

Abstractive Text Summarization using Machine
Learning

Aditya Dingare
Department of Computer Science

California State University, Fullerton
Fullerton, USA

adityadingare@csu.fullerton.edu

Doina Bein
Department of Computer Science

California State University, Fullerton
Fullerton, USA

dbein@fullerton.edu

Wolfgang Bein
Department of Computer Science
University of Nevada, Las Vegas

Las Vegas, USA
wolfgang.bein@unlv.edu

Abhishek Verma
Department of Computer Science
California State University, Northridge
Northridge, USA
abhishek.verma@csun.edu

Abstract— Text summarization creates a brief and succinct

summary of the original text. The summarized text highlights the
main text's most interesting points without omitting crucial
details. There is a plethora of applications on the market that
include news summaries, such as Inshort and Blinklist which not
only save time but also effort. The method of manually
summarizing a text can be time-consuming. Fortunately, using
algorithms, the mechanism can be automated. We apply three
text summarization algorithms on the Amazon Product Review
dataset from Kaggle [23]: extractive text summarization using
NLTK, extractive text summarization using TextRank, and
abstractive text summarization using Seq-to-Seq.

Keywords—Machine learning, extractive text summarization,
abstractive text summarization.

I. INTRODUCTION
There are various forms of summaries: single document,

multi document, informative summary, and query focused
summary. The type of input provided to an algorithm
determines these types, so for a multi-document summary,
multiple documents are used. The input for query based is
focused on a specific query outcome. There are two output-
based primary methods for summarizing the text: abstractive
text summarization and extractive text summarization.

In extractive text summarization, the summarized text is
part of the original text as the algorithm extracts the most
relevant words and sentences from the original text. For
example, in Fig. 1 the output text is consisting of all the words
from the original input text only.

Figure 1. Extractive text summarization

Abstractive text summarization is opposite to extractive
text summarization [3] as it returns the summary of the text
that may consists of new word and sentence that are not part
of the original text. For example, in Fig. 2, the output of the
abstractive summarization consists of the words that are not
part of the original text. Hybrid text summarization uses both
abstractive and extractive text summarization techniques
together. (S. Selvarani, 2014)

Figure 2. Abstractive text summarization

While abstractive text summarization produces more

substantive summarized text than extractive text
summarization, it is more difficult to implement. Most of the
research focuses on extractive text summarization's
implementation and limitations.

We apply three text summarization algorithms on the
Amazon Product Review dataset from Kaggle [23]: extractive
text summarization using NLTK, extractive text
summarization using TextRank, and abstractive text
summarization using Seq-to-Seq. We compare their
performances over various product reviews.

The paper is organized as follows. In Section II we
present the background and related work, followed by the
description of the algorithms used in Section III. Simulations
are results are presented in Section IV. Concluding remarks
and future work are given in Section V.

II. BACKGROUND AND RELATED WORK
Term frequency, latent frequency, and graphical

extractive algorithms are the three primary types of extractive

algorithms. The sentence that has a similar appearance to the
document word has a high score in terms of frequency. The
sentences are sorted first in latent variable, and the sentence
with the closest representation of the latent variable is chosen
[4]. A similarity matrix is constructed in the graphical process,
and the TextRank algorithm is executed based on it.

The extractive text summarization can be divided into
three main categories (see Fig. 3): term frequency, latent
variable, and graphical. Term frequency and sum basic
algorithm are similar: commonly occurring sentences are
added together [6]. Latent variable algorithm works like as
discussed above. In embedding page rank algorithm, the
embedding page vector is calculated and used during the
algorithm execution [9].

Figure 3. Algorithms to implement extractive text summarization

Abstractive text summarization can be divided into two

categories (see Fig. 4): semantics based, and structure based.
The implementation discussed in this project is from the
semantics graph-based technique.

Figure 4. Algorithms to implement abstractive text summarization

We use Text Rank algorithm developed by (F. Hai-jian,

2011). The TextRank algorithm is like PageRank PageRank
algorithm that was designed and developed by Google, but
instead of web pages, it uses sentences. The similarity
between two sentences is the likelihood of a web page switch.
This score of similarity is stored in a square matrix [11]. The
standard steps in the TextRank algorithm are to load input data
and construct vectors for sentences using GloVe word
embeddings. The next stage is text preprocessing, which
involves cleaning the data and removing common terms such
as am, an, the, for, and so on. We then construct a vector
representation of sentences and a similarity matrix and next
we apply TextRank algorithm.

