous and dense field of motion information.
The result is a dense matrix of motion vectors where each pixel
has an associated motion vector. Sparse optical flow computes
motion vectors for a subset of feature points in the image.
Instead of calculating the motion for every pixel, it focuses on
specific, manually or automatically selected interest points. The
result is a set of motion vectors corresponding to the selected
feature points, providing information about the movement of

these points in the scene. Using sparse optical flow saves
computation time where a large number of features are
considered.

PnP RANSAC is used to compute a pose that relates points
in the global coordinate frame to the pose of the camera. The
pose of the camera in the first image has been considered as the
global coordinate frame to reconstruct the 3D points of the
features using stereo depth estimation. Then a pose is found,
which relates the camera in the next frame to those 3D points.
While tracking the pose of the vehicle over time, the goal is to
relate the points in the camera’s coordinate frame to the global
coordinate frame and requires computation of the inverse of the
transformation matrix. Furthermore, the vehicle is being tracked
from the first camera pose for which the cumulative product of
the inverses of each estimated camera pose is required.

The parameters of the 3D reconstruction model are refined
to minimize the difference between the observed image features
and the features predicted by the model. The goal is to improve
the accuracy of the 3D reconstruction by adjusting the
parameters to better align with the observed data. Sparse bundle
adjustment is used here where only a subset of points in the
scene are considered. It is useful while dealing with large-scale
reconstruction where considering all the features in all images
might prove to be computationally extensive. The focus is to
refine the parameters for a sparse set of features.

𝑢𝑢𝑙𝑙 = 𝑓𝑓𝑥𝑥
𝑥𝑥
𝑧𝑧

+ 𝑜𝑜𝑥𝑥, 𝑣𝑣𝑙𝑙 = 𝑓𝑓𝑦𝑦
𝑦𝑦
𝑧𝑧

+ 𝑜𝑜𝑦𝑦 (1)

𝑢𝑢𝑟𝑟 = 𝑓𝑓𝑥𝑥
𝑥𝑥−𝑏𝑏
𝑧𝑧

+ 𝑜𝑜𝑥𝑥, 𝑣𝑣𝑟𝑟 = 𝑓𝑓𝑦𝑦
𝑦𝑦
𝑧𝑧

+ 𝑜𝑜𝑦𝑦 (2)

𝑥𝑥 =
𝑏𝑏(𝑢𝑢𝑙𝑙 − 𝑜𝑜𝑥𝑥)
𝑢𝑢𝑙𝑙 − 𝑢𝑢𝑟𝑟

, 𝑦𝑦 =
𝑏𝑏𝑓𝑓𝑥𝑥�𝑣𝑣𝑙𝑙 − 𝑜𝑜𝑦𝑦�
𝑓𝑓𝑦𝑦(𝑢𝑢𝑙𝑙 − 𝑢𝑢𝑟𝑟)

, 𝑧𝑧 =
𝑏𝑏𝑓𝑓𝑥𝑥

𝑢𝑢𝑙𝑙 − 𝑢𝑢𝑟𝑟

(3)

Equation 1 denotes the perspective projection of the left
camera in a stereo camera configuration and equation 2
represents the perspective projection equation of the right
camera. (𝑢𝑢𝑙𝑙, 𝑣𝑣𝑙𝑙) and (𝑢𝑢𝑟𝑟, 𝑣𝑣𝑟𝑟) are points on the image plane of the
left and right cameras respectively. 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 denote the focal
lengths across the x and y axis, whereas 𝑜𝑜𝑥𝑥 and 𝑜𝑜𝑦𝑦 represent the
optical center. b is the baseline, which is the distance between
the optical centers of the stereo pair of cameras. To determine
the 3D location of a point in a scene, the x, y and z values need
to be determined from equations 1 and 2. Equation 3 represents

(a) Disparity computation using Block-matching (BM). (b) Depth computation using Block-matching (BM).

(c) Disparity computation using Semi-global Block-matching (SGBM). (d) Depth computation using Semi-global Block-matching (SGBM).

Fig. 5. Comparison between the disparity computation using BM in (a) and SGBM in (c) along with the corresponding depth map estimation using BM in (b)
and SGBM in (d) on sequence 0 of the KITTI dataset.

the coordinates of the point in the 3D environment. Here z is also
known as the depth of the scene and the denominator, which is
the difference between 𝑢𝑢𝑙𝑙 and 𝑢𝑢𝑟𝑟 represents the disparity. The
depth z is always inversely proportional to the disparity.

