
 

Abstractive Text Summarization using Machine 
Learning  

Aditya Dingare 
Department of Computer Science 

California State University, Fullerton 
Fullerton, USA 

adityadingare@csu.fullerton.edu 

 

Doina Bein 
Department of Computer Science 

California State University, Fullerton 
Fullerton, USA 

dbein@fullerton.edu 

Wolfgang Bein 
Department of Computer Science 
University of Nevada, Las Vegas 

Las Vegas, USA 
wolfgang.bein@unlv.edu  

 

Abhishek Verma 
Department of Computer Science 
California State University, Northridge 
Northridge, USA 
abhishek.verma@csun.edu 

 
Abstract— Text summarization creates a brief and succinct 

summary of the original text. The summarized text highlights the 
main text's most interesting points without omitting crucial 
details. There is a plethora of applications on the market that 
include news summaries, such as Inshort and Blinklist which not 
only save time but also effort. The method of manually 
summarizing a text can be time-consuming. Fortunately, using 
algorithms, the mechanism can be automated. We apply three 
text summarization algorithms on the Amazon Product Review 
dataset from Kaggle [23]: extractive text summarization using 
NLTK, extractive text summarization using TextRank, and 
abstractive text summarization using Seq-to-Seq. 

Keywords—Machine learning, extractive text summarization, 
abstractive text summarization. 

I. INTRODUCTION 
There are various forms of summaries: single document, 

multi document, informative summary, and query focused 
summary. The type of input provided to an algorithm 
determines these types, so for a multi-document summary, 
multiple documents are used. The input for query based is 
focused on a specific query outcome. There are two output-
based primary methods for summarizing the text: abstractive 
text summarization and extractive text summarization.  

In extractive text summarization, the summarized text is 
part of the original text as the algorithm extracts the most 
relevant words and sentences from the original text. For 
example, in Fig. 1 the output text is consisting of all the words 
from the original input text only.  

 

 
Figure 1. Extractive text summarization 
 

Abstractive text summarization is opposite to extractive 
text summarization [3] as it returns the summary of the text 
that may consists of new word and sentence that are not part 
of the original text. For example, in Fig. 2, the output of the 
abstractive summarization consists of the words that are not 
part of the original text. Hybrid text summarization uses both 
abstractive and extractive text summarization techniques 
together. (S. Selvarani, 2014) 

 

 
Figure 2. Abstractive text summarization 

 
While abstractive text summarization produces more 

substantive summarized text than extractive text 
summarization, it is more difficult to implement. Most of the 
research focuses on extractive text summarization's 
implementation and limitations. 

We apply three text summarization algorithms on the 
Amazon Product Review dataset from Kaggle [23]: extractive 
text summarization using NLTK, extractive text 
summarization using TextRank, and abstractive text 
summarization using Seq-to-Seq. We compare their 
performances over various product reviews. 

The paper is organized as follows. In Section II we 
present the background and related work, followed by the 
description of the algorithms used in Section III. Simulations 
are results are presented in Section IV. Concluding remarks 
and future work are given in Section V. 

II. BACKGROUND AND RELATED WORK 
Term frequency, latent frequency, and graphical 

extractive algorithms are the three primary types of extractive 



algorithms. The sentence that has a similar appearance to the 
document word has a high score in terms of frequency. The 
sentences are sorted first in latent variable, and the sentence 
with the closest representation of the latent variable is chosen 
[4]. A similarity matrix is constructed in the graphical process, 
and the TextRank algorithm is executed based on it. 

The extractive text summarization can be divided into 
three main categories (see Fig. 3): term frequency, latent 
variable, and graphical. Term frequency and sum basic 
algorithm are similar: commonly occurring sentences are 
added together [6]. Latent variable algorithm works like as 
discussed above. In embedding page rank algorithm, the 
embedding page vector is calculated and used during the 
algorithm execution [9]. 

 

 
Figure 3. Algorithms to implement extractive text summarization 

 
Abstractive text summarization can be divided into two 

categories (see Fig. 4): semantics based, and structure based. 
The implementation discussed in this project is from the 
semantics graph-based technique. 

 

 
Figure 4. Algorithms to implement abstractive text summarization 

 
We use Text Rank algorithm developed by (F. Hai-jian, 

2011). The TextRank algorithm is like PageRank PageRank 
algorithm that was designed and developed by Google, but 
instead of web pages, it uses sentences. The similarity 
between two sentences is the likelihood of a web page switch. 
This score of similarity is stored in a square matrix [11]. The 
standard steps in the TextRank algorithm are to load input data 
and construct vectors for sentences using GloVe word 
embeddings. The next stage is text preprocessing, which 
involves cleaning the data and removing common terms such 
as am, an, the, for, and so on. We then construct a vector 
representation of sentences and a similarity matrix and next 
we apply TextRank algorithm.  