The abstractive text summarization technique using
Sequence-to-Sequence modeling (Seq2Seq model) is used to
summarize the text. The standard implementation involves

usage of encoder and decoder as referenced. The encoder and
decoder are configured into two phases training and inference
phase. The encoder reads input data and extracts the
contextual information present in the input sequence using the
Long Short-Term Memory model (LSTM). The decoder, on
the other hand, uses the encoder's output as an input and is
equipped to predict the next word in the series [17]. The input
data used by TextRank algorithm is a single document and
does not support the use of RNNs and LSTM (Callahan,
2018). It is difficult for encoder to memorize the huge data
size as the fixed length vector is used to store the input data. In
addition, the encoder uses a unidirectional LSTM. The context
cannot be captured in both directions using a unidirectional
LSTM. The bidirectional LSTM, combined with global
attention for the previous problem, can be used to address the
LSTM issue [1][2].

III. IMPLEMENTED TEXT SUMMARIZATION ALGORITHMS
The main steps in implementation are data gathering, data

cleaning, and algorithm implementation. We implement three
algorithms and compare their results.

For data gathering we used Amazon Product Review
dataset from Kaggle [23] that has approximately 568,455 rows
and 10 columns, almost 300 MB in size. Out of 10 columns,
the ProductReviewText column has detailed description of the
product available on the Amazon and is mainly used by the
extractive text summarization for the TextRank algorithm.

Data cleaning involves contraction mapping for handling
the words with short forms like "ain’t", "don’t" as "do not"
etc., and changing the input data into either lower or upper
case, remove parenthesis, eliminate stops words (e.g. “is”,
“and”,” are”), punctuations, and special characters like @, #
etc. These two steps are common to both abstractive and
extractive algorithms [16].

The abstractive text summarization uses two columns
mainly ProductReviewHeader and ProductReviewText. The
column ProductReviewHeader is nothing but the header line
of that particular review. This column is either one or two
lines of short headline of the review.

1. Extractive text summarization using NLTK
We used the Natural Language Toolkit (NLTK) library

for statistical language processing which include tokenization,
calculating frequency of words, and calculating weighted
frequency of words. Term frequency can be used to identify
the keywords. Extraction of keywords in reviews enable
customers in determining whether a product review is
necessary and whether or not to continue reading it. Following
the calculation of word frequency, a weighted frequency of
each sentence in the input data column, ProductReviewText, is
calculated. We calculated the frequency and weighted
frequency of each word that is present in the review text. The
weighted frequency can be calculated in other way by dividing
the words frequency by frequency of the word that is mostly
occurred [22]. The next step is to add weighted frequencies
and sort the sum of weighted frequencies in descending order.
The sentence with the maximum sum of weighted frequency is

extracted as the summarized text. Based on the weighted
frequency, the summary of the original text is returned.

2. Extractive text summarization using TextRank
The TextRank algorithm depends on PageRank algorithm.

The probability among two words in the sentences is
calculated. For the TextRank algorithm, the input reviews data
will be subdivided into text units such as keywords, key
phrases and the graph model is built. In this implementation,
we used an undirected weighted graph; each node represents
the sentence in the review text and the edges represents the
relationship between them calculated using the formula [21]:

WS (Vi) = (1- d) + d* Σ Vj ∈ In(Vi) eji / Σ Vj ∈ Out (Vi) eJk WS(Vij)

Each sentence is treated as a node in the text. There is an
undirected right edge between the nodes corresponding to the
two sentences if two sentences are identical. The following
formula can be used to check sentence similarity [21].

Similarity (Si, Sj) = |{Wk| Wk ∈ Si & Wk ∈ Sj }| / log(|Si |) + log(|Sj |)
where Si and Sj are two sentences of our product review
where as Wk represents word in the sentence.

The steps are:
1. Split the given text review T into complete sentences
2. Clean the data by deleting stop words, nouns, and verbs

from the input data for each sentence
3. Build a candidate keyword graph G = (V, E), where V is a

node collection of sentences, and then draw an edge
between any two points if and only if these two sentences
are linked.

4. Calculate the weight repetitively using the formula
mentioned below.

5. The node weights are sorted in reverse order to obtain the
most relevant T terms as candidate keywords.

6. The most significant T words are extracted from #5,
marked in the original text, and then combined into a
keyword if adjacent phrases are created. [19]

The product reviews in column ProductReviewText is divided
into small chunks of sentences only if it contains long
sentences.

3. Abstractive text summarization using Seq-to-Seq
The encoder and decoder are needed for extractive text

summarization using the Seq-to-Seq model. In this
implementation, the Long Short-Term Memory (LSTM) is
used as encoders and decoders to catch the phrase
dependencies in a sentence's words. To implement encode and
decoder,” Recurrent Neural Networks i.e. RNN” can also be
used. The encoders and decoders are designed further in two
stages, namely training and inference. The encoder receives the
input data as input and extracts the contextual information
present in the data. The timestamp is also important factor
here. So, for each time stamp, each word from the product
review sentence is given to the encoder which retrieves the
contextual information from the product review. This is the
part of the training phase. Before feeding the target sequence
into the decoder, their start and end are inserted [22].

