

Classifiying Sincerity Using Machine Learning
Rachana Chittari

Department of Computer Science
California State University, Fullerton

Fullerton, USA
chittari.rachana@csu.fullerton.edu

Marian Sorin Nistor
Department of Computer Science

Universität der Bundeswehr München
Neubiberg, Germany

sorin.nistor@unibw.de

Doina Bein
Department of Computer Science

California State University, Fullerton
Fullerton, USA

dbein@fullerton.edu

Stefan Pickl
Department of Computer Science

Universität der Bundeswehr München
Neubiberg, Germany

stefan.pickl@unibw.de

Abhishek Verma
Department of Computer Science

California State University, Northridge
Northridge, USA

abhishek.verma@csun.edu

Abstract— Quora is an online platform that empowers people
to learn from each other. On Quora, users can post questions and
connect with others who contribute unique insights and quality
answers. But as with any other social media or online platform,
there is the potential for misuse. A key challenge in maintaining the
integrity of such an online platform is to classify and flag negative
content. On Quora, the challenge is to identify insincere questions.
Insincere questions could be those founded upon false premises, are
disparaging, inflammatory, intended to arouse discrimination in
any form, or intend to make a statement rather than look for
helpful answers. We propose to develop a text classification model
that correctly labels questions as sincere or insincere on the Quora
platform. For this purpose, we used the Quora Insincere Questions
Classification dataset, which is available on Kaggle. We first
trained classical machine learning models such as Logistic
regression and SVMs to establish a baseline on the performance.
However, to leverage the large dataset, we used neural network-
based models. We trained several models including standard
neural networks, and LSTM based models. The best model that
we obtained is a two-layer Bidirectional LSTM network that takes
word embeddings as inputs. The classification accuracy and F1-
score for this model were 96% and 0.64, respectively.

Keywords—text classification, Quora dataset, LSTM model.

I. INTRODUCTION

In addition to the search engines such as Google and Bing,

there are websites known as question forums that one can use to
gain knowledge. A question forum is an online discussion site
where people can hold discussions in the form of posted
messages. They have gained a lot of popularity due to their easy
to use and understand methodology. Quora, Stack Overflow,
Yahoo Answers are some examples of question forum websites.

Quora is a popular online platform for users to ask simple,
personal, professional questions and generally obtain well
thought-out answers to [1]. While most of the questions are
asked in good faith, there are several instances where people
tend to ask questions that are inappropriate or inflammatory.
They may be targeted at a specific group of people, intend to
make a false statement, or sometimes make no sense. These
questions tend to create havoc and threaten the integrity of the
platform. Questions like these are termed “insincere” and they

deviate from the main purpose of an online forum, which is
simply to help users share knowledge.

To ensure the safety of the users and the integrity of the
forum, it is thus extremely important to classify, flag and remove
such insincere questions before they can cause any significant
damage. In the past, Quora made use of human reviewers to
label questions as sincere or insincere. However, due to the
tremendous growth in the number of users and the number of
questions posted daily, it becomes intractable to maintain a
human based review system. Thus, it becomes important to
develop an automated system to perform this classification task.
One viable approach is to use a machine learning based text
classification approach. We propose to build a supervised
machine learning model that can classify questions as sincere or
insincere.

The paper is organized as follows. In Section II we present
background work, followed by our proposed system
architecture in Section III. Results from applying various
machine learning algorithm are presented in Section IV.
Concluding remarks and future work are given in Section V.

II. BACKGROUND WORK
Detecting inappropriate and negative content online is a

highly relevant problem today. This is relevant not just to
Quora, but to all social media platforms and online forums.
Examples of classifying negative content include analyzing
movie reviews on IMDB, entries on Wikipedia, and tweets on
Twitter. These are essentially problems in the domain of natural
language processing.

A lot of work has been done using machine learning and
deep learning models. The basic idea is that supervised machine
learning algorithms can be trained on a labeled set of content to
correctly identify negative examples. To this end, several
companies have shared large pools of data on platforms such as
Kaggle [2], and challenge machine learning researchers to
develop state of the art classification models.