Loop detection involves identifying when a robot or a
camera revisits a location previously visited. Bag of Words
(BoW) is a technique for feature representation. As the vehicle
navigates the environment local features are extracted using
SIFT or ORB. K-Means clustering algorithm is used to quantize
the extracted features into a predefined number of visual words.
Each image in the frame is represented as a histogram of visual
words. As the camera explores further the environment, the
BoW representations of the visited locations are stored into a
database. Once one of the frames is revisited, the BoW
representation is computed for that frame. The current BoW
representation is compared to the ones already stored in the
database. The Euclidean distance is used to measure the
similarities between the BoW histograms. A threshold for the
similarity metric is decided. If the similarity between the current
BoW representation and any stored representation exceeds the
threshold, a potential loop is detected. The threshold may
depend on factors such as the environment, sensor noise and the
desired level of detection sensitivity. Refinement techniques are
further applied to reduce false positives. The goal for loop
closure is to improve the overall map consistency.

Once the loop detection is done, the initial visual odometry
is computed followed by loop fusion to increase the odometry
consistency. The final output is the optimized visual odometry
after loop detection and bundle adjustment. The end-to-end
system pipeline is shown in Fig. 4.

V. EXPERIMENT SETUP, RESULTS AND DISCUSSION
The following hardware configuration was used to conduct

the experiments – Ryzen 9 5900 HX for the CPU, Nvidia RTX
3080 for the GPU, GPU VRAM of 16 GB and the standard
RAM of 32 GB. The software libraries include NumPy, Pandas,
OpenCV, Matplotlib, and SciPy.

Visual odometry can be computed using feature-based
methods and intensity of the image pixel in the sequence can be

leveraged to conduct experiments. It is also referred to as the
direct method.

A. Dataset Handling
 The grayscale data from the KITTI dataset is used for the
experiments. Storing the dataset sequences as lists in attachment
with the dataset handling class takes around 20 GB of memory.
This can be bypassed by making the low memory argument true,
which will create a class with generators rather than lists. The
dataset handler takes care of the following components of the
sequence – check device for low memory, loading the ground
truth poses, loading the calibration details for a scene, loading
the images along with the LiDAR data.

B. Disparity Computation
 The apparent motion between a pair of stereo images is
referred to as disparity. For a stereo pair of images, the pixels in
the left and right images are to be matched with each other and
the distance between the matching pixels is calculated. The
result is a disparity map that represents the distance values as an
intensity image. Considering the stereo image pair from left and
right cameras of the KITTI dataset, the disparity map is
generated using Block-matching (BM) and Semi-global Block-
matching (SGBM) algorithms. Fig. 5 (a) and (c) show the
comparison of results for depth computation using the BM
matcher and the SGBM matcher respectively.

(a) Feature detection and matching using ORB.

(b) Feature detection and matching using SIFT.

Fig. 6. Comparison of the features detected by ORB in (a) and SIFT in (b) on sequence 0 of the KITTI dataset.

Fig. 7. Histogram analysis demonstrating depth information distribution
on sequence 0 of the KITTI dataset.

Stereo SGBM matching takes around three times longer to
compute the disparity map when compared to BM matching but
produces a much more contiguous map with minimum gaps in
depth information.

C. Depth Computation
 The projection matrix is decomposed from the dataset and
the intrinsic matrix, rotation matrix and the 3D translation vector
were obtained. This is eventually used to calculate the baseline
between stereo pair of cameras, which is then used for
calculating the depth map. Fig. 5. (b) shows the depth
computation when BM matcher was used where there are plenty
of gaps in the depth information as is evident from the figure.
Fig. 5 (d) shows the depth computation when SGBM matcher
was used where the depth information is a lot more consistent
with less gaps in the depth information.

Fig. 7 shows the histogram analysis that was done to check
the distribution of depths in the depth map. This information is

used to extract relevant depth information from the depth map
and discard noisy depth data.

