
Novel Hash-Based Radix Sorting Algorithm

Paul K. Mandal

Department of Computer Engineering

California State University Fullerton

Fullerton, USA

pmandal@csu.fullerton.edu

Abhishek Verma

Department of Computer Science

New Jersey City University

Jersey City, NJ 07305

averma@njcu.edu

Abstract— Sorting remains a quintessential problem in
computer science, considerable research has focused on how
to sort more efficiently a collection of elements. Although
there are many algorithms that can handle the sorting of
objects, most are comparison sorts. o sort objects in linear
time, either Bucket Sort or Radix Sort can be used. With
both algorithms, the corresponding array indices represent
a hash for the object. However, Radix sort also requires an
auxiliary array. In this paper, a hash table in place of the
array in the Radix Sort algorithm is proposed. Using a hash
table in place of the array in Radix Sort should avoid the
calculations for the array and are better suited for handling
objects than static arrays. As with an array-based Radix
sort, the hash-based Radix Sort should maintain linearity.
This methodology thereby should sorting objects efficiently
and in linear time.

Keywords— sorting; counting sort; radix sort; hash; chaining.

I. INTRODUCTION

 Sorting is a process to order a set of elements by some
parameter in order to handle them more efficiently [1]. For
example, within a database of people, searching for someone
would be facilitated greatly if the database names were sorted in
alphabetical order. Sorting and searching remain two of the
oldest and oft-studied problems in algorithm programming.

 The amount of information found on the internet doubles
every two years [2]. This exponential growth concomitantly has
increased the literature on sorting algorithms. Of the well-
known sorting algorithms (quick sort, insertion sort, selection
sort, merge sort, and others), merge sort and quick sort are
unique since they possess an average runtime of O(n log n).
Merge sort's worst case runtime also is O(n log n) while quick
sort's worst case runtime is O(n2) [3]. Counting sort and radix
sort perform much better in terms of time efficiency. However,
the arrays used in counting sort do not lend themselves well to
sorting objects. Although radix sort can sort objects in linear
time, it still requires the use of an auxiliary array [4]. Because
of the inherent inefficiency in radix sort for objects, the
following hypothesis now is proposed: replacing the array with
a hash table could (1) sort objects; (2) obviate much of the
arithmetic calculations required for counting sort, and (3) still
run in linear time independent of the number of elements to be
sorted.

 This remainder of this paper is organized in the following
sections: section II outlines concept of this hash sort algorithm,;
section III covers how hash sort works; section IV discusses

details of hardware and software specifications used; section V
outlines how we tested hash sort was tested along with the
results; section VI summarizes the findings; and-- finally--
section VII proposes avenues for future investigations.

II. BACKGROUND

Understanding the current literature of sorting algorithms

and data structures provides insight to how the hypothesis of

replacing the array with a hash table in radix sort was

developed.

A. Comparison Sort:

The sorted order determined by a comparison sort is based

solely on comparing the elements. For a worst case scenario, a

comparison sort must make Ω(n lg n) comparisons to sort n

elements [4,5]. Consequently, the time required to sort a greater

number of elements increases exponentially. Henceforth,

improving comparison sorts would only bring marginal

differences of sorting time, at the very best yielding

improvements by a factor of some constant [4]. In order to sort

in linear time, a different sorting algorithm is required.

B. Counting Sort:

The simplest counting sort works in the following manner:

for a set of positive integers, an array with a length equivalent

to that of the largest number in the set is created. Then, loop

through the set, and for every element e, increment the index of

the array at e by 1. Then loop through the array, and decrement

each index until it reaches zero, adding a number to the set

equivalent to the value of the index each time. This process is

shown in Fig. 1.

Intuitively, there are two problems with this rather simple

counting sort example: (1) It is memory intensive (it must create

an array that is in length as long as the highest number) and (2)

It does not use memory efficiently if the number of elements in

the list is not close to the largest number in the list [4].