In the past, traditional machine learning approaches were
used to tackle these classification problems. The important
consideration with these approaches is how to represent a
sequence of words. Once a good set of features have been
extracted, they can be used with almost any classification

model. Typically, representations such as bigrams, n-grams,
and bag-of-words, have been combined with classifiers such as
Logistic Regression and Support Vector Machines. A few
examples of these are the following. Vectorization using bag-
of-words was combined with Logistic Regression and Naïve
Bayes classifiers for tweet classification in [3], [4]. A Support
Vector Machine model was used to classify BBC documents
into five categories in [5], and n-grams were combined with
SVMs for emergency event detection on social media in [6].

Deep learning [7] is a broad family of machine learning
models that use artificial neural networks [8]. The term “deep”
refers to the use of multiple layers of neurons in the network.
The availability of massive data sets and high-speed
computational resources such as Graphics Processing Units
have enabled us to train deep neural networks to perform a wide
variety of machine learning tasks.

Deep learning models have achieved near human
performance in various tasks such as object recognition and
speech recognition. They also provide the best results for
natural language processing tasks such as machine translation,
text classification and sentiment analysis.

One of the important advantages of using neural network-
based models for natural language processing is that they can
be used to learn word embeddings. A word embedding is a
mapping from a word to a real-valued vector that is thought to
encode the meaning of the word. While several methods exist
to generate such embeddings, deep learning methods have
provided some of the most widely used word embeddings, such
as GloVe (Global Vectors for Word Representation) [9]. These
word embeddings can be thought of a representational layer in
a deep learning architecture.

Several types of deep learning architectures have been
considered for text classification. These include convolutional
neural network models, sequence models such as recurrent
neural networks, and attention-based models. [10] provides a
comprehensive review of more than 150 deep learning models
for text classification that were developed in the last few years.
In this project, I have mainly focused on using recurrent neural
networks and their variants for insincere question classification.

We used an open dataset available on Kaggle [2]. There are
about 1.3 million examples in this dataset. Each example
consists of 3 fields: q_id, question_text and target:

q_id: Unique question ID assigned to each question
question_text: a question posted on Quora in the English

language
target: takes the values 0 or 1. The values 0 and 1

correspond to sincere and insincere questions, respectively.
Here are a couple of example questions and their target

values:
Sincere (0): “How did Quebec nationalists see their province as
a nation in the 1960s?”
Insincere (1): “Which babies are more sweeter to their parents?
Dark skin babies or light skin babies?”

Many of the insincere questions are discriminatory in
nature, inflammatory, politically polarizing, and potentially
harmful to raise on the Quora platform. It is thus crucial to
correctly identify and weed out these questions.

We analyzed was the distribution of the target values. We
found that the Kaggle dataset is highly imbalanced. Only about
6.2 % of all the examples are labeled as insincere. This implies
that we should not use classification accuracy as a metric to
evaluate our model. For instance, a naïve model that always
outputs 0 as its prediction would already achieve a
classification accuracy of ~ 93.8%, but importantly it would
never be able to correctly identify an insincere question (with
target value 1). Therefore, it is important to use metrics such as
precision and recall to correctly evaluate the performance of a
model on this dataset.

We applied the following preprocessing steps:
- Convert all text into lowercase
- Remove all special characters and non-English characters

that appear in the dataset
- Remove punctuation characters
- Remove stop words or common English filler words like

“and”, “an”, “the”
- Split the question strings into word tokens

We utilized the Natural Language Toolkit (NTLK) [11] to
perform several of these preprocessing steps. NTLK is an open-
source platform for building Python programs to work with
natural language data. It provides a corpus of English stop
words and tokenization functions that I used to clean my
dataset. Alternatively, the Torchtext library of PyTorch can also
perform the same set of preprocessing steps. PyTorch is an
open-source machine learning framework that can be used to
quickly build deep learning models.

The next stage was to extract features from the cleaned
dataset that can be used to train the machine learning models.
For text classification, we must first convert the text into a
vector representation. Word vectorization is the process of
converting text into a numerical representation and is an
important first step in any Natural Language Processing task.

