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Abstract: Stock index prediction has been a challenging problem due 
to difficult to model complexities of the stock market. More recently 
Deep learning approaches have become an important method in 
modelling complex relationships in time-series data. In this paper: we 
propose novel deep learning models that combine multiple pipelines of 
convolutional neural network and uni-directional or bi-directional 
gated recurrent units. Proposed models improve prediction 
performance and execution time upon previously published models on 
large scale S&P 500 dataset. We present several variations of multiple 
and single pipeline deep learning models based on different CNN 
kernel sizes and number of GRU units. 
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1. INTRODUCTION 
The stock market time series data is considered as noisy and dynamic [1]. It is considered 
noisy as we are not able to model the various factors affecting the stock data like news 
events or rumours, and hence the effect of these factors gets considered as noise in the data. 
As the data is non-stationary, representations on the older time-series data may not hold 
valid to current data. Thus, it becomes very difficult to model and make correct predictions 
on such moving and noisy data. 

In this research paper, we have proposed deep learning based models utilizing single and 
multiple pipelines of convolutional neural networks with uni-directional or bi-directional 
gated recurrent units (GRU). Our work improves upon earlier deep learning models [2]. 

This paper is organized as follows: In section 2, we present the background on stock market 
analysis and how it is used for automated trading. We describe traditional machine learning 
algorithms used for stock analysis, and their limitations. Next, we describe various types 
of layers used in deep learning and listed their advantages. We have also given a small 
summary of earlier work done by authors on using multiple pipelines of deep learning for 
various applications. In section 3, we discuss the dataset used, and the reason we selected 
it. Section 4 is the research methodology, where we describe how we construct, train and 
make predictions with various deep learning models. In Section 5, we present hardware 
and software systems that we have utilized for our research work. Section 6 presents the 
results obtained from each model in terms of mean squared error. We also plot the predicted 



 
       
       
       
       

 
 

 

    
 
 

   

       
       
       

 

trend diagrams from the best performing models. We conclude in Section 7 by 
summarizing our work, key observations, and analysis. 

 

 2. BACKGROUND WORK 

 2.1 Stock Market Analysis 
Attempting to model and predict stock prices has been an important area of interest for 

traders, investors, and financial institutions. Various models for stock analysis have been 
developed using both fundamental and technical analysis methods. Fundamental analysis 
focuses on the business aspects of the company, like profit, cash flow, sales, or news 
regarding business and political environment etc., while technical analysis uses maths and 
statistics-based approach to analyse historical data and predict future data. Technical 
analysis is based on the philosophy that all factors affecting the price, whether 
fundamentally, politically or otherwise, is reflected in the price itself. Therefore, prices 
move in trends, and predictions can be based on studying trend charts [3]. 

2.1.1 Automated Trading 
Stock Analysis is also used in computerized trading systems, which automate the 

process of making sell and buy decisions. Earliest attempts to automate trade involved 
creation of electronic trading exchanges, which determined the trading decisions based on 
the theoretical predicted prices which is searched from a look-up table using an index, 
consisting of a range of current market prices [4]. Advances in the field of machine learning 
led to its usage in the automated trading systems, where the buy/sell orders are based on 
pre-set search parameters that are optimized using backtest data. The data feed is received 
from real-time and historical trading data sources [5]. Such systems expose their APIs for 
use by brokers, banks, and other institutions to make real-time and immediate trading 
decisions. 

2.1.2 Traditional Machine Learning Algorithms 
Researchers have developed decision support systems for dealing with stocks utilizing 

neural networks and genetic algorithms to make buy and sell decisions for Tokyo based 
stock indexes [6]. Support Vector Machines emerged as a popular technique due to its 
ability to recognize patterns in a time-series dataset [7] and learn features from multi-
dimensional data using kernel functions that creates a linear hyperplane in the multi-
dimensional space [8]. Work done by [9] showed the suitability of support vector machines 
in forecasting financial time-series data, which outperformed backpropogation based 
neural networks on criteria like mean square error and others. The kernel methods used by 
support vector machines scale quadratically i.e. O(n2) for a training set of size n, as it is 
implemented using quadratic programming [8]. 

