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Abstract— Automatic object detection in drone images is an 
important area of research due to its application such as 
surveillance and security, reconnaissance, search and rescue 
mission, land monitoring, self-navigating drones. It is considered 
a challenging task due to the distance, camera angle, and complex 
surroundings. Filtering predictions from object detection models 
and combining the results can help improve the performance of 
individual models. Selecting the best predictions from predictions 
of multiple models is called ensemble parallel decision fusion. 

We augmented the large-scale grand challenge VisDrone2019-
DET image dataset to create VisDrone-split and VisDrone-overlap 
datasets. We trained seven level-0 large deep learning models on 
the drone datasets and propose four Parallel Decision Fusion 
(PDF) deep learning models that improve in terms of the 
multiclass object detection precision upon their corresponding 
level-0 models. The seven models were split into two sets of object 
detection models. The first set of level-0 models includes Faster R-
CNN, RetinaNet, and YOLOv5s. The second set consisted of much 
larger level-0 models namely state of the art YOLOv5x, 
YOLOv7x, YOLOv8x, and EVA02L. All proposed PDF models 
improved upon their corresponding state-of-the-art level-0 models 
on VisDrone-split. The PDF model with the highest metrics was 
YOLOv8x-s + EVA02L-s, which scored an mAP50 of 0.601 and 
improved 2.39% upon the state-of-the-art level-0 EVA02L model. 

Keywords—deep learning, object detection, decision fusion, 
VisDrone2019-DET, YOLOv5, YOLOv7, YOLOv8, EVA02 

I. INTRODUCTION 
Object detection is a part of the computer vision field where 

one or more objects within an image or video are not only 
classified but also located using a bounding box around them. 
This research focused on multiclass object detection within 
images. This research aimed to improve both poor and highly 
accurate object detection models to achieve the best performing 
model using ensemble methods and decision fusion. 

Decision Fusion combines predictions from multiple 
machine learning models to create a more refined set of 
predictions that are more accurate than the individual machine 
learning models. Parallel Decision Fusion (PDF) fuses the 
predictions of more than one machine learning model, or base 
models, in parallel. Base models are referred to as level-0 
models in this paper. The decision fusion method filters the 
predictions of multiple level-0 models. The goal of PDF is to 
improve upon the level-0 model results by using the results of 
several level-0 models, grouping predictions of the same objects 

together, then only using the best prediction. PDF models are 
proposed to improve multiclass object detection models that are 
trained on a drone image dataset. This research implemented 19 
total PDF models, and four of the best performing models are 
proposed in this paper. This research also studied how the metric 
results differed between level-0 models and affected the metric 
results of the PDF models on average and between individual 
classes. 

To cover these topics, related works are examined using 
similar object detection models, dataset, or ensemble methods in 
section II. Then datasets used to train two sets of object detection 
models and test the PDF models are explained in section III. 
Faster R-CNN [1], RetinaNet [2], and YOLOv5s [3] are the first 
set. YOLOv5x [3], YOLOv7x [4], YOLOv8s [5], and EVA02L 
[6] are the second set. Section IV explains the level-0 models 
and the proposed PDF models. Section V and VI explain the 
experiment setup and the results of the level-0 models and PDF 
models. Finally, section VII goes over the conclusion of the 
research and future directions. 

II. RELATED WORK 
Researchers have used different ensemble methods to 

combine more than one object detection model and improve the 
overall results, such as the Affirmative method, the Unanimous 
method, the Consensus method, and weighted box fusion as 
described in [7]. With the Affirmative method, an object is 
considered detected if at least one model detects an object. If two 
models incorrectly detect two different objects, then by the 
Affirmative method, they are both considered detected. With the 
Unanimous method, an object is considered detected if all the 
models detect the same object. With the Consensus method, an 
object is considered detected if more than half of the models 
detect the same object. Both the Unanimous and the Consensus 
methods helped decrease the number of false positives because 
the more models that detect an object, the more likely that 
detection is a true positive. The problem with the Unanimous 
method is there might be an increase in false negatives because 
if one model detects a true positive object that the other models 
did not catch, then that detection would not be considered and 
would become a false negative. The increase of false negatives 
can also occur in the Consensus method but to a lesser degree. 