We have considered the following two approaches for
feature extraction:

a) Word count vectors. A word count vector of a question
or sentence is a representation that specifies how many times
each word in a given vocabulary appears in the sentence. This
is essentially a bag-of-words representation, which disregards
word order but keeps multiplicity. To implement the word
count representation, we first built a dictionary of all the unique
words that appear in my dataset. Each question was then
converted into a vector of word counts. The length of this vector
is equal to the number of words in the dictionary. Consider the
following example for illustration. Suppose that a dictionary
comprises the following words: {“hello”, “who”, “how”, “are”,
“you”, “me”, “doing”, “today”}. Let us see what the word count
vector for a sample question, “Hello, hello, how are you?”
would like. Since the dictionary has 8 words, the sample
question is represented by an 8-dimensional vector, with each
element corresponding to the count of a particular word in the
dictionary. The word count vector for our example would be:
(2, 0, 1, 1, 1, 0, 0, 0). While word count vectors are useful in
some cases, they do have a few limitations. When the
vocabulary is large, the word count vectors are sparse and high
dimensional. The Quora dataset, for instance, has about

100,000 unique words. And each question in the dataset
typically has only 10-20 words. Further, the word count vectors
ignore word order, which is certainly important for assessing
the nature of a question.

b) Word embeddings are mappings from words to N-
dimensional real-valued vectors such that any two words that
are closer in the vector space are similar in meaning [12].
Various methods can be used to generate these mappings,
including deep learning techniques. Further, in deep learning
models, the embeddings can be thought of a representational
layer in the architecture. There are several pre-trained word
embeddings that are now available. A few examples are wiki-
news-300d-1M, GoogleNews-vectors-negative300,
paragram_300_sl999, glove.6B.100D, and glove.840B.300D.
For this project we have used the GloVe embeddings. GloVe or
Global Vectors for Word Representation [9] is an unsupervised
learning algorithm for obtaining vector representations for
words. The glove.840B.300D embeddings output a 300-
dimensional vector for each word in the vocabulary. To
combine the embedding vectors for words in a question, I
considered 3 methods:
1. Computing the mean of embeddings vectors of all words in
a sentence
2. Concatenation of the embedding vectors of all the words in a
sentence
3. Use these embeddings as inputs to the sequence models

The first approach is obviously very lossy. In the second
approach, the dimensionality of the feature vector increases
with the number of words in the question. We explored using
the concatenated features as inputs to a few basic classifiers.

III. MACHINE LEARNING MODELS APPLIED
To obtain a baseline on the performance we started with

Naïve Bayes Classifier, Logistic Regression, and Support
Vector Machines.

A Naïve Bayes classifier is a probabilistic classifier based
on Bayes theorem, which makes the strong assumption that the
features are independent of each other [13]. Given an input
feature vector 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑁𝑁) , we must compute the
probability of every class given x. A vector 𝑥𝑥 is assigned to the
class 𝐶𝐶𝑖𝑖 which has the highest probability.

Logistic regression is a binary classification algorithm,
used to model the probability of a certain class given a set of
input features. In logistic regression, the probability of the
target given input features is computed as follows:

𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥) = 𝜎𝜎(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏)
where 𝑤𝑤 is a weight vector, b is a bias term and 𝜎𝜎 is the sigmoid
function given by

𝜎𝜎(𝑧𝑧) =
1

(1 + 𝑒𝑒−𝑧𝑧)

Let us call the prediction 𝑦𝑦� = 𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥) . We can then
compute the cross-entropy loss function for one example as
follows:

𝐿𝐿(𝑦𝑦, 𝑦𝑦�) = −𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�) − (1 − 𝑦𝑦) 𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑦𝑦�)
The weight vector and bias term are then learnt such that

they minimize the average cross-entropy loss over all the

training examples. This optimization is typically performed
using gradient descent-based methods.