When the LiDAR data was considered with the camera
depth information, some discrepancies were noticed for a few
results but for most of the data it was found that the LiDAR and
the camera depth information were close to each other. Table I
shows the comparison between the camera depth and the
LiDAR depth on a subset of pixels from the Sequence 0 of the
KITTI dataset. LiDAR is a more reliable source of depth
information but the primary areas of outlier for the stereo
camera lie in the blurry regions or where the camera viewpoint
angle does not cover the scene properly. Ignoring the outliers,
the depth values between the LiDAR and the stereo were
approximately within 10% of each other, hence in real world
applications camera can be a cost saving option in comparison
to the expensive LiDAR equipment.

D. Feature Detection and Matching
 Feature detection and matching is the process of identifying
distinct points or features in an image for purposes of matching
with other images. The goal is to find correspondence between
the features of two images. SIFT and ORB were used for feature
detection and matching. The ratio test was applied to determine
the uniqueness of SIFT features. Fig. 6 (a) shows feature
detection and matching between two frames of sequence 0 of the
KITTI dataset using the ORB feature detector and fig. 6 (b)

(a) Visual odometry computation using the

following parameters-feature detector: SIFT,
feature matching: Brute Force (BF), filter

matching distance: 0.5, stereo matcher: BM.

(b) Visual odometry computation using the
following parameters-feature detector: SIFT,
feature matching: FLANN, filter matching

distance: 0.5, stereo matcher: BM.

(c) Visual odometry computation using the
following parameters-feature detector: SIFT,
feature matching: FLANN, filter matching

distance: 0.5, stereo matcher: SGBM.

(d) Visual odometry computation using the

following parameters-feature detector: SIFT,
feature matching: BF, filter matching distance:

0.5, stereo matcher: SGBM.

(e) Visual odometry computation using the
following parameters-feature detector: SIFT,
feature matching: FLANN, filter matching

distance: 0.3, stereo matcher: SGBM.

(f) Visual odometry computation using the
following parameters-feature detector: SIFT,

feature matching: BF, filter matching distance:
0.3, stereo matcher: SGBM.

Fig. 8. Comparison of visual odometry trajectory using varying parameters of feature detector, feature matching, filter matching distance, and stereo matcher
using PnP RANSAC on sequence 0 of the KITTI dataset. FLANN - Fast Approximate Nearest Neighbor Searches.

TABLE I. COMPARISON BETWEEN STEREO DEPTH AND LIDAR DEPTH ON
SEQUENCE 0 OF THE KITTI DATASET IN METERS

Stereo
Depth 24.04 24.04 24.04 24.04 24.04 24.04 24.04

LiDAR
Depth 25.08 25.08 25.08 25.08 25.08 25.08 25.08

shows the feature detection and matching using the SIFT feature
detector and the ratio was set to 0.3.

In the case of ORB, the number of matches before filtering
was 500 and after filtering the matches were reduced to 206. As
is evident from figures 8 and 9, SIFT performed significantly
better than ORB in our experiment. The number of matches
before filtering for the SIFT feature detector was 3,206 whereas
after applying the filtering method, the number of unique
features were reduced to 446.

E. Motion Estimation
Motion estimation is the process of analyzing consecutive

frames of the video sequence to determine the motion or
movement of objects within a scene. Two approaches were
taken for the motion estimation process. The PnP RANSAC
involves estimating the pose of a camera given a set of 3D points
in a scene and their corresponding 2D projections in the image.
Another motion estimation process involved optical flow where
the motion of each pixel is estimated. The displacement vectors
between the pixels on sequence of two frames represent apparent

motion. The poses are optimized using sparse bundle adjustment
that is used to minimize the reprojection errors.

Based on the motion estimation, the visual odometry was
computed using several varying parameters to compare the
results. Fig. 8 shows the visual odometry computation using the
different evaluation parameters to gather conclusive evidence of
which combination of parameters works best. Fig. 8 (f) shows
results corresponding to the lowest error rate in Table II where
SGBM matcher, brute force approach, and filter matching
distance of 0.3 are used on SIFT features of the sequence 0 of
KITTI dataset.

