
 

Classifiying Sincerity Using Machine Learning
Rachana Chittari 

Department of Computer Science 
California State University, Fullerton 

Fullerton, USA 
chittari.rachana@csu.fullerton.edu 

 

Marian Sorin Nistor 
Department of Computer Science 

Universität der Bundeswehr München 
Neubiberg, Germany 

sorin.nistor@unibw.de 

 

Doina Bein 
Department of Computer Science 

California State University, Fullerton 
Fullerton, USA 

dbein@fullerton.edu 

 

Stefan Pickl 
Department of Computer Science 

Universität der Bundeswehr München 
Neubiberg, Germany 

stefan.pickl@unibw.de 

 

Abhishek Verma 
Department of Computer Science 

California State University, Northridge 
Northridge, USA 

abhishek.verma@csun.edu 

 

 

 
 

 

Abstract— Quora is an online platform that empowers people 
to learn from each other. On Quora, users can post questions and 
connect with others who contribute unique insights and quality 
answers. But as with any other social media or online platform, 
there is the potential for misuse. A key challenge in maintaining the 
integrity of such an online platform is to classify and flag negative 
content. On Quora, the challenge is to identify insincere questions. 
Insincere questions could be those founded upon false premises, are 
disparaging, inflammatory, intended to arouse discrimination in 
any form, or intend to make a statement rather than look for 
helpful answers. We propose to develop a text classification model 
that correctly labels questions as sincere or insincere on the Quora 
platform. For this purpose, we used the Quora Insincere Questions 
Classification dataset, which is available on Kaggle. We first 
trained classical machine learning models such as Logistic 
regression and SVMs to establish a baseline on the performance. 
However, to leverage the large dataset, we used neural network-
based models. We trained several models including standard 
neural networks, and LSTM based models. The best model that 
we obtained is a two-layer Bidirectional LSTM network that takes 
word embeddings as inputs. The classification accuracy and F1-
score for this model were 96% and 0.64, respectively. 
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I. INTRODUCTION 
 
In addition to the search engines such as Google and Bing, 

there are websites known as question forums that one can use to 
gain knowledge. A question forum is an online discussion site 
where people can hold discussions in the form of posted 
messages. They have gained a lot of popularity due to their easy 
to use and understand methodology. Quora, Stack Overflow, 
Yahoo Answers are some examples of question forum websites.  

Quora is a popular online platform for users to ask simple, 
personal, professional questions and generally obtain well 
thought-out answers to [1]. While most of the questions are 
asked in good faith, there are several instances where people 
tend to ask questions that are inappropriate or inflammatory. 
They may be targeted at a specific group of people, intend to 
make a false statement, or sometimes make no sense. These 
questions tend to create havoc and threaten the integrity of the 
platform. Questions like these are termed “insincere” and they 

deviate from the main purpose of an online forum, which is 
simply to help users share knowledge. 

To ensure the safety of the users and the integrity of the 
forum, it is thus extremely important to classify, flag and remove 
such insincere questions before they can cause any significant 
damage. In the past, Quora made use of human reviewers to 
label questions as sincere or insincere. However, due to the 
tremendous growth in the number of users and the number of 
questions posted daily, it becomes intractable to maintain a 
human based review system. Thus, it becomes important to 
develop an automated system to perform this classification task. 
One viable approach is to use a machine learning based text 
classification approach. We propose to build a supervised 
machine learning model that can classify questions as sincere or 
insincere.  

The paper is organized as follows. In Section II we present 
background work, followed by our proposed system 
architecture in Section III. Results from applying various 
machine learning algorithm are presented in Section IV. 
Concluding remarks and future work are given in Section V. 

II. BACKGROUND WORK 
Detecting inappropriate and negative content online is a 

highly relevant problem today. This is relevant not just to 
Quora, but to all social media platforms and online forums. 
Examples of classifying negative content include analyzing 
movie reviews on IMDB, entries on Wikipedia, and tweets on 
Twitter. These are essentially problems in the domain of natural 
language processing. 

A lot of work has been done using machine learning and 
deep learning models. The basic idea is that supervised machine 
learning algorithms can be trained on a labeled set of content to 
correctly identify negative examples. To this end, several 
companies have shared large pools of data on platforms such as 
Kaggle [2], and challenge machine learning researchers to 
develop state of the art classification models.  