For the logistic regression classifier, we used a
concatenation of 300-dimensional Glove word embedding
vectors as inputs. We first computed the histogram of the
number of words in each question for the entire dataset. Based
on this histogram, I chose the maximum number of words, Nmax,
to represent each question. Then, each question was represented
by a feature vector of size 300 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚. For questions with fewer
words than Nmax, we zero padded the feature vector to ensure
they are of the same length for all examples.

A Support Vector Machine (SVM) is a binary
classification algorithm that tries to find the separating
hyperplane/decision boundary with the maximum margin [14].
The SVM is a linear classifier, but they can also perform non-
linear classification by implicitly mapping the input features
into higher-dimensional feature spaces. This is known as the
kernel trick. We applied SVM for question classification with a
concatenation of word embedding vectors as input features.

We implemented the Naïve Bayes, Logistic Regression,
and SVM classifiers using the scikit-learn, which is an open-
source machine learning library in Python.

One of the crucial limitations of the methods described
previously is that they do not explicitly consider the sequence
of words in a question. A family of artificial neural networks
known as Recurrent Neural Networks (RNNs) can handle
sequential inputs and are perfectly suited for the question
classification task. A Recurrent Neural Network (RNN) is a
class of neural networks with self or recurrent connections
between nodes. They are derived from feed-forward neural
networks, which have only forward connections between nodes
in different layers of a network. The hidden layer in RNNs can
be thought of as memory states, which are continuously updated
by the inputs. Further, RNNs can be used to handle input
sequences of variable lengths. This makes RNNs ideally suited
for handling applications with sequential inputs such as
machine translation, time-series prediction, speech recognition,
and indeed text classification. Next, let us look at how a RNN
can be trained.

Backpropagation is a widely used algorithm for training
neural networks [16]. In supervised learning, training a model
requires us to update its weights or parameters such that they
minimize some loss criterion. This requires us to compute the
gradient of the loss function with respect to all the model
parameters.

Backpropagation is an algorithm for computing the
gradient of the loss function with respect to the weights of a
feed-forward neural network for a single input-output example.
In contrast to a naïve direct computation of the gradient with
respect to each individual weight in the network,
backpropagation uses the chain rule of calculus to compute the
gradients one layer at a time. It iterates backwards from the
output layer to avoid redundant computations of intermediate
terms. This results in a highly efficient algorithm for computing
gradients in a neural network. This efficiency makes it feasible
to use gradient methods for training multilayer neural networks.

The backpropagation algorithm was originally designed
for feedforward neural networks. But they can be adapted to
train recurrent neural network as well. A recurrent neural
network can essentially be unfolded in time to obtain a
feedforward network with tied weights. This intuition was used
to develop the Backpropagation Through Time algorithm
(BPTT) [17].

Given an input sequence, BPTT works by unrolling all
input timesteps. Each timestep of the unrolled recurrent neural
network can be considered as an additional hidden layer, which
also receives as input the hidden state from the previous time
step. BPTT calculates and accumulates errors across each time
step to compute the gradient of the loss function with respect to
the network’s weights.

BPTT is a useful algorithm for training recurrent neural
networks. However, it can become computationally expensive
as the number of time steps in the input sequence increases.
Further, when the input sequences are long, the number of
derivatives required for a single weight update will be high.
This can cause the gradients of the weights to become
diminishingly small depending on the nature of the activation
functions used in the network. This problem is known as the
vanishing gradients problem. For some activation functions, we
can also observe the exploding gradient problem, which would
result in numerical overflow problems.

The vanishing gradient problem is a major drawback of the
BPTT algorithm especially for standard recurrent neural
networks that use sigmoidal activation functions. The vanishing
gradients make learning extremely slow. Another consequence
of the vanishing gradient problem is that is does not allow
learning of long-range dependencies within input sequences.
Learning dependencies among different parts of a sequence is
vital for several tasks such as machine translation and text
classification.

Variations of BPTT such as Truncated BPTT were
developed to solve the vanishing gradient problem. But perhaps
the best solution was networks that used gating mechanisms,
such as Long Short-Term Memory networks [18].