The encoder training phase is single direction (see Fig. 5).

Figure 5. Training encoder

The encoder receives the input word by word at each time
interval and each steps of the LSTM passes the output to the
next cell in the LSTM.

The decoder receives the hidden state (hi) and cell state (ci)
from the previous steps as data. The decoder training is single
direction (see Fig. 6) This decoder cell also takes input from
the encoder and process each word.

Figure 6. Training decoder [3]

There are total of three cells of each encoder and decoder.
To calculate the past as well as future context for each

product review sequence we used a bi-directional LSTM.

Figure 7. Bi-directional LSTM

The bidirectional LSTM in which the original cells as well
as it’s transpose are used. The single-directional LSTM has the
disadvantage of being unable to predict future background
information and learning all the input sequence sentences. As
referenced to the figure 16, in bi-directional LSTM the output
of the last cell is given back to additional LSTM. LSTM0',
LSTM1', and LSTM2' are all the transpose of original LSTM0,
LSTM1, and LSTM2 [22].

IV. SIMULATIONS AND RESULTS
For both the abstractive and extractive text summarization

we considered reviews that have at least 250 words. The output
of the extractive text summarization using NLTK applied to a
sample product review and its German language translation of
the summary (cross language summary) is shown in Fig. 8.

Figure 8. NLTK Output

The output by the TextRank algorithm of the sample
product review is shown in Fig. 9. There are approximately
more than 5 reviews being summarized and their associated
German translations.

Figure 9. TextRank Output

Fig. 10 shows the output of the Seq-to-Seq implementation
with original text as well as summarized text.

Figure 10. Seq-to-Seq output

The following limitations have been noted. The extractive
text summarization implemented using TextRank algorithm
does not return proper output for the duplicate words and
sentences. The algorithm is modified to perform the multi
document text summarization. It means the algorithm checks
for the .CSV files in input directory and picks up all the file
while processing. However, both the TextRank and Seq-to-Seq
algorithms do not remember the input data from one source
input file while processing another input file. In short, even
though the multi document processing is supported, the inter
dependency of input is not taken into consideration. Another
drawback of our implementation is that the models we
developed are unable to generate new product feedback that
could be used in conjunction with summarizing the subsequent
input data. The main disadvantage of using Seq-to-Seq for

abstractive text summarization is that sentences are not ranked
like text summarization. This will cause us to skip over text
that appears frequently in the input.

V. CONCLUSION AND FUTURE WORK
In this paper we apply three text summarization algorithms

on the Amazon Product Review dataset from Kaggle [23]:
extractive text summarization using NLTK, extractive text
summarization using TextRank, and abstractive text
summarization using Seq-to-Seq. There are advantages and
disadvantages to using these algorithms for product reviews
summarization.

As future work, we note that the TextRank algorithm we
used for extractive text summarization does not endorse
Recurrent Neural Networks (RNN). The RNN is the most
common algorithm for dealing with a continuous stream of
data. Internal memory in the RNN aids in remembering the
input and makes it ideal for deep learning problems. We could
use RN to improve the current algorithm processing because
the RNN remembers the import part of the input and uses it as
a guide in subsequent runs. The RNN's performance
summarized text looks more like text summarized by a person.
However, the RNN has its own disadvantage - It fails for
complex model. Its output is also poor if the input text includes
duplicate words and sentences. For both the abstractive and
extractive text summarization, using certain user parameters,
the output of the summarized text may be further refined.

ACKNOWLEDGMENT
This research was sponsored by the NATO Science for Peace
and Security Program under grant SPS MYP G5700.

REFERENCES

[1] Sequence to Sequence Learning with Neural Networks
arXiv:1409.3215v3 [cs.CL] 14 Dec 2014

[2] Get To The Point: Summarization with Pointer-Generator Networks.
https://arxiv.org/abs/1704.04368

[3] https://www.analyticsvidhya.com/blog/2019/06/comprehensive-guide-
text-summarization-using-deep-learning-python/

[4] https://www.analyticsvidhya.com/blog/2018/11/introduction-text-
summarization-textrank-python/

[5] https://www.analyticsvidhya.com/blog/2020/12/understanding-text-
classification-in-nlp-with-movie-review-example-example/

[6] Abstractive Text Summarization Using Transformers | by Rohan Jagtap |
The Startup | Medium. https://medium.com/swlh/abstractive-text-
summarization-using-transformers-3e774cc42453

[7] A Gentle Introduction to Text Summarization in Machine Learning.
https://blog.floydhub.com/gentle-introduction-to-text-summarization-in-
machine-learning/

[8] 8. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A., Kaiser, L. and Polosukhin, I., 2021. Attention Is All You
Need. [online] arXiv.org. Available at: https://arxiv.org/abs/1706.03762.
[Accessed 17 May 2021].