Table II shows the detailed comparison between the
evaluation parameters and the corresponding evaluation results
determined by root mean squared error (RMSE) and the mean
absolute error (MAE). The time taken to perform visual
odometry using Brute Force (BF) feature matcher was observed
to be a little less than the FLANN feature matcher, certain
frames were dropped when the FLANN matcher was used.
While keeping the filter matching distance and the stereo

TABLE II. COMPARISON OF RESULTS ACROSS DIFFERENT EVALUATION PARAMETERS FOR VISUAL ODOMETRY COMPUTATION USING SIFT AND PNP
RANSAC ON SEQUENCE 0 OF THE KITTI DATASET

Stereo Matcher | Feature Matching | Filter Matching Distance
Error Metric BM | BF | 0.5 BM | FLANN | 0.5 SGBM | FLANN | 0.5 SGBM | BF | 0.5 SGBM | FLANN | 0.3 SGBM | BF | 0.3

MAE 45.92 45.88 37.91 37.98 37.12 32.54

RMSE 58.00 57.87 47.26 47.37 46.14 39.99

Note: MAE: Mean Absolute Error; RMSE: Root Mean Squared Error; BM: Block-matching; SGBM: Semi-global Block-matching; BF: Brute Force; FLANN:
Fast Library for Approximate Nearest Neighbors

(a) Visual odometry using Lucas Kanade method without bundle adjustment

and loop closure.
(b) Visual odometry using Lucas Kanade method with bundle adjustment and

loop closure.

(c) Error accumulation while iterating over the frames of the sequence using

Lucas Kanade method without bundle adjustment and loop closure.
(d) Error accumulation while iterating over the frames of the sequence when
Lucas Kanade method was used with bundle adjustment and loop closure.

Fig. 9. Comparison between the visual odometry computation without bundle adjustment and loop detection in (a) and (c) and with bundle adjustment and
loop detection in (b) and (d) on sequence 0 of the KITTI dataset. GT is ground truth, Pred is prediction.

matcher same, lower error rate was observed with BF when
compared to FLANN particularly as observed in the last two
columns of Table II. Furthermore, replacing the BM matcher
with SGBM improved the performance. The key difference was
observed when the filter matching distance was changed to 0.3.
There was not much improvement noticed with the FLANN
matching but when BF was used there was a significant
improvement over the other combinations as is evident from the
RMSE and MAE values in Table II.

Fig. 9 (a) shows the visual odometry computation using the
Lucas Kande method for optical flow and no bundle adjustment
or loop closure was used to optimize the trajectory. All the
experiments using the optical flow were conducted on 1,103
frames of the sequence 0 of the KITTI dataset. Fig. 9 (c) shows
the error accumulation while iterating over the frames of the
sequence. Fig. 9 (b) shows the visual odometry computation
using the Lucas Kanade method with bundle adjustment and
loop closure to optimize the trajectory. Fig. 9 (d) shows the error
accumulation while iterating over the frames of the sequence
when optical flow was used with bundle adjustment and loop
closure. It is evident that bundle adjustment and loop closure
when coupled with optical flow provided much more accurate
and optimized trajectory.

VI. CONCLUSION AND FUTURE WORK
 We proposed a stereo visual odometry pipeline and
performed a comprehensive comparison of different trajectory
computation approaches on the challenging KITTI dataset.
Different feature detection methods, feature matching methods,
filter matching distance, stereo matching along with different
types of motion estimation, optimization techniques such as loop
closure and bundle adjustment were tested in terms of error
metric and computational time. SGBM matcher performed
better than the BM matcher on depth and disparity estimation.
SIFT was found to outperform the ORB feature detector. Brute
Force feature matcher marginally outperformed FLANN
matcher. The key component for the PnP RANSAC based
motion estimation has been the filter matching distance that
significantly improved the results. The Lucas Kande method for
optical flow coupled with bundle adjustment and loop closure
were used to optimize visual odometry. It improved
performance as the drift was reduced significantly. The work
could be further extended to fuse other kinds of sensor data like
inertial measurement units, LiDAR, and GPS to further reduce
the disparity between the ground truth and estimated trajectory.

REFERENCES

[1] J. Engel, V. Koltun and D. Cremers, "Direct sparse odometry," in IEEE

Transactions on Pattern Analysis and Machine Intelligence 40, no. 3
(2017): 611-625.

[2] I. Cvišić and I. Petrović, "Stereo odometry based on careful feature
selection and tracking," in 2015 European Conference on Mobile
Robots (ECMR), pp. 1-6. IEEE, 2015.

[3] R. Gomez-Ojeda and J. Gonzalez-Jimenez, "Robust stereo visual
odometry through a probabilistic combination of points and line
segments," in 2016 IEEE International Conference on Robotics and
Automation (ICRA), pp. 2521-2526. IEEE, 2016.