 



 

 

    
 
 

   

       
       
       

 

 2.2 Deep Learning 
Deep Learning refers to the arrangement of multiple hidden layers of neurons in 

between the input and output layers. This increases the capability of the network to learn 
more complex functionalities. It relies on the algorithms of Feed forward and 
Backpropagation, which fine-tunes the weights, using an optimization algorithm, the 
objective is to minimize a loss function, or error in output compared to the actual value. 
 

2.2.1 Recurrent Neural Network 
Recurrent Neural Networks (RNN) is a type of Artificial Neural Network (ANN) used 

specifically to learn from sequential data and can be used to predict successive elements in 
a sequence. In RNNs, the activation on the hidden units for time-step t-1 is used together 
with the new input data at t, and both influence the activation at time step t [10]. This is 
done by copying the activation of the hidden layer at time-step t-1 and giving it back as 
input in time-step t. Thus, the new prediction depends upon the historical data, which is 
similar to our task of predicting stock price index. Using a deep hierarchy of RNNs has 
been shown to naturally capture the structure of time series data [11]. 

 
2.2.2 Bi-directional Recurrent Neural Network 
Bi-directional Recurrent Neural Networks are used in the tasks where the prediction 

depends on the entire input sequence [12]. It consists of layers which combine the unit that 
learns from the start of the sequence moving forward, with the unit moving backwards 
from the end of the sequence. This makes it useful to learn from longer sequences of time-
series data and makes the output sensitive to the input at time t, without using a fixed-sized 
window around the time t, as used in CNNs or a regular RNN with fixed look-ahead buffer 
[8]. 

 
2.2.3 Long-Short Term Memory 
Long Short Term Memory (LSTM) units were created to solve the problem of 

vanishing gradients in recurrent neural networks [13]. In RNNs, due to the long 
connections, the backpropagation of gradients from the output layer can become smaller 
and smaller by the time it reaches the initial layers, due to successive derivative operations 
over activation functions like tanh and sigmoid. This prevents the RNN from learning 
longer sequences. LSTMs include gates that encode the long-term dependencies existing 
in sequential data as a simple identity function of 1 or 0 [14]. The three gates called input, 
forget, and output control the cell states of the units using tanh and sigmoid activations and 
regulate the information that flows from one time-step to the next. 

 

2.2.4 Gated Recurrent Units 
Gated Recurrent Units (GRU) are another variant of RNNs that utilizes two gates 

called reset and update to control the state units. The key difference between LSTM and 
GRU being that GRU exposes it memory state fully, while LSTM controls it using output 
gate. An empirical comparison [15] of traditional RNNs (having tanh units), LSTMs, and 



 
       
       
       
       

 
 

 

    
 
 

   

       
       
       

 

GRUs, was done for sequence modelling tasks like polyphonic music and speech signal 
modelling. The designed network took 20 consecutive samples of speech signals and 
predicted the next 10 samples. They observed that LSTM and GRU units clearly out-
performed simple RNNs, but they couldn't conclude which among the gated units 
performed better. 

 
2.2.5 1-Dimensional Convolutional Neural Networks 
1-dimensional CNNs can be used as an alternative to RNNs for learning from temporal 

sequence data, but they are shallow and can learn only from the neighbouring input data 
because of the convolution operation [8]. However, in the report [16], authors have argued 
the case for using CNNs in sequence modelling by highlighting the capability of multi-
layer CNNs to capture hierarchical representations of input sequence, which means that, 
the input data that are distant, can interact at the higher layers, and the closer elements 
interact at the lower layers. This provides shorter paths for dependencies as compared to 
the chain structures in RNNs. The RNNs due to its longer dependencies have lower 
efficiency. 

 

2.2.6 Multiple pipeline deep learning models 

Instead of a single sequence of layers, as typical in a deep learning model, prior 
research has used multiple pipelines of layers working on the same input, and learns 
independently to give different outputs, which is then concatenated as a single output. In 
[17] a multi-pipeline deep learning model, created with four parallel sequences of layers, 
performed better than the single pipeline model for the task of classifying text for sentiment 
analysis. 