[9] D. Suleiman and A. Awajan, "Deep Learning Based Abstractive Text
Summarization: Approaches, Datasets, Evaluation Measures, and
Challenges", 2021

[10] Pranab Ghosh. "Six Unsupervised Extractive Text Summarization
Techniques Side by Side". [Online]. Available:

https://pkghosh.wordpress.com/2019/06/27/six-unsupervised-extractive-
text-summarization-techniques-side-by-side/. [Accessed: 17- May-
2021].

[11] N. Patel and N. Mangaokar, "Abstractive vs Extractive Text
Summarization (Output based approach) - A Comparative Study," 2020
IEEE International Conference for Innovation in Technology
(INOCON), 2020, pp. 1-6, doi: 10.1109/INOCON50539.2020.9298416.

[12] J. N. Madhuri and R. Ganesh Kumar, "Extractive Text Summarization
Using Sentence Ranking," 2019 International Conference on Data
Science and Communication (IconDSC), 2019, pp. 1-3, doi:
10.1109/IconDSC.2019.8817040.

[13] C. Lakshmi Devasena and M. Hemalatha, "Automatic Text
categorization and summarization using rule reduction," IEEE-
International Conference On Advances In Engineering, Science And
Management (ICAESM -2012), 2012, pp. 594-598.

[14] R. Mishra, V. K. Panchal and P. Kumar, "Extractive Text
Summarization - An effective approach to extract information from
Text," 2019 International Conference on contemporary Computing and
Informatics (IC3I), 2019, pp. 252-255, doi:
10.1109/IC3I46837.2019.9055636.

[15] Meena S M, Ramkumar M P, Emil Selvan G SR, "Text Summarization
Using Text Frequency Ranking Sentence Prediction," 2020 4th
International Conference on Computer, Communication and Signal
Processing (ICCCSP), 2020, pp. 1-5, doi:
10.1109/ICCCSP49186.2020.9315203.

[16] S. R. Manalu, "Stop words in review summarization using TextRank,"
2017 14th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), 2017, pp. 846-849, doi:
10.1109/ECTICon.2017.8096371.

[17] A. Rahman, F. M. Rafiq, R. Saha, R. Rafian and H. Arif, "Bengali Text
Summarization using TextRank, Fuzzy C-Means and Aggregate Scoring
methods," 2019 IEEE Region 10 Symposium (TENSYMP), 2019, pp.
331-336, doi: 10.1109/TENSYMP46218.2019.8971039.

[18] X. You, "Automatic Summarization and Keyword Extraction from Web
Page or Text File," 2019 IEEE 2nd International Conference on
Computer and Communication Engineering Technology (CCET), 2019,
pp. 154-158, doi: 10.1109/CCET48361.2019.8989315.

[19] M. R. Ramadhan, S. N. Endah and A. B. J. Mantau, "Implementation of
Textrank Algorithm in Product Review Summarization," 2020 4th
International Conference on Informatics and Computational Sciences
(ICICoS), 2020, pp. 1-5, doi: 10.1109/ICICoS51170.2020.9299005.

[20] Y. Chen and Q. Song, "News Text Summarization Method based on
BART-TextRank Model," 2021 IEEE 5th Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC),
2021, pp. 2005-2010, doi: 10.1109/IAEAC50856.2021.9390683.

[21] T. Behere, A. Vaidya, A. Birhade, K. Shinde, P. Deshpande and S.
Jahirabadkar, "Text Summarization and Classification of Conversation
Data between Service Chatbot and Customer," 2020 Fourth World
Conference on Smart Trends in Systems, Security and Sustainability
(WorldS4), 2020, pp. 833-838, doi:
10.1109/WorldS450073.2020.9210289.

[22] W. Jiang, Y. Zou, T. Zhao, Q. Zhang and Y. Ma, "A Hierarchical
Bidirectional LSTM Sequence Model for Extractive Text
Summarization in Electric Power Systems," 2020 13th International
Symposium on Computational Intelligence and Design (ISCID), 2020,
pp. 290-294, doi: 10.1109/ISCID51228.2020.00071.

[23] Consumer Reviews of Amazon Products.
https://www.kaggle.com/datafiniti/consumer-reviews-of-amazon-
products

	I. Introduction
	II. Background and Related Work
	III. Implemented Text Summarization Algorithms
	IV. Simulations and Results
	V. Conclusion and Future Work
	Acknowledgment
	References