Long Short-Term Memory (LSTM) is a type of recurrent
neural network architecture that uses gating mechanisms to
regulate the flow of information through a neuron. A basic
LSTM unit is composed of a memory cell c, hidden state h, and
input, output, and forget gates that allow the unit to remember
values over arbitrary times by regulating the flow of
information in and out of the unit.

In theory, standard RNNs could keep track of arbitrarily
long-term dependencies in the input sequences. However, the
problem with standard RNNs is computational in nature. While
training RNNs with BPTT, we run into the issue of vanishing
gradients. RNNs using LSTM can alleviate this problem
because LSTMs can remember values across several time-steps
if necessary. This would allow the gradient to flow unchanged
during backpropagation. This makes LSTM based networks
well-suited to problems involving data where there can be lags
of unknown duration between important events in the input
sequence.

There are other types of architectures that use gating
mechanisms such as Gated Recurrent Units (GRU) [20] that are
based on the same intuition.

Recurrent neural networks are ideally suited for processing
sequential inputs. However, in normal RNN architectures the
computation at any time step depends only on the inputs up to
the current time. However, for several tasks it might also be
important to consider input data in future time steps as well.

This is crucial in applications such as natural language
processing. In many cases, to understand the context in which
a word is used, it is important to know what comes before and
after it in the sentence. Consider the following two sentences:

a) She said, “Teddy bears are for sale”
b) She said, “Teddy Roosevelt was the 26th president of

the United States”
A recurrent neural network processing the two sentences

would perform the exact same computations for the first three
words. However, in the first sentence the word “Teddy” refers
to a toy, and in the second it refers to a person. This information
can be obtained only by using the words that follow “Teddy” in
the two sentences. Bidirectional RNNs were developed to
address exactly this issue.

A bidirectional RNN is simply an RNN with two groups of
neurons in the hidden layer. One group serves to process the
input sequence in the forward direction, and the other for the
backward direction (see Figure 1). The two groups of neurons
are then connected to the same output neurons, thereby
conveying relevant information from both directions of
processing. Bidirectional RNNs can be trained very similarly to
unidirectional RNNs, because the forward and backward states
do not directly interact with each other.

Figure 1. Comparison of a unidirectional vs. bidirectional RNN [21].

Bidirectional RNNs are especially useful when the context

of an input is needed like in the Quora insincere question
classification task. We decided to use a bidirectional LSTM
(Fig. 2) for this classification task. This combines the
advantages of both a bidirectional architecture and LSTM units.

Figure 2. Bidirectional LSTM network architecture

At each time step, the embedding vector for a word in the
question text is provided as input to the network. The
embeddings can be considered as an additional representational
layer in the architecture. These embeddings can be learnt while
training the network. Pre-trained embeddings can also be used
(i) by keeping them fixed, or (ii) by fine-tuning them during
training. The embedding vectors at each time step act as input
to the forward and backward hidden states. The hidden states
are usually initialized using random values. After the entire
sequence has been processed in both directions, the final hidden
states in both forward and backward directions are fed as inputs
to an output neuron. The activity of this neuron is then passed
through a sigmoid function to obtain the probability of the given
question being insincere.

Fig. 2 illustrates an architecture with one hidden layer. But
this could be generalized to having multiple hidden layers.
RNNs with multiple hidden layers are known as stacked RNNs.
In a stacked RNN architecture, the hidden states in a given layer
are fed as inputs to the hidden layer above it. Increasing the
number of layers or depth of the network enhances its
representational power, similar to conventional feedforward
networks. It is also thought that stacking allows the hidden
states at each level to operate at different timescales, and thus
allow the network to learn both short-range and long-range
dependencies in a sequence [22].

IV. RESULTS OF VARIOUS MACHINE LEARNING ALGORITHMS
We used Google Colaboratory, or “Colab” or short, to

develop and train the bidirectional LSTM model. Colab is a
product from Google research that allows one to write and
execute Python code through the browser. Colab also allows
one to use Graphics Processing Units (GPUs). GPUs can be
used to train deep learning models much faster than on CPUs.

