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Abstract: Deep learning has become a powerful tool in modeling 
complex relationships in data. Convolutional neural networks 
constitute the backbone of modern machine intelligence applications, 
while long short-term memory layers (LSTM) have been widely 
applied towards problems involving sequential data, such as text 
classification and temporal data. By combining the power of multiple 
pipelines of CNN in extracting features from data and LSTM in 
analyzing sequential data, we have produced a novel model with 
improved performance in stock market prediction by 20% upon single 
pipeline model and by five times upon support vector regressor model. 

We also present multiple variations of our model to show how we 
have increased accuracy while minimizing the effects of overfitting. 
Specifically, we show how changes in the parameters of our model 
affect its scores for training and testing, and compare the 
performance of a multiple pipelines model using three different 
kernel sizes versus a single pipeline model. 
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1 INTRODUCTION 

Stock market prediction has been the subject of intense research. On one end, the 

Random Walk Hypothesis states that prices evolve according to random price changes, 

and the Efficient-Market Hypothesis states that prices reflect all currently available 

information, which would mean that prediction of stock prices is impossible [1]. There 

are, of course, numerous investment managers who claim that they will outperform the 

market, and are paid handsomely by their clients due to that claim. They may not be 

knowingly selling false products, but the use of inappropriate statistical tools and lenient 

standards for evaluating trading strategies can lead to inflated estimates of performance 

[2]. 

 More modern approaches to stock prediction include the use of deep learning 

algorithms such as neural networks. One problem with the application of neural networks 

towards financial problems is about the types of tasks they are suited for. Typically, 

neural nets have been applied towards tasks to which humans are well-suited, such as 

recognizing the content of an image, or converting speech into text. However, in the case 

of stock prediction, humans have a dubious ability to predict stock performance. The 

hope is that deep learning approaches will be able to model complex nonlinear 

relationships between variables that are too difficult for humans – and traditional 

statistical models – to understand [3]. 

 The rest of this paper is organized into six main parts. Section 2 reviews related 

literature in the field of machine learning, neural networks, and stock prediction. Section 

3 defines the details of the S&P500 stock index dataset. Section 4 presents the detailed 

structure of the model layer by layer. Section 5 describes the experimental environment. 

Section 6 describes the training and configuration of the model. Section 7 discusses the 

results and challenges. Section 8 concludes the paper. 
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2. BACKGROUND WORK 

The following subsections review the literature behind neural networks, time-series 

forecasting, and stock market prediction. 

2.1 Neural Networks 

2.1.1 Convolutional Neural Networks 

Convolutional Neural Networks, or CNNs, operate by extracting features from data 

[4]. Unlike fully-connected layers, each convolutional layer is connected only to a small 

region of neurons from the previous layer. This region is determined by the kernel size 

and stride parameters. They are most commonly used to analyze spatial data, especially 

images and video [5]. Although, the functionality that CNNs perform could technically 

be performed using traditional fully-connected layers, it quickly becomes prohibitively 

expensive to do so, due to traditional dense layers needing to relearn a feature at every 

input position. One paper found that, after using five fully connected layers with a total of 

12,174,500 weights, the model’s performance in predicting the direction of financial 

market movements was only slightly better than random selection [6]. The use of CNNs 

allows for a much more efficient use of computing resources, due to the limited number 

of connections and weights needed compared to fully connected layers.  

2.1.2 Recurrent Neural Network 

Recurrent Neural Networks, or RNNs, differ from traditional neural networks in that, 

during training, they are influenced not only by the current training example, but by 

previous decisions made on earlier training samples. This memory makes it well suited 

for capturing non-linear relationships in data that is sequential in nature, such as text or 

time series data [7]. However, recurrent neural networks face the problem of vanishing 

gradients, where training becomes exponentially difficult with the addition of hidden 

layers [8]. This happens during training, as a gradient is back-propagated through the 

model. As it travels through the layers, the gradient is reduced, such that the earlier layers 

see a much smaller gradient than later layers, and train much slower. 