In the past, traditional machine learning approaches were 
used to tackle these classification problems. The important 
consideration with these approaches is how to represent a 
sequence of words. Once a good set of features have been 
extracted, they can be used with almost any classification 



model. Typically, representations such as bigrams, n-grams, 
and bag-of-words, have been combined with classifiers such as 
Logistic Regression and Support Vector Machines. A few 
examples of these are the following. Vectorization using bag-
of-words was combined with Logistic Regression and Naïve 
Bayes classifiers for tweet classification in [3], [4]. A Support 
Vector Machine model was used to classify BBC documents 
into five categories in [5], and n-grams were combined with 
SVMs for emergency event detection on social media in [6]. 

Deep learning [7] is a broad family of machine learning 
models that use artificial neural networks [8]. The term “deep” 
refers to the use of multiple layers of neurons in the network. 
The availability of massive data sets and high-speed 
computational resources such as Graphics Processing Units 
have enabled us to train deep neural networks to perform a wide 
variety of machine learning tasks. 

Deep learning models have achieved near human 
performance in various tasks such as object recognition and 
speech recognition. They also provide the best results for 
natural language processing tasks such as machine translation, 
text classification and sentiment analysis.  

One of the important advantages of using neural network-
based models for natural language processing is that they can 
be used to learn word embeddings. A word embedding is a 
mapping from a word to a real-valued vector that is thought to 
encode the meaning of the word. While several methods exist 
to generate such embeddings, deep learning methods have 
provided some of the most widely used word embeddings, such 
as GloVe (Global Vectors for Word Representation) [9].  These 
word embeddings can be thought of a representational layer in 
a deep learning architecture.  

Several types of deep learning architectures have been 
considered for text classification. These include convolutional 
neural network models, sequence models such as recurrent 
neural networks, and attention-based models. [10] provides a 
comprehensive review of more than 150 deep learning models 
for text classification that were developed in the last few years. 
In this project, I have mainly focused on using recurrent neural 
networks and their variants for insincere question classification. 

We used an open dataset available on Kaggle [2]. There are 
about 1.3 million examples in this dataset. Each example 
consists of 3 fields: q_id, question_text and target: 

q_id: Unique question ID assigned to each question 
question_text: a question posted on Quora in the English 

language 
target: takes the values 0 or 1. The values 0 and 1 

correspond to sincere and insincere questions, respectively. 
Here are a couple of example questions and their target 

values: 
Sincere (0): “How did Quebec nationalists see their province as 
a nation in the 1960s?” 
Insincere (1): “Which babies are more sweeter to their parents? 
Dark skin babies or light skin babies?” 

Many of the insincere questions are discriminatory in 
nature, inflammatory, politically polarizing, and potentially 
harmful to raise on the Quora platform. It is thus crucial to 
correctly identify and weed out these questions. 

We analyzed was the distribution of the target values. We 
found that the Kaggle dataset is highly imbalanced. Only about 
6.2 % of all the examples are labeled as insincere. This implies 
that we should not use classification accuracy as a metric to 
evaluate our model. For instance, a naïve model that always 
outputs 0 as its prediction would already achieve a 
classification accuracy of ~ 93.8%, but importantly it would 
never be able to correctly identify an insincere question (with 
target value 1). Therefore, it is important to use metrics such as 
precision and recall to correctly evaluate the performance of a 
model on this dataset. 

We applied the following preprocessing steps: 
- Convert all text into lowercase 
- Remove all special characters and non-English characters 

that appear in the dataset 
- Remove punctuation characters 
- Remove stop words or common English filler words like 

“and”, “an”, “the” 
- Split the question strings into word tokens 

We utilized the Natural Language Toolkit (NTLK) [11] to 
perform several of these preprocessing steps. NTLK is an open-
source platform for building Python programs to work with 
natural language data. It provides a corpus of English stop 
words and tokenization functions that I used to clean my 
dataset. Alternatively, the Torchtext library of PyTorch can also 
perform the same set of preprocessing steps. PyTorch is an 
open-source machine learning framework that can be used to 
quickly build deep learning models. 

The next stage was to extract features from the cleaned 
dataset that can be used to train the machine learning models. 
For text classification, we must first convert the text into a 
vector representation. Word vectorization is the process of 
converting text into a numerical representation and is an 
important first step in any Natural Language Processing task. 