The following book and article documented the research on 
improving machine learning models. A book published in 2021 
explains different techniques to classify pneumonia from chest 
radiographs. The book describes different types of decision 



fusion methods to improve multiple classifiers in Chapter 4 [8]. 
Some of these decision fusion methods are Serial Decision 
Fusion (SDF), Parallel Decision Fusion (PDF), and Hybrid 
Decision Fusion (HDF). In SDF, one classifier takes the original 
input from the dataset, then the output is the input to the next 
classifier. The last classifier outputs the final set of outputs. In 
the PDF model on the other hand, decision fusion is applied to 
all the predictions of the classifiers at once, or in parallel. Lastly, 
as the name suggests HDF is a mix of SDF and PDF with a 
hierarchical setup. Each level in the hierarchy switches between 
SDF and PDF. The last level applies decision fusion to get the 
final output. Even though the book mentioned fusing classifier 
predictions together, our research uses PDF to fuse predictions 
from object detection models rather than classification models. 

This final article proposed a Fine-grained Target Focusing 
Network (FiFoNet) to detect small and hard-to-locate objects 
[9]. FiFoNet has four modules. The first is a CNN-based 
backbone. The second is a top-down pathway for obtaining 
features, which uses Global Average Pooling. This module is 
used to improve feature extractions from small and poorly seen 
objects. The third is the FiFo module, which works to reduce 
feature background noise and aggregate the more subtle 
features, using Fine-grained Feature Aggregation (FiFA). The 
last module is used to predict the class score and box location. 
Both VisDrone2019 [10] and UAVDT [11] were used to test the 
accuracy of FiFoNet. VisDrone2019 was augmented to create a 
third dataset, called VisDrone_Foggy, by including what looks 
like a fog of varying thickness. FiFoNet improved upon the 
baseline model YOLOv5, on all three datasets used. The article 
sheds light on the challenges inherent to the highly dense 
datasets such as VisDrone2019, and the need to further improve 
upon the state of the art to attain much higher average precision. 

III. DATASET DESCRIPTION 

A. VisDrone2019-DET (VisDrone) 
The object detection models used in this research were 

trained with a drone image dataset, called Visdrone2019-DET 
or VisDrone for short, and was created for a computer vision 
challenge as explained in [10], [12]. The ten classes are 
pedestrian, people, bicycle, car, van, truck, tricycle, awning-
tricycle, bus, and motor for motorcycle. The image dimensions 
were from 960 by 540 pixels to 2,000 by 1,500 pixels. The 
dataset has 6,471 training images and 548 images for testing. 
The images were resized to 1,500 by 1,500 pixels to have all the 
same dimensions. 

B. VisDrone-split and VisDrone-overlap 
 We preprocessed the VisDrone dataset to create two datasets 
namely VisDrone-split and VisDrone-overlap. To try to increase 
accuracy and reduce computational limitations, each resized 
VisDrone image was later cropped to nine 500 by 500 pixels 
sub-images. The number of images in the new dataset, called 
VisDrone-split, is 36,264 and the number of testing images in 
VisDrone-split is 3,293. Annotations from cropped objects were 
removed, and images without annotations were removed. An 
example image of VisDrone-split is shown in Fig. 1. 

To keep at least the same number of instances, each resized 
image from VisDrone was cropped with a 25% overlap for each 
500 by 500 pixels sub-image. There are far more objects within 

each class since many of them are within the overlapped part of 
the images. There are about 67,000 images for training and 
6,000 images for testing in this new dataset, called VisDrone-
overlap. 

IV. RESEARCH METHODOLOGY 
The YOLOv5s, YOLOv5x, YOLOv7x, YOLOv8x, Faster-

RCNN, RetinaNet, and EVA02L methodology is explained 
below. The process of how their predictions were combined to 
apply decision fusion is the PDF method. 

A. YOLOv5, YOLOv7, and YOLOv8 (Level-0) 
There are ten YOLOv5 [3] versions ranging in size. The 

small YOLOv5s and extra-large YOLOv5x were tested on input 
images from the MS COCO dataset [13]. Its backbone is the 
same as YOLOv4 and CSPDarknet53 [14]. CSPDarknet53 
comes from YOLOv3’s Darknet53 [15] that uses Cross Stage 
Partial connections (CSP) [16], [17]. The model head is the same 
as YOLOv3 [15] and has three output heads. The backbone and 
the head are connected with Spatial Pyramid Pooling Fusion 
(SPPF) [18], [19] and CSP-Path Aggregation Network (CSP-
PAN) [20], [16]. Each output head is for the bounding boxes, 
objectness, and class. Three loss functions follow the outputs – 
Complete Intersection over Union (CIOU) for location loss, and 
Binary Cross Entropy (BCE) for objectness and class loss.  