The abstractive text summarization technique using 
Sequence-to-Sequence modeling (Seq2Seq model) is used to 
summarize the text. The standard implementation involves 

usage of encoder and decoder as referenced. The encoder and 
decoder are configured into two phases training and inference 
phase. The encoder reads input data and extracts the 
contextual information present in the input sequence using the 
Long Short-Term Memory model (LSTM). The decoder, on 
the other hand, uses the encoder's output as an input and is 
equipped to predict the next word in the series [17]. The input 
data used by TextRank algorithm is a single document and 
does not support the use of RNNs and LSTM (Callahan, 
2018). It is difficult for encoder to memorize the huge data 
size as the fixed length vector is used to store the input data. In 
addition, the encoder uses a unidirectional LSTM. The context 
cannot be captured in both directions using a unidirectional 
LSTM. The bidirectional LSTM, combined with global 
attention for the previous problem, can be used to address the 
LSTM issue [1][2]. 

III. IMPLEMENTED TEXT SUMMARIZATION ALGORITHMS 
The main steps in implementation are data gathering, data 

cleaning, and algorithm implementation. We implement three 
algorithms and compare their results. 

For data gathering we used Amazon Product Review 
dataset from Kaggle [23] that has approximately 568,455 rows 
and 10 columns, almost 300 MB in size. Out of 10 columns, 
the ProductReviewText column has detailed description of the 
product available on the Amazon and is mainly used by the 
extractive text summarization for the TextRank algorithm. 

Data cleaning involves contraction mapping for handling 
the words with short forms like "ain’t", "don’t" as "do not" 
etc., and changing the input data into either lower or upper 
case, remove parenthesis, eliminate stops words (e.g. “is”, 
“and”,” are”), punctuations, and special characters like @, # 
etc. These two steps are common to both abstractive and 
extractive algorithms [16]. 

The abstractive text summarization uses two columns 
mainly ProductReviewHeader and ProductReviewText. The 
column ProductReviewHeader is nothing but the header line 
of that particular review. This column is either one or two 
lines of short headline of the review. 

 
1. Extractive text summarization using NLTK 
We used the Natural Language Toolkit (NLTK) library 

for statistical language processing which include tokenization, 
calculating frequency of words, and calculating weighted 
frequency of words. Term frequency can be used to identify 
the keywords. Extraction of keywords in reviews enable 
customers in determining whether a product review is 
necessary and whether or not to continue reading it. Following 
the calculation of word frequency, a weighted frequency of 
each sentence in the input data column, ProductReviewText, is 
calculated. We calculated the frequency and weighted 
frequency of each word that is present in the review text. The 
weighted frequency can be calculated in other way by dividing 
the words frequency by frequency of the word that is mostly 
occurred [22]. The next step is to add weighted frequencies 
and sort the sum of weighted frequencies in descending order. 
The sentence with the maximum sum of weighted frequency is 



extracted as the summarized text. Based on the weighted 
frequency, the summary of the original text is returned. 

 
2. Extractive text summarization using TextRank  
The TextRank algorithm depends on PageRank algorithm. 

The probability among two words in the sentences is 
calculated. For the TextRank algorithm, the input reviews data 
will be subdivided into text units such as keywords, key 
phrases and the graph model is built. In this implementation, 
we used an undirected weighted graph; each node represents 
the sentence in the review text and the edges represents the 
relationship between them calculated using the formula [21]: 

WS (Vi) = (1- d) + d* Σ Vj ∈ In(Vi  )  eji /  Σ Vj ∈ Out (Vi  ) eJk  WS(Vij) 

Each sentence is treated as a node in the text. There is an 
undirected right edge between the nodes corresponding to the 
two sentences if two sentences are identical. The following 
formula can be used to check sentence similarity [21]. 

Similarity (Si, Sj) = |{Wk| Wk ∈  Si  & Wk ∈ Sj }| / log(|Si |) + log(|Sj |) 
where Si and Sj are two sentences of our product review 
where as Wk represents word in the sentence.  

The steps are: 
1. Split the given text review T into complete sentences 
2. Clean the data by deleting stop words, nouns, and verbs 

from the input data for each sentence 
3. Build a candidate keyword graph G = (V, E), where V is a 

node collection of sentences, and then draw an edge 
between any two points if and only if these two sentences 
are linked. 

4. Calculate the weight repetitively using the formula 
mentioned below. 

5. The node weights are sorted in reverse order to obtain the 
most relevant T terms as candidate keywords. 

6. The most significant T words are extracted from #5, 
marked in the original text, and then combined into a 
keyword if adjacent phrases are created. [19] 

The product reviews in column ProductReviewText is divided 
into small chunks of sentences only if it contains long 
sentences. 
 