We have considered the following two approaches for 
feature extraction:  

a) Word count vectors. A word count vector of a question 
or sentence is a representation that specifies how many times 
each word in a given vocabulary appears in the sentence. This 
is essentially a bag-of-words representation, which disregards 
word order but keeps multiplicity. To implement the word 
count representation, we first built a dictionary of all the unique 
words that appear in my dataset. Each question was then 
converted into a vector of word counts. The length of this vector 
is equal to the number of words in the dictionary. Consider the 
following example for illustration. Suppose that a dictionary 
comprises the following words: {“hello”, “who”, “how”, “are”, 
“you”, “me”, “doing”, “today”}. Let us see what the word count 
vector for a sample question, “Hello, hello, how are you?” 
would like. Since the dictionary has 8 words, the sample 
question is represented by an 8-dimensional vector, with each 
element corresponding to the count of a particular word in the 
dictionary. The word count vector for our example would be: 
(2, 0, 1, 1, 1, 0, 0, 0). While word count vectors are useful in 
some cases, they do have a few limitations. When the 
vocabulary is large, the word count vectors are sparse and high 
dimensional. The Quora dataset, for instance, has about 



100,000 unique words. And each question in the dataset 
typically has only 10-20 words. Further, the word count vectors 
ignore word order, which is certainly important for assessing 
the nature of a question.  

b) Word embeddings are mappings from words to N-
dimensional real-valued vectors such that any two words that 
are closer in the vector space are similar in meaning [12]. 
Various methods can be used to generate these mappings, 
including deep learning techniques. Further, in deep learning 
models, the embeddings can be thought of a representational 
layer in the architecture. There are several pre-trained word 
embeddings that are now available. A few examples are wiki-
news-300d-1M, GoogleNews-vectors-negative300, 
paragram_300_sl999, glove.6B.100D, and glove.840B.300D. 
For this project we have used the GloVe embeddings. GloVe or 
Global Vectors for Word Representation [9] is an unsupervised 
learning algorithm for obtaining vector representations for 
words. The glove.840B.300D embeddings output a 300-
dimensional vector for each word in the vocabulary. To 
combine the embedding vectors for words in a question, I 
considered 3 methods: 
1. Computing the mean of embeddings vectors of all words in 
a sentence 
2. Concatenation of the embedding vectors of all the words in a 
sentence 
3. Use these embeddings as inputs to the sequence models 

The first approach is obviously very lossy. In the second 
approach, the dimensionality of the feature vector increases 
with the number of words in the question. We explored using 
the concatenated features as inputs to a few basic classifiers. 

III. MACHINE LEARNING MODELS APPLIED 
To obtain a baseline on the performance we started with 

Naïve Bayes Classifier, Logistic Regression, and Support 
Vector Machines. 

A Naïve Bayes classifier is a probabilistic classifier based 
on Bayes theorem, which makes the strong assumption that the 
features are independent of each other [13]. Given an input 
feature vector 𝑥𝑥 =  (𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑁𝑁) , we must compute the 
probability of every class given x. A vector 𝑥𝑥 is assigned to the 
class 𝐶𝐶𝑖𝑖 which has the highest probability. 

Logistic regression is a binary classification algorithm, 
used to model the probability of a certain class given a set of 
input features. In logistic regression, the probability of the 
target given input features is computed as follows: 

𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥)  =  𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥 +  𝑏𝑏) 
where 𝑤𝑤 is a weight vector, b is a bias term and 𝜎𝜎 is the sigmoid 
function given by  

𝜎𝜎(𝑧𝑧)  = 
1

(1 + 𝑒𝑒−𝑧𝑧) 

Let us call the prediction 𝑦𝑦�  =  𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥) . We can then 
compute the cross-entropy loss function for one example as 
follows: 

𝐿𝐿(𝑦𝑦, 𝑦𝑦�) = −𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�) − (1 − 𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑦𝑦�) 
The weight vector and bias term are then learnt such that 

they minimize the average cross-entropy loss over all the 

training examples. This optimization is typically performed 
using gradient descent-based methods.  