2.1.3 Long-Short Term Memory 

Long short-term memory (LSTM) units are used to build recurrent neural networks 

(RNNs). LSTMs enhance the ability of RNNs by being able to remember previous values 

and prioritize learning from newer data in a sequence over older data. This allows it to 

solve problems involving long time lags that were difficult to solve with older 

approaches, such as language processing. The memory of LSTM units also solves the 

problem of vanishing gradients, as the memory allows a gradient to move from one 

hidden layer to the next without being reduced, letting early layers of a neural network 

train almost as well as later layers [9]. Evidence has shown LSTMs to be more effective 

than conventional RNNs [10]. 

2.2 Stock Market Prediction 

2.2.1 Automated Trading 

Modern stock trading has moved away from human stock brokers towards automated 

computer systems that trade stocks using a predefined set of rules based on a trading 

strategy. This allows for a much faster trading speeds, and a more precise development of 

trading strategy using testing on historical stock data [11]. Modern high-frequency 
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trading measure time intervals between trades by the millisecond, and competing 

algorithms fight for fractions of a cent in profit. 

2.2.2 Traditional Machine Learning Algorithms 

Traditional machine learning approaches to stock prediction include the use of non-

neural network supervised learning algorithms, such as support vector machines. Due to 

these tools being versatile, but not quite as powerful as neural networks, many traditional 

machine learning approaches focus on improving their performance with different 

techniques for feature extraction to select the most promising features from a dataset. 

One example of such an approach is the use of independent component analysis to 

extract important features from a dataset, which is used to train support vector machines 

[12]. Independent component analysis was shown to improve results over a pure support 

vector machine approach [12]. Unlike the dataset used for the model described in the rest 

of this paper, the dataset examined a number of technical indicators in combination with 

stock closing prices [12]. 

Another approach using support vector machines attempts to improve performance 

using Particle Swarm Optimization, a technique that uses a population of software agents 

to seek out optimizations in the solution space [13]. Although our approach uses neural 

networks, there are similarities in that the particles in particle swarm optimization have a 

memory that allows them to revert to previous and more advantageous positions [13], 

which is reminiscent of how LSTM networks can remember previous values to make it 

more resilient to the vanishing gradient problem. 

Chen et al. proposed the McDSL algorithm for discovering causalities on high-

dimensional discrete data, which would help reduce the problem space of high-

dimensionality data, such as stock market data [14]. McDSL follows a two-phase 

structure, which aims to first find relationships between variables, and then establish the 

direction of cause-effect between those variables. 

Traditional trading strategies often involve creating and evaluating stock portfolios. 

By applying a Mean-Variance framework to stock portfolios, researchers were able to 

evaluate the efficiency of anomaly-based trading strategies [15]. In order to simplify the 

problem space, we chose to look at only a single index. 

A benefit of traditional machine learning algorithms over neural network approaches 

is that algorithms such as support vector machines can be more interpretable than those of 

neural nets [16]. For short term forecasting (defined as one or two weeks), support vector 

regression has been shown to perform as well or better than a basic neural network 

approach using multilayer perceptrons [17]. However, with the advent of more advanced 

types of neural networks, such as convolutional neural networks, deep learning 

approaches to tough regression problems such as stock prediction are showing more 

promise in their use. 

2.2.3 Deep Learning Algorithms 

Some approaches to stock prediction with neural networks include the use of LSTM 

to overcome limitations with traditional RNNs when it comes to vanishing gradients [10] 

[18]. 

Another approach uses deep belief networks, combined with an oscillation box 

trading strategy, to perform automated trading. Unlike our approach, which looks at the 
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overall index price, the authors of this paper chose to look at 400 individual stocks in the 

S&P500 [19]. 

2.2.4 Technical Analysis 

Technical analysis involves the use of technical indicators and the study of charts to 

make predictions. One paper compared different methods of stock prediction and found 

that their neural net approach attained better accuracy than an approach utilizing analysis 

of technical indicators [20]. Technical indicators are calculated using various sequence 

lengths of previous stock prices. By applying CNNs to longer sequences of stock prices, 

we hope to have the neural net learn relevant features from the prices themselves, rather 

than relying on technical indicators developed by humans to generate predictions. 