[4] T. Pire, T. Fischer, G. Castro, P. D. Cristóforis, J. Civera and J. J.
Berlles, "S-PTAM: Stereo parallel tracking and mapping," in Robotics
and Autonomous Systems 93 (2017): 27-42.

[5] A. Rosinol, M. Abate, Y. Chang and L. Carlone, "Kimera: an open-
source library for real-time metric-semantic localization and mapping,"
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1689-1696. IEEE, 2020.

[6] R. Mur-Artal, J. M. M. Montiel and J. D. Tardos, "ORB-SLAM: a
versatile and accurate monocular SLAM system," in IEEE Transactions
on Robotics 31, no. 5 (2015): 1147-1163.

[7] R. Mur-Artal and J. D. Tardós, "Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras," in IEEE
Transactions on Robotics 33, no. 5 (2017): 1255-1262.

[8] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. Montiel and J. D.
Tardós, "Orb-slam3: An accurate open-source library for visual, visual–
inertial, and multimap slam," in IEEE Transactions on Robotics 37, no.
6 (2021): 1874-1890.

[9] J. Engel, J. Stückler and D. Cremers, "Large-scale direct SLAM with
stereo cameras," in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1935-1942. IEEE, 2015.

[10] J. Engel, T. Schöps and D. Cremers, "LSD-SLAM: Large-scale direct
monocular SLAM," in European Conference on Computer Vision, pp.
834-849. Cham: Springer International Publishing, 2014.

[11] "Getting Started with ROS 2 and ZED," StereoLabs, 2023. [Online].
Available: https://www.stereolabs.com/docs/ros2.

[12] C. Forster, M. Pizzoli and D. Scaramuzza, "SVO: Fast semi-direct
monocular visual odometry," in IEEE International Conference on
Robotics and Automation (ICRA), pp. 15-22. IEEE, 2014.

[13] C. Forster, Z. Zhang, M. Gassner, M. Werlberger and D. Scaramuzza,
"SVO: Semidirect visual odometry for monocular and multicamera
systems," in IEEE Transactions on Robotics 33, no. 2 (2016): 249-265.

[14] R. Wang, M. Schworer and D. Cremer, "Stereo DSO: Large-scale
direct sparse visual odometry with stereo cameras," in Proceedings of
the IEEE International Conference on Computer Vision, pp. 3903-
3911. 2017.

[15] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart and P. Furgale,
"Keyframe-based visual–inertial odometry using nonlinear
optimization," in The International Journal of Robotics Research 34,
no. 3 (2015): 314-334.

[16] M. Bloesch, S. Omari, M. Hutter and R. Siegwart, "Robust visual
inertial odometry using a direct EKF-based approach," in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 298-304. IEEE, 2015.

[17] T. Qin, P. Li and S. Shen, "Vins-mono: A robust and versatile
monocular visual-inertial state estimator," in IEEE Transactions on
Robotics 34, no. 4 (2018): 1004-1020.

[18] P. Geneva, K. Eckenhoff, W. Lee, Y. Yang and G. Huang, "Openvins:
A research platform for visual-inertial estimation," in 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp.
4666-4672. IEEE, 2020.

[19] Y. Liao, J. Xie and A. Geiger, "KITTI-360: A novel dataset and
benchmarks for urban scene understanding in 2d and 3d," in IEEE
Transactions on Pattern Analysis and Machine Intelligence 45, no. 3
(2022): 3292-3310.

[20] L. David, "Distinctive image features from scale-invariant keypoints,"
in International Journal of Computer Vision 60 (2004): 91-110.

[21] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, "ORB: An efficient
alternative to SIFT or SURF," in 2011 International Conference on
Computer Vision, pp. 2564-2571. IEEE, 2011.

[22] S. Huang, G. Sun and M. Li, "FAST and FLANN for feature matching
based on SURF," in 2021 33rd Chinese Control and Decision
Conference (CCDC), pp. 1584-1589. IEEE, 2021.

	I. Introduction
	II. Related Work
	III. Dataset Description
	IV. Research Methodology
	A. Data Acquisition
	B. Tracking
	C. Loop Closure and Visual Odometry

	V. Experiment Setup, Results and Discussion
	A. Dataset Handling
	B. Disparity Computation
	C. Depth Computation
	D. Feature Detection and Matching
	E. Motion Estimation

	VI. Conclusion and Future Work
	References