Another fusion of two deep CNN models was used for improving the prediction of 
Image Action Recognition [18]. The fusion was done by concatenating two to three layers, 
consisting of CNN layers followed by a 100 dimensional fully connected layer. Analysing 
the results showed that the accuracy increased by 2% for each addition of deep CNN layers 
to the model. 

In our earlier work [2], we observed that multiple pipelines of LSTM or Bi-directional 
LSTM resulted in better predictions of stock indexes as compared to the equivalent single 
pipeline model. 

Design principles have been proposed in [19] that recommend improving the 
prediction of deep learning models by balancing the increase in both the width and depth 
of the network. This was shown to give better performance in computer vision tasks with 
a marginal increase in computational cost, as compared to longer monolithic networks. 

 



 

 

    
 
 

   

       
       
       

 

3. DATASET DESCRIPTION 

As deep learning requires a large dataset for training, we needed a historical dataset of 
daily stock prices for multiple years. Stock prices are either analysed for each single 
company registered in the market, or as a combined index, which is the weighted average 
for a selected group of companies in the market. The S&P 500 index is a combined market-
capitalization-weighted index for a collection of 500 large companies and is an excellent 
measure of the performance of overall U.S. stock market. There are other common indices 
like Dow Jones Industrial Average, Nasdaq composite, FTSE 100 etc., but we have selected 
S&P 500 because of its wide availability. Analysis work done [20] showed that the S&P 
500 performs better on ARIMA models than London Stock Exchange. The S&P 500 
dataset is available for download on Yahoo Finance [21]. It consists of the daily market 
details like opening and closing price, highest and lowest price, adjusted closing price, 
volume of trade. We decided to use the daily closing price for our prediction, as the final 
value for each day. 

Experiments done in the paper [22] show the impact on the performance of deep 
learning networks, by increasing the data size. Performance is shown to increase 
logarithmically for larger datasets. We decided to use as large a dataset as possible for 
training our models, depending upon available time and hardware resource. Figure 1 shows 
the daily closing price of S&P 500 index from January 2, 2008 to November 27, 2018. It 
is a typical Time-Series based data with sequences of discrete prices recorded during the 
closing time for each successive day and plotted as a line chart. It has the data for each 
working day when the market was opened for the selected period of 10 years. 

  
Figure 1: Yahoo Finance S&P 500 Index dataset from 2000 to 2018 

 



 
       
       
       
       

 
 

 

    
 
 

   

       
       
       

 

 4. RESEARCH METHODOLOGY 
To find the best performing deep learning models, we created different types of 

architectures using CNNs and GRU layers. We have utilized both the single pipeline and 
multi-pipeline methodology. 

We use 1-Dimensional CNNs as it is capable of extracting features from sequential 
data using hierarchical representations. Gated Recurrent Unit networks are also useful for 
learning from temporal time sequences like stock data. We arrange these layers in different 
orders and combinations, such as, CNN layers followed by GRU layers. Firstly, we attempt 
to improve the performance by adding different combinations of Batch-Normalization and 
reduce overfitting by including Dropout layers. Secondly, we construct several models by 
varying the number of layers. 

 

 4.1 Single Pipeline Deep Learning Model with CNN and Uni-directional or Bi-
directional GRU layers 
We construct single pipeline model using groups of 1-dimensional Convolutional 

layers, that is followed with bi-directional or uni-directional gated recurrent unit layers. 
The CNN layers utilize the ReLU function for its activation and are followed by a Max-
pooling of size 2.  

Figure 2 shows the architecture of the single pipeline CNN and GRU model. Dropout 
layers are added after GRUs to reduce overfitting. A Dense layer is used to combine the 
outputs from the GRU units, and utilizes a linear activation, that gives a numerical output 
as the predicted stock price index. We use this general architecture on both uni-directional 
GRU and bi-directional GRU units. We then compare the results of single pipeline models 
with other multiple pipeline deep learning models. 