There are six YOLOv7 [4] versions ranging in size. 
YOLOv7 and YOLOv7x model versions were tested on input 
images from the MS COCO dataset [13]. YOLOv7 proposed the 
backbone, Extended Efficient Layer Aggregation Network (E-
ELAN). Its neck is CSPSPP and PAN, and its head is the same 
as YOLOR [21], the same creators of YOLOv7. The Sigmoid 
Linear Units (SiLU) activation function is used and, by default, 
SGD with momentum 0.937 is used for the optimizer. The image 
augmentation that is used is translation, scale, horizontal flip, 

 
Fig. 1.  A 500 by 500 pixels image from the VisDrone-split dataset. The 
ground truths in the image are shown inside the green bounding boxes 
and belong to the pedestrian, people, bicycle, car, van, and motor classes. 
 



and mosaic. The same three loss functions as YOLOv5 are used 
for bounding boxes, objectness, and class. 

There are five YOLOv8 [5] versions ranging in size, they 
were all tested on images from the MS COCO dataset [13]. The 
backbone is a modified CSPDarkNet53 with a Feature Pyramid 
Network (FPN) [22]. The CSP connections in CSPDarkNet53 
were replaced with c2f modules, or cross-stage partial 
bottleneck with two convolutions [5] [17]. The PAN is used as 
the neck, which preserves the localization information in the 
lower layers. The CSP connections that YOLOv5’s neck used 
are also replaced with c2f modules in YOLOv8’s neck. The 
output head is separated into three parts to identify the bounding 
boxes, objectness, and class. The loss functions are CIOU with 
Distribution Focal Loss (DFL) [23] for bounding box loss and 
BCE for class loss. Focal Loss is a general form of DFL, which 
helps with class imbalance. The dimensions of the prediction 
boxes are placed into bins to create a probability distribution and 
compared with the ground truth’s distribution. 

B. Faster R-CNN and RetinaNet 
Faster R-CNN (FRCNN) [1] has a ResNet + Region 

Proposal Network (RPN) backbone. Similarly, RetinaNet [2] 
has a ResNet backbone followed by an FPN. Our research used 
a ResNet backbone of 50 layers and included FPN with FRCNN. 
RPN generates a set of regions using anchor boxes and a neural 
network to locate potential objects. RetinaNet doesn’t have an 
RPN but does use the focal loss function to handle class 
imbalance. The focal loss function is: 

 𝐹𝐹𝐹𝐹(𝑝𝑝𝑡𝑡) = −(1− 𝑝𝑝𝑡𝑡)𝛾𝛾𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑡𝑡), (1) 

where 𝑝𝑝𝑡𝑡 is the probability of a true positive prediction and γ is 
called the focusing parameter to assign more loss to predictions 
with a smaller probability [23]. The subnetworks of RetinaNet 
apply anchor box localization and classification. 

C. EVA02 
There are two main EVA methods, EVA [24] and EVA02 

[6]. EVA02L is used in our research since EVA has over a 
billion parameters, while EVA02L has 303 million parameters 
and is almost as accurate. EVA02L uses an improved Vision 
Transformer (ViT) [25], called Transform Vision (TrV). 

Contrastive Language-Image Pre-training (CLIP) model [26] is 
used to pretrain the TrV using the masked image modeling 
(MIM) [27] pre-training strategy. MIM randomly masks parts of 
an image then works to predict the masked portion of the image.  

 TrV has multi-head self-attention (MHSA) layers + 2D 
rotary position embedding (RoPE) [28], a positional embedding 
that modifies the query and key vectors. TrV also uses random 
weight initialization in a Swish-Gated Linear Unit (SwiGLU) 
feedforward network (FFN) [29] with a SiLU activation 
function and has sub-LayerNorm (sub-LN) [30] for a 
normalization layer as listed in [6].  

D. Proposed Parallel Decision Fusion Models 
 We implemented 19 total Parallel Decision Fusion (PDF) 
models, and four of the best performing models are proposed in 
this paper. After training seven level-0 models, the PDF 
methodology was implemented to combine multiple object 
detectors. Decision fusion combined predictions from the output 
of different combinations of the level-0 models on the VisDrone 
datasets. The first eight outputs are all four combinations of 
Faster R-CNN (FRCNN), RetinaNet, and YOLOv5s trained on 
VisDrone-split and VisDrone-overlap. The outputs are all 11 
combinations of YOLOv5x, YOLOv7x, YOLOv8x, and 
EVA02L trained on VisDrone-split.  Fig. 2 shows one of the 19 
implemented PDF models.  