For the logistic regression classifier, we used a 
concatenation of 300-dimensional Glove word embedding 
vectors as inputs. We first computed the histogram of the 
number of words in each question for the entire dataset. Based 
on this histogram, I chose the maximum number of words, Nmax, 
to represent each question. Then, each question was represented 
by a feature vector of size 300 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚. For questions with fewer 
words than Nmax, we zero padded the feature vector to ensure 
they are of the same length for all examples. 

A Support Vector Machine (SVM) is a binary 
classification algorithm that tries to find the separating 
hyperplane/decision boundary with the maximum margin [14]. 
The SVM is a linear classifier, but they can also perform non-
linear classification by implicitly mapping the input features 
into higher-dimensional feature spaces. This is known as the 
kernel trick. We applied SVM for question classification with a 
concatenation of word embedding vectors as input features.  

We implemented the Naïve Bayes, Logistic Regression, 
and SVM classifiers using the scikit-learn, which is an open-
source machine learning library in Python. 

One of the crucial limitations of the methods described 
previously is that they do not explicitly consider the sequence 
of words in a question. A family of artificial neural networks 
known as Recurrent Neural Networks (RNNs) can handle 
sequential inputs and are perfectly suited for the question 
classification task. A Recurrent Neural Network (RNN) is a 
class of neural networks with self or recurrent connections 
between nodes. They are derived from feed-forward neural 
networks, which have only forward connections between nodes 
in different layers of a network. The hidden layer in RNNs can 
be thought of as memory states, which are continuously updated 
by the inputs. Further, RNNs can be used to handle input 
sequences of variable lengths. This makes RNNs ideally suited 
for handling applications with sequential inputs such as 
machine translation, time-series prediction, speech recognition, 
and indeed text classification. Next, let us look at how a RNN 
can be trained. 

Backpropagation is a widely used algorithm for training 
neural networks [16]. In supervised learning, training a model 
requires us to update its weights or parameters such that they 
minimize some loss criterion. This requires us to compute the 
gradient of the loss function with respect to all the model 
parameters.  

Backpropagation is an algorithm for computing the 
gradient of the loss function with respect to the weights of a 
feed-forward neural network for a single input-output example. 
In contrast to a naïve direct computation of the gradient with 
respect to each individual weight in the network, 
backpropagation uses the chain rule of calculus to compute the 
gradients one layer at a time. It iterates backwards from the 
output layer to avoid redundant computations of intermediate 
terms. This results in a highly efficient algorithm for computing 
gradients in a neural network. This efficiency makes it feasible 
to use gradient methods for training multilayer neural networks.  



The backpropagation algorithm was originally designed 
for feedforward neural networks. But they can be adapted to 
train recurrent neural network as well. A recurrent neural 
network can essentially be unfolded in time to obtain a 
feedforward network with tied weights. This intuition was used 
to develop the Backpropagation Through Time algorithm 
(BPTT) [17]. 

Given an input sequence, BPTT works by unrolling all 
input timesteps. Each timestep of the unrolled recurrent neural 
network can be considered as an additional hidden layer, which 
also receives as input the hidden state from the previous time 
step. BPTT calculates and accumulates errors across each time 
step to compute the gradient of the loss function with respect to 
the network’s weights.  

BPTT is a useful algorithm for training recurrent neural 
networks. However, it can become computationally expensive 
as the number of time steps in the input sequence increases. 
Further, when the input sequences are long, the number of 
derivatives required for a single weight update will be high. 
This can cause the gradients of the weights to become 
diminishingly small depending on the nature of the activation 
functions used in the network. This problem is known as the 
vanishing gradients problem. For some activation functions, we 
can also observe the exploding gradient problem, which would 
result in numerical overflow problems.  

The vanishing gradient problem is a major drawback of the 
BPTT algorithm especially for standard recurrent neural 
networks that use sigmoidal activation functions. The vanishing 
gradients make learning extremely slow. Another consequence 
of the vanishing gradient problem is that is does not allow 
learning of long-range dependencies within input sequences. 
Learning dependencies among different parts of a sequence is 
vital for several tasks such as machine translation and text 
classification.  

Variations of BPTT such as Truncated BPTT were 
developed to solve the vanishing gradient problem. But perhaps 
the best solution was networks that used gating mechanisms, 
such as Long Short-Term Memory networks [18]. 