We use Grid-Search to find the optimal parameters for these models. We tried different 
Kernel sizes for the convolutional filters like 5, 7 & 9. We also varied the number of GRU 
units as either 200 or 400. The Grid-search is performed across 5 folds of cross-validation. 
Grid search utilizes early stopping of the Adadelta optimizer to prevent overfitting. The 
optimizer algorithm iterates for 100 epochs. We also tried few models with Batch-
Normalization to allow for higher learning rates during optimization. A sequence of stock 
prices for 50 consecutive days is fed to the network and the convolutional operations are 
done using strides of 3 in one dimension. 



 

 

    
 
 

   

       
       
       

 

 
Figure 2: Single pipeline model with uni-directional or bi-directional GRU 

 4.2 Proposed Multiple Pipeline model with uni-directional or bi-directional GRU 
To improve the prediction, we utilized the multiple pipeline deep learning architecture. 

It uses three parallel layers as shown in figure 3. Each pipeline is made up of an initial 
group, of 1-dimensional CNN and Max-pooling layers. The CNNs are used to extract the 
higher-level hierarchical relations in the sequential data, before passing to the GRU layers. 
The CNNs are followed by another group consisting of GRU layers with dropouts. Similar 
to the single pipeline model, we tried both the uni-directional GRU and bi-directional GRU 
layers. The Bi-directional GRU units can learn from both the forward and backward 
sequence of data and concatenates the output of the two sequences. 



 
       
       
       
       

 
 

 

    
 
 

   

       
       
       

 

 
Figure 3: Proposed multiple pipeline model with uni-directional or bi-directional GRU 

Within each pipeline, the sequences of 50 input stock indexes are fed to the CNN 
layers, which utilizes the kernel filters to learn from data of various sequence length. Thus, 
each individual pipeline within the multiple pipe line setup works on a specific sequence 
length of data, optimal sequence length is chosen via experimentation. The max-pooling 
layers then reduces the size of the sequence, before passing it to the GRU layers. A Dense 
layer reduces the sequence to a single value using the linear activation function. The output 
from each individual pipeline is concatenated to give a final value. We have used Adadelta 
as the algorithm for optimizing the weights, which is a form of gradient descent algorithm. 



 

 

    
 
 

   

       
       
       

 

Grid Search is used to find the best parameters for each architecture, and the top 4 
models, including the weights and parameters, are saved to be used later for prediction and 
plotting. 
 
 

 4.3 Comparison of Models 
The best performing model is selected for each architecture, based on its mean squared 

error. The model is used to make predictions, which are then plotted along with the actual 
value of the stock price index. A sliding window of length 50 days is used as the input to 
the model, to predict the next 7 days, which is then plotted along with the actual value. 

 
In order to compare the performance time of each model, we noted down the number 

of weights created in each deep learning model. We also recorded the amount of time 
required for training the models, as well as for performing the predictions for the entire 
dataset. To ensure that the execution time is measured under similar conditions, we 
recorded the time for each model, on the same CPU and GPU, with no other execution load 
running on the machine. 
 
 

 5. EXPERIMENTAL ENVIRONMENT 

 5.1 Hardware Environment 
We have used high performance GPU based computer server for training and 

prediction with the deep learning models. Server is equipped with NVIDIA GeForce GTX 
1080 Ti GPUs. GPUs allow for parallel processing of matrix operations involved in the 
deep learning process. Multiple GPUs allow saving time in the experimentation process by 
running multiple training and prediction jobs simultaneously. The GPUs use the CUDA 
toolkit v9.0.176 library for executing the parallel threads. The server has multiple Intel 
Xeon E5-2630 CPUs, having a 256 GB RAM and running at 2.20 GHz. 

 

 5.2 Software Environment 
The code was developed in the Python language due to ease of coding and good 

support for deep learning libraries. Out of the large collection of easily available deep 
learning libraries in Python, we utilized the following - 

• Keras [23] is an encapsulating library, with simple, abstract interfaces 
for construction and training of deep learning models, utilizing back-end 
framework as Tensorflow. We have used it for defining sequential deep learning 
pipelines, and specifying the layers, its hyper-parameters and the optimizer 
algorithms and loss functions. 

• Scikit-Learn [24] is a popular library for machine learning tasks. We 
have used it for preprocessing of data, and for performing the grid-search using 
cross validation. 