The first step in preparing the data was to convert the images 
and annotations into tables. There is a table for each image in 
the training dataset. Each instance in the table is a prediction 
containing the bounding box, confidence score, class label, 
image number, and model name. Next, each level-0 model 
prediction was paired with the other level-0 models’ predictions 
with the highest Intersection over Union (IOU) from each level-
0 model. An IOU of two bounding boxes is the ratio of their 
overlapping area to their union area. If only one level-0 model 
predicted an object, then the prediction was removed from 
testing. If more than one model predicted the same object, then 
any other missing predictions were filled with a prediction from 
its group. This process was done for each level-0 model, 
resulting in repeated instances. These duplicate rows of the table 
were removed. The features for each instance of the resulting 

 
 

Fig. 2.  Shows the pipeline for the implemented YOLOv5x + YOLOv7x + EVA02L Parallel Decision Fusion (PDF) model, which is one of the 19 
implemented PDF models. For input images, predictions from each level-0 model are first grouped with the same class and highest IOU, any ungrouped 
predictions are removed, and incomplete groups are filled. One prediction from each group of predictions with class label “x” of 10 classes is selected from 
the level-0 model with the highest class “x” metric. The output is the final set of multiclass object detection predictions after removing duplicates. 



dataset were the detection box coordinates of each level-0 
model, their confidences, and their shared class. 

Each prediction from each row was then selected based on 
the individual class metrics of the level-0 models. If a row of 
grouped predictions is of class “x” of 10 classes, then the 
prediction from the level-0 model with the highest class “x” 
metric was selected and the others were omitted. The motivation 
for this process was that grouping the level-0 predictions   
increases the chance that they correctly detected an object and 
keeping only the prediction from the best level-0 model. The 
hypothesis for this process is that the metric of each class “x” of 
10 classes from a PDF model will be at least as high as highest 
class “x” metric from its level-0 models. 

The time to generate the datasets for each PDF model and to 
calculate the final results depended on the number of level-0 
models, as shown in Table I. The more level-0 models there 
were, the more combinations of grouped predictions there were 
and the longer the runtime. The runtime shown for PDFs with 
two and three level-0 models are the averages of every 
combination of two and three level-0 models with EVA02L. 
There is only one PDF with four level-0 models, so no average 
was taken. Each runtime was rounded to the whole minute.  

V. EXPERIMENT SETUP 
 This section explains how the datasets were used to train the 
level-0 models. The hardware and software that were used is 
also described. A few challenges arose when training the level-
0 models on the VisDrone datasets. To understand the results in 
the next section, the metric description is explained. 

A. Hardware and Software 
 The three common file types for object detection and object 
segmentation annotations are text, JSON, and XML. The two 
common coordinate formats for object detection boxes are “X 
min, Y min, X max, Y max,” and “X center, Y center, width, 
height.” These box coordinates can either be in pixels or 
normalized from the image’s length and width. Two GPUs used 
were a NVIDIA GeForce RTX 3060 with 6 GB of dedicated 
memory and a NVIDIA Titan XP with 12 GB of memory. When 
the first two weren’t enough, Amazon Web Services (AWS), 
was used to train the larger level-0 models. An instance of 
Amazon Sagemaker with either one NVIDIA A10G Tensor 
Core GPU with 24 GB or four of the same GPUs. Sagemaker 
was used to train YOLOv5x and EVA02L. Lastly, the level-0 
predictions were processed using the CPU. 

B. Model Evaluation Metrics 
 Object detection models calculate average precision (AP), to 
find the area under the precision-recall curve, detailed in [31]. 
The mean AP (mAP) is the result of finding the AP for each class 
separately, then averaging the results. Although some 
publications make no distinction between AP and mAP, either 
is intended to be the mean average precision. Our paper uses 
mAP when discussing mean average precision. The metrics used 

in our research were mAP with a 50% Intersection over Union 
(IOU) threshold (mAP50) and mAP with a 50:5:95% IOU 
threshold (mAP). The latter metric is calculated by averaging all 
the mAPs from an IOU of 50% to 95% with increments of 5%. 
The COCO website [32] states that mAP is the most important 
metric when determining performance on COCO, so mAP was 
used to determine the best model in this research. 