COUNTINGSORT(A[], B[], k)

 for I = 0 to k

 C[i] = 0

 for j = 1 to A.length

 C[A[j]] = C[A[j]] + 1

 for i = 1 to k

 C[i] = C[i] + C[i – 1]

 for j = A.length downto 1

 B[C[A[j]]] = A[j]

 C[A[j]] = C[A[j]] – 1

C. Radix Sort:

Radix sort solves the memory problem encountered in

counting sort first by sorting by the least significant digit and

then by identifying the next least significant digit until it

reaches the most significant digit. In this case, since the digits

are in base 10, the arrays are only 10 digits long. This is called

Radix. If sorting uppercase letters, the Radix would be 26. Fig.

2 demonstrates this process.

Overall, radix sort is poorly written to deal with objects

since counting sorts work by incrementing an index of an array.

Furthermore, the stable counting sort in radix has four inner

loops and a variety of arithmetic computations. Optimization

for radix sort can occur in a variety of ways. Some take

advantage of hardware such as CC-Radix [6]. Others add

features that make it more efficient, such as using insertion sort

for a small number of keys, modifying radix sort to use a 2-d

array to make it more efficient [7]. Lastly, using key pointers

for partitions also can augment efficiency [8]. In all instances,

these optimizations do not eliminate the auxiliary array.

D. Hash Table:

In a hash table, the methodology for storing data requires

keys, which are mapped to indices. Each element is stored in a

certain index in the table given by a hash function. A hash table

has a worst case search time of O(n) and an average search time

of O(1) [9]. The main problem with hashing is that the number

of possible indexes generated by the hash function is less than

all of the potential keys. Two different keys thus can map to the

same index-- commonly termed a collision.

E. Chaining:

Collisions can be resolved through chaining [9].

Specifically, if two elements are hashed to the same index, then

one element is chained to the end of the previous element. Thus,

each index in the hash can be viewed has having a

corresponding list. Since new elements are inserted at the end

of the hash, the elements retain the order in which they were

inserted.

III. PROPOSED HASH BASED RADIX SORTING ALGORITHM

Based on the above discussion, a HASHSORT algorithm. is
proposed, which is inspired from radix sort. Objects are sorted
starting from the least significant digit, then the next least
significant digit and so forth. The main difference is that the
objects are stored in a hash rather than an array. Furthermore, if
an object is being sorted by one of its parameters, the number of
indices in the hash only needs to match the radix of the given
parameter.

Fig. 1 Sorting with Counting sort a list of eight different 1-digit numbers

HASHSORT(Arr[], size, dim, Radix)

 for i = 1 to dim

 Hash h = new Hash()

 for j = 0 to size – 1

 int key = Arr[j]/Radix^(i – 1)

 % Radix

 h.add(Arr[j], key)

 for j = 0 to size – 1

 Arr[j] = h.getFirst()

 This method utilizes four parameters: "Arr[]" which is the
sequence to be sorted, "size" which specifies the length of Arr[],
"dim" which specifies the number of digits in each number, and
"Radix" which specifies the radix of the numbers to be sorted.
The outer loop simply traverses through each digit going from
the least significant digit to the most significant digit.

 A hash is created wherein the values will be temporarily
stored. The first inner loop iterates through the array. A key is
created that is simply the "i"-th digit of the "j"-th number. The
number then is inserted into the hash at the corresponding index.
The second inner loop removes each object from the hash.

 Since hash sort does not run counting sort in its inner loops
like a regular radix sort does, it does not require the arithmetic
used in the auxiliary array. If pointers are managed correctly,
more efficient sorting of objects in linear time should occur.

IV. HARDWARE AND SOFTWARE

 Hash sort was tested on a Virtual Machine (VM) using
VMWare Workstation. The VM had 8 gigabytes of ram, 4 cores
from an Intel 6700K, and was connected by a 7200 RPM hard
drive connected to the host by USB. Our VM ran Linux Mint
18.1, with the Mate GUI since it is less graphically intensive.
Hash sort was written and compiled using C++.