 
       
       
       
       

 
 

 

    
 
 

   

       
       
       

 

• Matplotlib [25] has been used for plotting the various charts to compare 
the prediction of trend directions. 

• Pandas [26] is a data frame based library that has been used for 
performing disk read and write operations, and especially for importing the dataset 
from csv file. 

• Pickle [27] has been used for serializing and de-serializing to save and 
load models from the disk in the form of byte streams. 

• Numpy [28] library is most suitable for performing various matrix 
operations, and it is used by Keras for its deep learning operations. We have 
utilized it for initializing the Grid-Search library with hyper-parameter ranges. 

 
Server login sessions were maintained for each executing model using a linux based 

command client tool: tmux or terminal multiplexer [29]. It allows multiple SSH sessions 
to be maintained in parallel for the same user. Each session can be individually connected 
to, at a later stage to check the results at convenience. 

 

 6. EXPERIMENTAL RESULTS AND DISCUSSION 
Using grid search with five-fold cross validation, we present the top four best 

performing models and parameters, for single and multiple pipelines of uni-directional 
GRU and Bi-directional GRU. Grid search library presents the results in the form of rank 
test score, mean test score, etc. We use rank test score, to sort the models according to their 
performance rank. 
 
 6.1 Results for Single Pipeline Model with CNN followed by Bidirectional LSTM 

[2] 
 
Table 1 below, shows the results of an earlier work [2], for the single pipeline deep 

learning, using CNN & Bi-directional LSTM layers, giving a mean squared error in the 
order of 10-4. 

   
 

Table 1: Results from four best performing single pipeline deep learning models with CNN and bi-directional 
LSTM on S&P dataset [2] 

 

LSTM Units Kernel-size Mean Train Score Mean Test Score 

200 9 0.000272510 0.000345951 

200 5 0.000324599 0.000429588 

400 9 0.000333719 0.000431591 

400 5 0.000466796 0.000555343 
Note: Mean Test Score and Mean Train Score are computed from Mean Squared Error. Lower values are better. 



 

 

    
 
 

   

       
       
       

 

 

6.2 Results for Single Pipeline Model with CNN followed by uni-directional GRU 
Table 2 below, shows the four best performing models for single pipeline deep 

learning, using a combination of CNN and uni-directional GRU layers. It results in a mean 
squared error in the order of 10-4. The mean squared error values while using uni-
directional GRUs in this research are found to be marginally better than that of Bi-
directional LSTMs [2], for the top four models, as well as while comparing the test scores 
for the same parameter values of Kernel size and number of units. Additionally, this 
architecture shows low variance and low overfitting as the difference between scores for 
test and train is not too large. 

 
 
   

Table 2: Results from four best performing single pipeline deep learning models with CNN and uni-directional 
GRU on S&P dataset 

 

GRU Units Kernel-size Mean Train Score Mean Test Score 

200 9 0.000254573 0.000318286 

400 9 0.000284881 0.000351896 

400 5 0.000274086 0.000374044 

200 5 0.000413138 0.000505617 
Note: Mean Test Score and Mean Train Score are computed from Mean Squared Error. Lower values are better. 

 

 6.3 Results for Single Pipeline Model with CNN followed by Bi-directional GRU 
Table 3 shows the best models for the single pipeline deep learning architecture using 

CNN and Bi-directional GRU layers. The best performing model, with number of GRU 
units 400 and Kernel size 9, outperforms the best performing model of single pipeline 
architecture using GRU and Bi-directional LSTM with number of LSTM units 200 and 
Kernel size 9 in Table 1. 
  



 
       
       
       
       

 
 

 

    
 
 

   

       
       
       

 

  
  
  
  

 
Table 3: Results from four best performing single pipeline deep learning models with CNN and Bi-directional 
GRU on S&P dataset 

 

GRU Units Kernel-size Mean Train Score Mean Test Score 

200 9 0.000250285 0.000307375 

200 5 0.000350026 0.000448220 

400 9 0.000347459 0.000458256 

400 5 0.000390678 0.000470128 
Note: Mean Test Score and Mean Train Score are computed from Mean Squared Error. Lower values are better. 