C. Parameter Setups 
The seven level-0 models were separated into two separate 

sets, since metric results between the two sets were significantly 
different, which will be seen in the next section. The first set of 
level-0 object detection models are Faster R-CNN (FRCNN), 
RetinaNet, and YOLOv5s. The second set of level-0 object 
detection models are YOLOv5x, YOLOv7x, YOLOv8x, and 
EVA02L. 

The preliminary discussion on how to train YOLOv5s on 
custom datasets could be found in [3]. We performed transfer 
learning to train the YOLOv5s on the VisDrone datasets and it 
took two to four hours. Training mainly used the default 
parameters on each dataset, except for slight variations. Training 
on the VisDrone-split and VisDrone-overlap used the Adam 
optimizer, a learning rate of at least 0.0025, and a batch size of 
18 with three workers. Training on VisDrone had a smaller batch 
size, since the images were larger. 

FRCNN and RetinaNet were the second and third models in 
our first set. The training procedure for those two on a generic 
dataset was described by Detectron2 on GitHub [33]. We 
performed transfer learning to train FRCNN and RetinaNet on 
each VisDrone dataset and it took one to two hours. The trained 
loss seemed to flatten sufficiently, then a confidence threshold 
of 0.1 during testing gave the best results. Training FRCNN on 
VisDrone-split and VisDrone-overlap used a learning rate of at 
least 0.001, a batch size of four, and ran for at least 10,000 
iterations. Training on VisDrone took a bit longer with a smaller 
batch size, since the images were larger. Training RetinaNet on 
VisDrone-split and  VisDrone-overlap used a learning rate of at 
least 0.001, a batch size of four with four workers, and ran for at 
least 15,000 iterations.  

The YOLO models which were trained in the second set 
were YOLOv5x, YOLOv7x, and YOLOv8x. The last model that 
was trained for the second set was EVA02L. Model weights for 
pretrained YOLO versions 5 and 8 on COCO dataset was given 
by ultralytics on Github, while weights for version 7 was given 
by WongKinYiu from [3], [34], [35], respectively. Pretrained 
weights for EVA02L model on the COCO dataset were provided 
in [36]. Transfer learning and training YOLOv5x took us about 
three hours, YOLOv7x took 18 hours, YOLOv8x took 11 hours, 
and EVA02L took 36 hours. Due to time constraints and 
computational limitations of these models, these four models 
were only trained on the VisDrone-split dataset. All four used 
their default parameters, except the batch size was changed 
based on the GPU used and the size of the model. The main 
complication that arose when training these three models was 
overfitting. To YOLOv8x we added a 20% dropout rate but, 
adding more image augmentation helped delay overfitting 
across all models the most. Image rotation, translation, scale, flip 
across both x and y axes, mosaic, and mixup were applied. The 

TABLE I. PARALLEL DECISION FUSION MODEL (PDF) RUNTIME IN 
MINUTES BASED ON THE NUMBER OF LEVEL-0 MODELS 

Number of Level-0 Models 2 3 4 
PDF Runtime (min) 31 58 111 

 



weights were saved after each epoch, and training stopped when 
the training and testing mAP50s differed more than 0.05. 

VI. EXPERIMENT RESULTS AND DISCUSSION 
The PDF results with the two sets of level-0 models are 

examined first in this section. Between the two level-0 model 
sets, the second set provided most improved and best results. 
Between the two datasets the level-0 models were trained on, 
VisDrone-split helped provide better results than VisDrone-
overlap. 

A. PDF Models With Faster R-CNN, RetinaNet, YOLOv5s 
 The first set of level-0 models are Faster R-CNN (FRCNN), 
RetinaNet, and YOLOv5s trained on VisDrone-split and 
VisDrone-overlap. The mAP and mAP50 results of FRCNN and 
YOLOv5s trained on VisDrone and VisDrone-split were either 
similar or the results of the same two models trained on 
VisDrone-split were significantly better than trained on 
VisDrone. So, the level-0 models of the PDF models were 
trained on VisDrone-split and VisDrone-overlap only. Table II 
shows the level-0 mAPs for FRCNN, RetinaNet, and YOLOv5s 
trained on different datasets, where “-s” is for VisDrone-split 
and “-o” is for VisDrone-overlap. The differences in the mAPs 
from YOLOv5s, FRCNN, and RetinaNet trained on VisDrone-
split were 0.024, 0.019, and 0.005. The differences in mAPs 
from YOLOv5s, FRCNN, and RetinaNet trained on VisDrone-
overlap were 0.043, 0.038, 0.005. The mAP model results from 
these three level-0 models trained on VisDrone-split were closer 

than when trained on VisDrone-overlap, so combining the three 
models improved more on the VisDrone-split. 