Long Short-Term Memory (LSTM) is a type of recurrent 
neural network architecture that uses gating mechanisms to 
regulate the flow of information through a neuron. A basic 
LSTM unit is composed of a memory cell c, hidden state h, and 
input, output, and forget gates that allow the unit to remember 
values over arbitrary times by regulating the flow of 
information in and out of the unit. 

In theory, standard RNNs could keep track of arbitrarily 
long-term dependencies in the input sequences. However, the 
problem with standard RNNs is computational in nature. While 
training RNNs with BPTT, we run into the issue of vanishing 
gradients. RNNs using LSTM can alleviate this problem 
because LSTMs can remember values across several time-steps 
if necessary. This would allow the gradient to flow unchanged 
during backpropagation. This makes LSTM based networks 
well-suited to problems involving data where there can be lags 
of unknown duration between important events in the input 
sequence.  

There are other types of architectures that use gating 
mechanisms such as Gated Recurrent Units (GRU) [20] that are 
based on the same intuition. 

Recurrent neural networks are ideally suited for processing 
sequential inputs. However, in normal RNN architectures the 
computation at any time step depends only on the inputs up to 
the current time.  However, for several tasks it might also be 
important to consider input data in future time steps as well.  

This is crucial in applications such as natural language 
processing. In many cases, to understand the context in which 
a word is used, it is important to know what comes before and 
after it in the sentence. Consider the following two sentences:  

a) She said, “Teddy bears are for sale” 
b) She said, “Teddy Roosevelt was the 26th president of 

the United States” 
A recurrent neural network processing the two sentences 

would perform the exact same computations for the first three 
words. However, in the first sentence the word “Teddy” refers 
to a toy, and in the second it refers to a person. This information 
can be obtained only by using the words that follow “Teddy” in 
the two sentences. Bidirectional RNNs were developed to 
address exactly this issue. 

A bidirectional RNN is simply an RNN with two groups of 
neurons in the hidden layer. One group serves to process the 
input sequence in the forward direction, and the other for the 
backward direction (see Figure 1). The two groups of neurons 
are then connected to the same output neurons, thereby 
conveying relevant information from both directions of 
processing. Bidirectional RNNs can be trained very similarly to 
unidirectional RNNs, because the forward and backward states 
do not directly interact with each other.  

 
Figure 1. Comparison of a unidirectional vs. bidirectional RNN [21]. 

 
Bidirectional RNNs are especially useful when the context 

of an input is needed like in the Quora insincere question 
classification task. We decided to use a bidirectional LSTM 
(Fig. 2) for this classification task. This combines the 
advantages of both a bidirectional architecture and LSTM units. 



 
Figure 2. Bidirectional LSTM network architecture 
 

At each time step, the embedding vector for a word in the 
question text is provided as input to the network. The 
embeddings can be considered as an additional representational 
layer in the architecture. These embeddings can be learnt while 
training the network. Pre-trained embeddings can also be used 
(i) by keeping them fixed, or (ii) by fine-tuning them during 
training. The embedding vectors at each time step act as input 
to the forward and backward hidden states. The hidden states 
are usually initialized using random values. After the entire 
sequence has been processed in both directions, the final hidden 
states in both forward and backward directions are fed as inputs 
to an output neuron. The activity of this neuron is then passed 
through a sigmoid function to obtain the probability of the given 
question being insincere. 

Fig. 2 illustrates an architecture with one hidden layer. But 
this could be generalized to having multiple hidden layers. 
RNNs with multiple hidden layers are known as stacked RNNs. 
In a stacked RNN architecture, the hidden states in a given layer 
are fed as inputs to the hidden layer above it. Increasing the 
number of layers or depth of the network enhances its 
representational power, similar to conventional feedforward 
networks. It is also thought that stacking allows the hidden 
states at each level to operate at different timescales, and thus 
allow the network to learn both short-range and long-range 
dependencies in a sequence [22]. 

IV. RESULTS OF VARIOUS MACHINE LEARNING ALGORITHMS 
We used Google Colaboratory, or “Colab” or short, to 

develop and train the bidirectional LSTM model. Colab is a 
product from Google research that allows one to write and 
execute Python code through the browser. Colab also allows 
one to use Graphics Processing Units (GPUs). GPUs can be 
used to train deep learning models much faster than on CPUs. 