Since the Quora Insincere Questions dataset is highly
imbalanced, the classification accuracy is not a good metric to
evaluate a model’s performance. A confusion matrix is a better
way of summarizing the results. We can use the entries of the
confusion matrix to compute three metrics: precision, recall,
and F1-score. For our classification task, it is very important to
correctly flag all the insincere questions. Therefore, recall is
probably the more important metric to consider. When we need
a balance between precision and recall, we can use the F1-score.

We used a subset of the full data to train the classical
models. The full dataset has roughly 1.3 million examples.
Using word count vectors or concatenation of word embeddings
results in very high dimensional features. For instance, even for
a subset of 200,000 examples, the size of the input matrix of

word count vectors for all examples was 200,000 x 85,903. The
number of unique words in the dataset is 85,903. As the number
of examples used increases, we can expect the number of
unique words to grow as well. Such high dimensional features
result in memory constraints. Thus, to obtain a feasible
implementation as well as a rough lower bound on the
performance, I trained the models using small subsets of data.

We used a subset of size 50,000 for Naïve Bayes, and size
20,000 for Logistic Regression and SVM. In each case, we split
the data into train and test with a split ratio of 0.8, i.e., 80% of
the data was used for training and the remaining 20% of the data
was used for evaluating the model performance. Just for the
Naïve Bayes classifier, we managed to train the model using a
subset of size 200,000.

We implemented the Bidirectional LSTM using PyTorch
on Colab. PyTorch is an open-source machine learning
platform for building and training deep neural network models.
One of the most powerful features of PyTorch is Autograd,
which is an automatic differentiation engine that powers neural
network training. In PyTorch, we just need to implement the
forward pass of the neural network model and provide the loss
criterion. The Autograd engine can automatically compute the
gradients of the loss function with respect to all the weights in
the network. This makes the training of a neural network using
backpropagation almost trivial.

The torchtext package in PyTorch consists of data
processing utilities for natural language. We used torchtext to
preprocess my data and created a PyTorch dataloader.

We used the GloVe.840.300D embeddings to map input
words to vectors. This is treated as an embedding layer in the
neural network architecture. Our implementation also has the
option to fine-tune the embeddings if required. We used cross-
entropy as the loss function with the Adam optimizer for
training my model. Adam [23], derived from Adaptive Moment
Estimation, is a gradient-based optimization algorithm that
computes adaptive learning rates for each model parameter.
Finally, for training my neural network model, we split the
dataset into training and validation sets with a split ratio of 0.9.

We started with 500,000 examples for training the model.
We used a 2 hidden layer architecture throughout. For the first
pass, we used 64 units in each hidden layer, and the default
learning rate of 0.1 for the Adam optimizer.

Figures 3 and 4 illustrate the cross-entropy loss and F1-
scores vs. no. of training epochs. One epoch corresponds to
iterating through all the mini-batches of the dataset.

Figure 3. Cross entropy loss with 64 hidden units

Figure 4. F1-scores with 64 hidden units

In Fig. 3, although the mean training loss (blue) was
continuously decreasing with the number of epochs, the
validation loss increased after 4 or 5 epochs. This suggested that
the model was in the overfitting regime. We obtained similar
overfitting effects for different values of the number of hidden
units. In order to address overfitting, we plan to use Dropout
regularization.

V. CONCLUSION AND FUTURE WORK
The neural network model that we used for the Quora

Insincere question classification task was a Bidirectional LSTM
network with two hidden layers. We obtained better recall and
F1 score than the baseline set by the traditional ML methods.

The model most likely benefits from the advantages of the
bidirectional architecture and the LSTM. This could be
analyzed by comparing the performance of our model with that
of a unidirectional architecture.

While the performance of my model is quite good, there
are several things that could be done to potentially improve the
classification performance. The first of these is to perform a
precision-recall analysis to find the best threshold. In
classification problems such as these, there is always a trade-
off between precision and recall. The precision-recall analysis
would allow us to pick a threshold based on the criteria we want
to satisfy.

ACKNOWLEDGMENT
This research was sponsored by the NATO Science for Peace
and Security Programme under grant SPS MYP G5700.