The first set of three level-0 models trained on VisDrone-
split and VisDrone-overlap were combined to create eight 
combinations of models for PDF, four combinations from each 
dataset. Table II shows the most and only improved PDF 
models. These were FRCNN-s + RetinaNet-s and FRCNN-o + 
RetinaNet-o, whose mAPs improved 1.40% and 1.32% from 
RetinaNet, respectively. This might be because more true 
positives than false positives were removed during the 
preprocessing phase. Furthermore, true positives might have 
been removed when selecting a prediction from each group of 
predictions based on the level-0 model with the highest mAP 
metric because the VisDrone datasets are dense. Some grouped 
predictions might have been predicting more than one object. 
The best model according to mAP50 and mAP was YOLOv5s-
o. 

B. PDF Models With YOLOv5x, YOLOv7x, YOLOv8x, 
EVA02L 
The second set of level-0 models are YOLOv5x, YOLOv7x, 

YOLOv8x, and EVA02L. Since they have much larger models 
in comparison to the previous set of level-0 models, they were 
trained on the VisDrone-split only. Table III shows the results 
for the second set of level-0 models trained on VisDrone-split, 
where “-s” is for VisDrone-split. EVA02L was the most 
accurate model overall, measuring in both mAP50 and mAP. 

TABLE II.  PROPOSED PDF MODELS THAT IMPROVED UPON THEIR CORRESPONDING LEVEL-0 MODELS FROM THE FIRST SET. MAP PER CLASS AND 
MAP50 ON THE VISDRONE-SPLIT DATASET IS SHOWN 

Model mAP50 mAP pedes-
trian 

people bicycle car van truck tricycle awning- 
tricycle 

bus motor 

Level-0 Models 

FRCNN 0.304 0.168 0.133 0.087 0.023 0.479 0.237 0.173 0.107 0.057 0.257 0.127 

FRCNN-s 0.380 0.209 0.245 0.177 0.095 0.513 0.247 0.148 0.135 0.051 0.265 0.216 

RetinaNet-s 0.382 0.214 0.215 0.161 0.106 0.534 0.280 0.165 0.144 0.059 0.259 0.221 

Proposed PDF model that improved upon its corresponding Level-0 models 
FRCNN-s + 
RetinaNet-s 0.385 0.217 0.240 0.161 0.107 0.534 0.278 0.164 0.143 0.054 0.268 0.221 

 

Level-0 Models 

FRCNN-o 0.407 0.223 0.291 0.189 0.115 0.521 0.277 0.167 0.142 0.062 0.240 0.231 

RetinaNet-o 0.396 0.228 0.229 0.172 0.115 0.558 0.305 0.183 0.149 0.052 0.288 0.226 

Proposed PDF model that improved upon its corresponding Level-0 models 
FRCNN-o + 
RetinaNet-o 0.405 0.231 0.287 0.184 0.114 0.557 0.304 0.180 0.149 0.059 0.251 0.229 

 

Level-0 Models 

YOLOv5s 0.413 0.240 0.259 0.161 0.086 0.624 0.327 0.174 0.152 0.077 0.307 0.236 

YOLOv5s-s 0.415 0.233 0.237 0.159 0.094 0.569 0.343 0.167 0.136 0.072 0.324 0.233 

YOLOv5s-o 0.460 0.266 0.261 0.178 0.124 0.599 0.378 0.194 0.196 0.086 0.377 0.295 
Note: The “-s” and “-o” means which level-0 models were trained on VisDrone-split and VisDrone-overlap, respectively. Bold numeric values are the 
most improved class per model and the bold model is the best performing model. The mAP values of each class from various models are shown under 
the individual class columns. 

 



Out of the second set of level-0 models, EVA02L improves upon 
other level-0 models on most of the individual class results. 