3. Abstractive text summarization using Seq-to-Seq 
The encoder and decoder are needed for extractive text 

summarization using the Seq-to-Seq model. In this 
implementation, the Long Short-Term Memory (LSTM) is 
used as encoders and decoders to catch the phrase 
dependencies in a sentence's words. To implement encode and 
decoder,” Recurrent Neural Networks i.e. RNN” can also be 
used. The encoders and decoders are designed further in two 
stages, namely training and inference. The encoder receives the 
input data as input and extracts the contextual information 
present in the data. The timestamp is also important factor 
here. So, for each time stamp, each word from the product 
review sentence is given to the encoder which retrieves the 
contextual information from the product review. This is the 
part of the training phase. Before feeding the target sequence 
into the decoder, their start and end are inserted [22]. 

The encoder training phase is single direction (see Fig. 5). 

 
Figure 5. Training encoder 
  
The encoder receives the input word by word at each time 
interval and each steps of the LSTM passes the output to the 
next cell in the LSTM. 

The decoder receives the hidden state (hi) and cell state (ci) 
from the previous steps as data. The decoder training is single 
direction (see Fig. 6) This decoder cell also takes input from 
the encoder and process each word. 

 

 
Figure 6. Training decoder [3] 
 

There are total of three cells of each encoder and decoder. 
To calculate the past as well as future context for each 

product review sequence we used a bi-directional LSTM.  
 

 
Figure 7. Bi-directional LSTM 
 

The bidirectional LSTM in which the original cells as well 
as it’s transpose are used. The single-directional LSTM has the 
disadvantage of being unable to predict future background 
information and learning all the input sequence sentences. As 
referenced to the figure 16, in bi-directional LSTM the output 
of the last cell is given back to additional LSTM. LSTM0', 
LSTM1', and LSTM2' are all the transpose of original LSTM0, 
LSTM1, and LSTM2 [22]. 

IV. SIMULATIONS AND RESULTS 
For both the abstractive and extractive text summarization 

we considered reviews that have at least 250 words. The output 
of the extractive text summarization using NLTK applied to a 
sample product review and its German language translation of 
the summary (cross language summary) is shown in Fig. 8. 



 
Figure 8. NLTK Output 

 

The output by the TextRank algorithm of the sample 
product review is shown in Fig. 9. There are approximately 
more than 5 reviews being summarized and their associated 
German translations. 

 
Figure 9. TextRank Output 

 

Fig. 10 shows the output of the Seq-to-Seq implementation 
with original text as well as summarized text. 

 
Figure 10. Seq-to-Seq output 

 

The following limitations have been noted. The extractive 
text summarization implemented using TextRank algorithm 
does not return proper output for the duplicate words and 
sentences. The algorithm is modified to perform the multi 
document text summarization. It means the algorithm checks 
for the .CSV files in input directory and picks up all the file 
while processing. However, both the TextRank and Seq-to-Seq 
algorithms do not remember the input data from one source 
input file while processing another input file. In short, even 
though the multi document processing is supported, the inter 
dependency of input is not taken into consideration. Another 
drawback of our implementation is that the models we 
developed are unable to generate new product feedback that 
could be used in conjunction with summarizing the subsequent 
input data. The main disadvantage of using Seq-to-Seq for 

abstractive text summarization is that sentences are not ranked 
like text summarization. This will cause us to skip over text 
that appears frequently in the input. 

V. CONCLUSION AND FUTURE WORK 
In this paper we apply three text summarization algorithms 

on the Amazon Product Review dataset from Kaggle [23]: 
extractive text summarization using NLTK, extractive text 
summarization using TextRank, and abstractive text 
summarization using Seq-to-Seq. There are advantages and 
disadvantages to using these algorithms for product reviews 
summarization. 

As future work, we note that the TextRank algorithm we 
used for extractive text summarization does not endorse 
Recurrent Neural Networks (RNN). The RNN is the most 
common algorithm for dealing with a continuous stream of 
data. Internal memory in the RNN aids in remembering the 
input and makes it ideal for deep learning problems. We could 
use RN to improve the current algorithm processing because 
the RNN remembers the import part of the input and uses it as 
a guide in subsequent runs. The RNN's performance 
summarized text looks more like text summarized by a person. 
However, the RNN has its own disadvantage - It fails for 
complex model. Its output is also poor if the input text includes 
duplicate words and sentences. For both the abstractive and 
extractive text summarization, using certain user parameters, 
the output of the summarized text may be further refined. 
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