 
 

6.4 Results for Multiple Pipeline Model with CNN followed by Bi-directional LSTM 
[2] 
Table 4 below, shows the results for the multiple pipeline deep learning model 

consisting of CNN and Bi-directional LSTM layers [2]. The kernel size of 9 for the CNN 
layer was found to perform the best in combination with the Bi-directional LSTM layers 
having 200 units. Mean squared error results are in the order of 10-4. The combination of 
multiple pipelines of layers results in lower mean squared error as compared to the single 
pipeline CNN and Bi-directional LSTM model. 

 
Table 4: Results from four best performing multiple pipeline deep learning models with CNN and bi-directional 
LSTM on S&P dataset [2] 

LSTM Units Kernel-size Mean Train Score Mean Test Score 

200 9 0.000204378 0.000281317 

400 5 0.000284712 0.000354261 

200 5 0.000234630 0.000359209 

400 9 0.000345472 0.000420501 
Note: Mean Test Score and Mean Train Score are computed from Mean Squared Error. Lower values are better. 

 



 

 

    
 
 

   

       
       
       

 

 6.5 Results for Proposed Multiple Pipelines Model with CNN followed by uni-
directional GRU 

As observed from Table 5 below, the multiple pipeline model with CNN and uni-
directional GRU layers, performs better than its corresponding single pipeline version in 
Table 2. 

 
Table 5: Results from four best performing proposed multiple pipeline deep learning models with CNN and uni-
directional GRU on S&P dataset 

GRU Units Kernel-size Mean Train Score Mean Test Score 

400 9 0.000227808 0.000306813 

200 5 0.000279954 0.000385774 

200 9 0.000345363 0.000444714 

400 5 0.000431785 0.000543781 
Note: Mean Test Score and Mean Train Score are computed from Mean Squared Error. Lower values are better. 

 

 6.6 Results for Proposed Multiple Pipelines Model with CNN followed by Bi-
directional GRU 
Table 6 below, shows the result for the proposed multiple pipeline model with CNN 

and bi-directional GRU layers. It has the best performance among all the models and 
architectures tested. It also shows less difference between Test and Train score for the best 
3 models. The results fall in line with those of single pipeline model with CNN and Bi-
directional GRU layers and outperforms the corresponding multiple pipeline architectures, 
i.e., CNN + uni-directional GRU and CNN + Bi-directional LSTM models. Thereby, it 
combines the strength of multiple pipelines with Bi-directional GRU units. 

  
Table 6: Results from four best performing proposed multiple pipeline deep learning models with CNN and Bi-
directional GRU on S&P dataset 

GRU Units Kernel-size Mean Train Score Mean Test Score 

200 9 0.000213832 0.000278786 

400 9 0.000264489 0.000332561 

200 5 0.000312285 0.000378146 

400 5 0.000350006 0.000455777 
Note: Mean Test Score and Mean Train Score are computed from Mean Squared Error. Lower values are better. 

 
 
6.7 Comparison of execution time 



 
       
       
       
       

 
 

 

    
 
 

   

       
       
       

 

We also noted the execution time for each architecture and model. Table 7 below, 
shows the time in seconds to complete the training and prediction for the best model in 
each architecture, using sequences of size 50. As expected, multiple pipeline models take 
much more time than single pipeline models. This is due to the much larger number of 
weights that need to be trained in each pipeline using the Adadelta gradient descent 
algorithm. However, various individual pipelines in a multiple pipeline model could be run 
in parallel and thus will come close to single pipeline model in terms of execution time. 
The number of weights used for each model are shown for comparison in Table 8. There 
are more weights in the LSTM units, as compared to GRU units, this results in lesser 
execution time for the GRU based models. 