The second set of four level-0 models were combined to 
create eleven combinations of models for PDF. The proposed 
PDF models that used the output from level-0 models were 
tested on VisDrone-split. Table III shows the best performing 
and most improved models. Of the eleven PDF models each one 
with a EVA02L level-0 model improved all their level-0 models. 
The best performing model in the table came from YOLOv8x-s 
+ EVA02L-s since it has the highest mAP. Half of their classes 
improved from both level-0 class metric and all except the bus 
class improved from EVA02L. Similarly with the other PDF 
models with EVA02L most classes improved from level-0 
EVA02L. This was also the case in the most improved PDF 
model, YOLOv5x-s + YOLOv7x-s, whose mAP improved 
2.05% from YOLOv7x. Most classes in the PDF models 
improved on both level-0 models per class upon the YOLOv7x, 
its best level-0 model. This trend did not extend to PDF models 
with YOLOv8x as their best performing level-0 model. Their 
negative percentage changes were within -1.83% and 0% of 

YOLOv8x. Fig. 3 shows how much YOLOv5x-s + YOLOv7x-
s and YOLOv8x-s + EVA02L-s increased from their base 
models. The percent increase is from the level-0 model with the 
highest metric to the metric of the resulting PDF model. 

VII. CONCLUSION AND FUTURE WORK 
The proposed PDF models chose the best predictions from 

the two sets of level-0 models to improve multiple multiclass 
object detectors. Improvements were seen in most PDF models 
from both level-0 model sets, the PDF models with the best 
performing level-0 model, EVA02L, improved on all their level-
0 models. The most improved and best performing PDF both 
came from the second set. Most improved PDF model was 
YOLOv5x-s + YOLOv7x-s whose mAP improved 2.05% from 
YOLOv7x. The model with the highest mAP was YOLOv8-s + 
EVA02L-s, which scored an mAP50 of 0.601 and mAP of 
0.381. The PDF model’s mAP improved 1.87% and mAP50 
improved 2.39% upon state of the art level-0 EVA02L model. 
Therefore, the YOLOv8x-s + EVA02L-s is the best performing 
model of all proposed models from both sets. 

TABLE III.  PROPOSED PDF MODELS THAT IMPROVED UPON THEIR CORRESPONDING LEVEL-0 MODELS FROM THE SECOND SET. MAP PER CLASS AND 
MAP50 ON THE VISDRONE-SPLIT DATASET IS SHOWN 

Model mAP50 mAP pedes
-trian 

people bicycle car van truck tricycle awning- 
tricycle 

bus motor 

Level-0 Models 

YOLOv5x-s 0.560 0.337 0.340 0.236 0.165 0.631 0.426 0.300 0.242 0.170 0.508 0.326 

YOLOv7x-s 0.563 0.341 0.337 0.227 0.206 0.629 0.428 0.316 0.262 0.147 0.528 0.330 

Proposed PDF model that improved on its level-0 models 

YOLOv5x-s + YOLOv7x-s 0.567 0.348 0.337 0.234 0.213 0.621 0.430 0.325 0.269 0.172 0.534 0.339 

 

Level-0 Models 

YOLOv8x-s 0.579 0.362 0.367 0.262 0.215 0.656 0.453 0.337 0.285 0.172 0.514 0.357 

EVA02L-s 0.587 0.374 0.358 0.281 0.247 0.604 0.437 0.395 0.309 0.213 0.544 0.352 

Proposed PDF model that improved on its level-0 models 

YOLOv8x-s + EVA02L-s 0.601 0.381 0.362 0.282 0.248 0.643 0.450 0.397 0.310 0.214 0.543 0.356 
Note: The “-s” means which level-0 models were trained on VisDrone-split. Bold numeric values are the most improved class per model and the bold 
model is the best performing model. The mAP values of each class from various models are shown under the individual class columns. 

 

 
Fig. 3.  Metric comparison between the second set of level-0 models and the proposed PDF models. The green boxes show the percent changes between each 
model compared to their level-0 model with the highest metric. For example, in the case of the PDF model YOLOv8x-s + EVA02L-s the mAP50 value 
improved by 2.39%, which is from 0.587 of EVA02L-s to 0.601, note that the percentage calculation is based on the higher of the two level-0 models 
YOLOv8x-s and EVA02L-s. 



To further refine these models, future work would include 
improving the process of the PDF models. Instead of only 
selecting the best prediction from each group of predictions, 
every prediction should be taken advantage of to create a refined 
set of predictions. This can be done by learning each group of 
predictions. The process of learning from already trained 
machine learning model predictions is meta-learning. In the 
future we plan to explore meta-learning approaches. 
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