Since the Quora Insincere Questions dataset is highly 
imbalanced, the classification accuracy is not a good metric to 
evaluate a model’s performance. A confusion matrix is a better 
way of summarizing the results. We can use the entries of the 
confusion matrix to compute three metrics: precision, recall, 
and F1-score. For our classification task, it is very important to 
correctly flag all the insincere questions. Therefore, recall is 
probably the more important metric to consider. When we need 
a balance between precision and recall, we can use the F1-score. 

We used a subset of the full data to train the classical 
models. The full dataset has roughly 1.3 million examples. 
Using word count vectors or concatenation of word embeddings 
results in very high dimensional features. For instance, even for 
a subset of 200,000 examples, the size of the input matrix of 

word count vectors for all examples was 200,000 x 85,903. The 
number of unique words in the dataset is 85,903. As the number 
of examples used increases, we can expect the number of 
unique words to grow as well. Such high dimensional features 
result in memory constraints. Thus, to obtain a feasible 
implementation as well as a rough lower bound on the 
performance, I trained the models using small subsets of data. 

We used a subset of size 50,000 for Naïve Bayes, and size 
20,000 for Logistic Regression and SVM. In each case, we split 
the data into train and test with a split ratio of 0.8, i.e., 80% of 
the data was used for training and the remaining 20% of the data 
was used for evaluating the model performance. Just for the 
Naïve Bayes classifier, we managed to train the model using a 
subset of size 200,000.  

We implemented the Bidirectional LSTM using PyTorch 
on Colab. PyTorch is an open-source machine learning 
platform for building and training deep neural network models. 
One of the most powerful features of PyTorch is Autograd, 
which is an automatic differentiation engine that powers neural 
network training. In PyTorch, we just need to implement the 
forward pass of the neural network model and provide the loss 
criterion. The Autograd engine can automatically compute the 
gradients of the loss function with respect to all the weights in 
the network. This makes the training of a neural network using 
backpropagation almost trivial.  

The torchtext package in PyTorch consists of data 
processing utilities for natural language. We used torchtext to 
preprocess my data and created a PyTorch dataloader. 

We used the GloVe.840.300D embeddings to map input 
words to vectors. This is treated as an embedding layer in the 
neural network architecture. Our implementation also has the 
option to fine-tune the embeddings if required. We used cross-
entropy as the loss function with the Adam optimizer for 
training my model. Adam [23], derived from Adaptive Moment 
Estimation, is a gradient-based optimization algorithm that 
computes adaptive learning rates for each model parameter. 
Finally, for training my neural network model, we split the 
dataset into training and validation sets with a split ratio of 0.9. 

We started with 500,000 examples for training the model. 
We used a 2 hidden layer architecture throughout. For the first 
pass, we used 64 units in each hidden layer, and the default 
learning rate of 0.1 for the Adam optimizer.  

Figures 3 and 4 illustrate the cross-entropy loss and F1-
scores vs. no. of training epochs. One epoch corresponds to 
iterating through all the mini-batches of the dataset. 

 
Figure 3. Cross entropy loss with 64 hidden units 



 

 
Figure 4. F1-scores with 64 hidden units 
 

In Fig. 3, although the mean training loss (blue) was 
continuously decreasing with the number of epochs, the 
validation loss increased after 4 or 5 epochs. This suggested that 
the model was in the overfitting regime. We obtained similar 
overfitting effects for different values of the number of hidden 
units. In order to address overfitting, we plan to use Dropout 
regularization. 

V. CONCLUSION AND FUTURE WORK 
The neural network model that we used for the Quora 

Insincere question classification task was a Bidirectional LSTM 
network with two hidden layers. We obtained better recall and 
F1 score than the baseline set by the traditional ML methods.  

The model most likely benefits from the advantages of the 
bidirectional architecture and the LSTM. This could be 
analyzed by comparing the performance of our model with that 
of a unidirectional architecture.  

While the performance of my model is quite good, there 
are several things that could be done to potentially improve the 
classification performance. The first of these is to perform a 
precision-recall analysis to find the best threshold. In 
classification problems such as these, there is always a trade-
off between precision and recall. The precision-recall analysis 
would allow us to pick a threshold based on the criteria we want 
to satisfy.  
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