REFERENCES

[1] "Quora," [Online]. Available: https://www.quora.com/.
[2] "Kaggle," [Online]. Available: https://www.kaggle.com/..
[3] O. Aborisade and M. Anwar, "Classification for authorship of tweets by

comparing logistic regression and naive bayes classifiers.," in IEEE

International Conference on Information Reuse and Integration (IRI).,
2018https://www.fidelity.com/learning-center/trading-
investing/trading/pairs-trading. (n.d.). From Fidelity.

[4] S. T. Indra, L. Wikarsa and R. Turang, "Using logistic regression method
to classify tweets into the selected topics.," in International Conference
on Advanced Computer Science and Information Systems (ICACSIS).,
2016.

[5] A. W. Haryanto and E. K. Mawardi., "Influence of word normalization
and chi-squared feature selection on support vector machine text
classification," in nternational Seminar on Application for Technology of
Information andCommunication, 2018.

[6] L. Yanfang, J. Niu, Q. Zhao, J. Lv and S. Ma, "A novel text classification
method for emergency event detection onsocial media," in IEEE
SmartWorld, Ubiquitous In-telligence Computing, Advanced Trusted
Computing, Scal-able Computing Communications, Cloud Big Data
Comput-ing, Internet of People and Smart City Innovation, 2018.

[7] "Deep learning," [Online]. Available:
https://en.wikipedia.org/wiki/Deep_learning.

[8] "Artificial neural network," [Online]. Available:
https://en.wikipedia.org/wiki/Artificial_neural_network.S. Selvarani, S.
J. (2014). Automatic Identification and Detection of Altered. International
Conference on Intelligent Computing Applications,Coimbatore, 239-243.

[9] J. Pennington, R. Socher and C. D. Manning, "Glove: Global vectors for
word representation," in Proceedings of the 2014 conference on empirical
methods in natural language processing , 2014.

[10] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu and
J. Gao, "Deep Learning--based Text Classification: A Comprehensive
Review.," in ACM Computing Surveys (CSUR), 2021.

[11] S. Bird, E. Klein and E. Loper., Natural language processing with Python:
analyzing text with the natural language toolkit., O'Reilly Media, Inc,
2009.

[12] "Word embedding," [Online]. Available:
https://en.wikipedia.org/wiki/Word_embedding.

[13] "Naive Bayes Classifier," [Online]. Available:
https://en.wikipedia.org/wiki/Naive_Bayes_classifier.

[14] "SVM," [Online]. Available: https://en.wikipedia.org/wiki/Support-
vector_machine.

[15] "Unfolded basic recurrent neural network," [Online]. Available:
https://en.wikipedia.org/wiki/Recurrent_neural_network#/media/File:Re
current_neural_network_unfold.svg.

[16] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning
representations by back-propagating errors," Nature, vol. 323, no. 6088,
1986.

[17] P. J. Werbos, "Backpropagation through time: what it does and how to do
it," Proceedings of the IEEE, vol. 78, no. 10, 1990.

[18] S. Hochreiter and J. Schmidhuber., "Long short-term memory," Neural
Computation, vol. 9, no. 8, 1997.

[19] "LSTM," [Online]. Available: https://en.wikipedia.org/wiki/Long_short-
term_memory#/media/File:The_LSTM_Cell.svg.

[20] C. K, V. M. B, G. C, B. D, B. F, S. H and B. Y, "Learning phrase
representations using RNN encoder-decoder for statistical machine
translation," 2014.

[21] "Bidirectional RNNs," [Online]. Available:
https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks.

[22] R. Pascanu, C. Gulcehre, K. Cho and Y. Bengio, "How to construct deep
recurrent neural networks," 2013.

[23] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization,"
2014.

[24] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R.
Salakhutdinov, "Dropout: a simple way to prevent neural networks from
overfitting," vol. 15, no. 1, 2014.

	I. Introduction
	II. Background Work
	III. Machine Learning Models Applied
	IV. Results of Various Machine Learning Algorithms
	V. Conclusion and Future Work
	ACKNOWLEDGMENT
	References