 
 

Table 7: Comparison of execution time in seconds (including fitting and prediction) for various model on S&P 
500 dataset 

Architecture CNN followed by 
GRU 

CNN followed by Bi-
directional LSTM 

CNN followed by Bi-
directional GRU 

Single 
pipeline 

173.11 322.18 261.68 

Multiple 
pipeline 

360.91 567.97 470.11 

 
 

 
Table 8: Comparison of number of weights in each model 

Architecture CNN followed by 
GRU 

CNN followed by Bi-
directional LSTM 

CNN followed by Bi-
directional GRU 

Single 
pipeline 

1,489,337 2,923,537 2,397,937 

Multiple 
pipeline 

4,730,023 6,869,623 6,014,023 

 

 6.8 Comparison of Results across Models 
The trend directions were plotted for each deep learning model as shown in figures 4 

to 7, X axis representing the time period of the first six months of the year 2016 and 2017. 
The actual stock index has been plotted in blue line, and the predictions of seven days each 
are plotted in various colours. The plotted lines can be used to predict if the stock index 
will rise or fall for the future seven days. Ideally, these predictions should be as close to 
the actual line in terms of direction and actual value. 

Among the various deep learning models shown in figures 4 to 7, they vary in 
capabilities to give good predictions. The multiple pipeline deep learning models utilizing 



 

 

    
 
 

   

       
       
       

 

Bi-directional GRU, as shown in Figure 7 is the most reliable. All the multiple pipeline 
models as shown in Figure 6-7, give predicted values closer to the actual stock price line 
as compared to the single pipeline models in Figures 4-5. The trend directions are more 
reliable for the models using Bi-directional units (whether single or multiple) as compared 
to the models with uni-directional units. 

As shown in Figure 4 below, the single pipeline model with GRU gives correct 
predictions when the actual price index is going through a stable phase, as compared to 
when the stock price index is fluctuating. The trend lines though generally give correct 
predictions in rise or fall but are far off from the actual index value. 

 

 
Figure 4: Single Pipeline CNN followed by uni-directional GRU predictions on S&P 500 Dataset. 
Horizontal axis shows the time segment for the index and prediction window. Vertical axis shows 
the closing price. Continuous plot is the actual closing price, predictions are shown as disjoint plots. 

 
 
 
Figure 5 below, shows similar results for single pipeline model with Bi-directional 

GRU, which gives prediction lines correctly only for stable durations. Trend lines are 
generally showing in the downward direction and predicting seven days ahead in a non-
stable scenario is challenging. 

 



 
       
       
       
       

 
 

 

    
 
 

   

       
       
       

 

 
Figure 5: Single Pipeline CNN followed by Bi-directional GRU predictions on S&P 500 Dataset. 
Horizontal axis shows the time segment for the index and prediction window. Vertical axis shows 
the closing price. Continuous plot is the actual closing price, predictions are shown as disjoint plots. 

 
 
Multiple pipeline models with uni-directional GRU and Bi-directional GRU units as 

shown in Figures 6 & 7, give better results in comparison to single pipeline models. 
 
 

 
Figure 6: Multiple Pipeline CNN followed by GRU predictions on S&P 500 Dataset. X axis shows 
the time segment for the index and prediction window. Y axis shows the closing price. Continuous 
plot is the actual closing price, predictions are shown as disjoint plots. 

 
 



 

 

    
 
 

   

       
       
       

 

 
Figure 7: Multiple Pipeline CNN followed by Bidirectional GRU predictions on S&P 500 Dataset. 
X axis shows the time segment for the index and prediction window. Y axis shows the closing 
price. Continuous plot is the actual closing price, predictions are shown as disjoint plots. 

 

 7. CONCLUSION AND FUTURE WORK 
In this paper, for the purpose of predicting stock index trend, we proposed new 

architectures of multiple pipeline deep learning models, consisting of CNN and uni-
directional or bi-directional GRUs. We compared the performance of each proposed model 
with existing best performing deep learning models created using either single or multiple 
pipelines of CNN & Bi-directional LSTM units. We observed that multiple pipelines of 
deep layers that concatenate the best of the results from individual pipelines, perform better 
than single pipeline model in terms of mean squared error. Multiple pipeline Bi-directional 
GRUs showed the lowest mean squared error among all the models, due to its capability to 
learn from sequences of time-series data in both forward and backward direction. GRUs 
were much faster to train and predict, due to the lesser number of memory gates as 
compared to LSTM. Future work aims at integrating into the prediction process the impact 
of news and events through sentiment analysis. 
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