V. EXPERIMENTAL RESULTS AND DISCUSSION

As described above, this algorithm has two main parameters
that affect its runtime: (1) the number of elements and (2) the
number of digits in each number. In order to test how the number

of elements affects the runtime, random sets of five-digit
numbers were generated. Hash sort then was run on each of
these sets for a total of five times. The results are summarized in
Table I and Fig. 3. Next, as demonstrated in Table II and Fig.4,
by fixing the number of elements to 1000, the same process was
repeated in order to test how changing the number of digits
affected runtime.

Fig. 2 Sorting with Radix sort a list of eight different 3-digit numbers

TABLE I. NO. OF ELEMENTS VS. RUNTIME RUNTIME FOR

PROPOSED HASH BASED RADIX SORTING ALGORITHM

Number of Elements Runtime (ms)

10 0.0438

20 0.038

50 0.0654

100 0.0726

200 0.1532

500 0.48

1000 0.7854

2000 1.5448

5000 4.542

10000 7.9902

Fig. 3 Plot of number of elements vs. runtime for proposed Hash Based Radix Sorting Algorithm.

Fig. 4 Plot of number of digits vs. runtime for proposed Hash Based Radix Sorting Algorithm.

 Both Fig. 3 and Fig. 4 illustrate how hash sort scales linearly
as the number of elements and digits are changed, making it O(w
* n) where w denotes the number of digits and n is the number
of elements. This hash data structure thus is better suited to
handle objects and dynamic structures than an array. Moreover
if returning an array is not required, one could return the final
hash instead of a sorted array during the final step of hash sort
since a hash has an O(1) search time.

VI. CONCLUSION

 A new algorithm that used a hash in place of the auxiliary
array in radix sort now has been proposed. A hash sort can order
elements by the value of a digit in question by simply using the
digit as a key. As shown, hash sort scales linearly with both the
number of digits and with the number of elements.

VII. FUTURE WORK

 Future work on this algorithm should focus on how to
optimize traversal through the hash and calculating the keys.
Leveraging advantages of hardware could also prove fruitful.
Conceivably, a multithreaded version of this algorithm could be
developed, thereby further decreasing the runtime., either by
using the merge method in merge sort. In this manner, further
gains in efficiency could be achieved by sending numbers that
are closer in range to the same execution thread.

REFERENCES

[1] P.Adhikari, Review on Sorting Algorithms, "A comparative study on two

sorting algorithms", Mississppi state university, 2007.

[2] Zhang, G., Zhang, G., Yang, Q., Cheng, S. and Zhou, T. (2008). Evolution
of the internet and its cores. New Journal of Physics, vol. 10 no. 12,
p.123027.

[3] K. Al-Kharabsheh, I. AlTurani, A. AlTurani, and N. Zanoon, "Review on
sorting algorithms a comparative study," International Journal of
Computer Science and Security (IJCSS), vol. 7, no. 3, 2013

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Sorting in
linear time” in Introduction to Algorithms, 3rd ed. Cambridge, MA: MIT
Press, 2014, ch. 8, pp. 191-212.

[5] D. Knuth, The Art of Computer Programming, 3rd ed., vol. 3, Addison
Wesley, 1973, ch 5, pp. 168 - 179

[6] D. Jimenez-Gonzalez, J. J. Navarro, and J. Larriba-Pey, "CC-Radix: a
cache conscious sorting based on Radix sort," Eleventh Euromicro
Conference on Parallel, Distributed and Network-Based Processing,
2003. Proceedings., Genova, Italy, 2003, pp. 101-108.

[7] P. M. McIlroy and K. Bostic, “Engineering radix sort,” Computing
Systems, vol. 6, no. 1, 1993

[8] I. J. Davis, “A fast radix sort,” The Computer Journal, vol. 35, no. 6,
December 1992 Pages 636–642.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Hash tables”
in Introduction to Algorithms, 3rd ed. Cambridge, MA: MIT Press, 2014,
ch. 11, pp. 253-285.

TABLE II. NO. OF DIGITS VS. RUNTIME FOR PROPOSED

HASH BASED RADIX SORTING ALGORITHM

Number of Digits Runtime (ms)

1 0.094

2 0.213

3 0.3292

4 0.3944

5 0.5558

6 0.9742

7 0.9836

8 1.1052

9 1.5798