3. DATASET DESCRIPTION 

The dataset used for this research consists of historical stock prices for the S&P500. 

Specifically, it uses the daily closing price of the index from January 3, 2000 to 

December 1, 2017, as shown in Figure 1. The S&P500 was chosen due to it being a good 

representation of the US economy, and due to its stability compared to individual 

company stock prices. Statistical analysis shows that the autoregressive moving average 

model for S&P500 outperforms the London Stock Exchange, suggesting better potential 

for predictive models [23]. An analysis of the variance of the S&P500 also rejects the 

Random Walk Hypothesis, which makes it a more promising subject for the training of 

the neural network [1]. 

4 RESEARCH METHODOLOGY 

4.1 Data Segmentation 

The stock market data was converted from daily closing prices into sequences of 50 

closing prices, with the last price of each sequence being one day after the sequence 

before it. Tests were performed using sequences of length 20, 50, and 100, with 50 

performing the best out of the three lengths. 

Figure 1: Historical S&P500. Y axis measures the closing price. 
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4.2 Data Normalization 

Each of the segments was normalized by subtracting each price in the sequence by 

the first price in the sequence, then dividing by the first price in the sequence. This form 

of normalization is called relative change. Normalization means that the deep learning 

network will look at the degree to which the prices changed over time, rather than the raw 

prices themselves, allowing it to generalize to a wider range of input values. 

4.3 Single Pipeline Deep Learning Model 

The single-pipeline deep learning model as shown in fig. 2 consists of three CNN 

layers, feeding into two LSTM layers, feeding a dense output layer. The first CNN layer 

consists of 128 filters. The second CNN layer consists of 256 filters. The third CNN layer 

consists of 512 filters. All three layers use a kernel size of 5, as well as a stride of 2. 

Batch normalization occurs after each layer, which is followed by a rectified linear unit. 

Max pooling follows the ReLU, which uses a pool size of 2.  

The two LSTM layers have identical numbers of units. The model was tested using 

200 and 400 LSTM units. During training, the first LSTM layer uses a dropout value of 

0.25, while the second layer uses a dropout value of 0.5, to reduce the amount of overfit 

in the model. This then feeds into a linear activation unit for output. We compare later in 

this paper results of single-pipeline model with the proposed multiple pipelines deep 

learning model. 

 

Figure 2: Single-Pipeline deep learning model 
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4.4 Proposed Multiple Pipelines Deep Learning Model 

The multiple pipelines model is shown in fig. 3. It combines the three most 

promising single pipeline models to use the best predictive aspects of all three. CNN 

layer is followed by batch normalization, activation layer that uses rectified linear units, 

and max pooling layer. Due to the increase in training time needed for the multiple 

pipelines model, the multiple pipelines model uses a single 400 unit LSTM layer instead 

of two 300 unit LSTM layers. Also, to save training time, rather than vary the parameters 

of the CNN layers of each pipeline independently, we tested one parameter that 

represents how much the kernel size increases between pipelines. For example, with a 

step size of two and a starting kernel size of five, a three-pipelines model would have 

kernel sizes of 5, 7, and 9 for each of its CNN layers within a pipeline. 

Combination of the pipeline predictions is done using concatenation of the outputs of 

each pipeline, which was found to improve the model’s performance vs. averaging the 

outputs of the pipelines. 

5. EXPERIMENTAL ENVIRONMENT 

The machine used for training was a Windows 10 PC, with 8 GB of RAM, an Intel 

4770K CPU, and an Nvidia 780 GTX GPU. The training and testing procedures were 

coded in Python 3, with the models being constructed using Keras [26] and TensorFlow 

[25]. 

The Nvidia 780 GTX is a gaming GPU, released in 2013, with 3 GB of video 

memory running at a frequency of 6.0 Gbps, and 2304 cores running between 863 and 

900 MHz, depending on the card’s temperature [24]. It is normally used for hardware 

acceleration of 3D graphics for video games. However, GPUs have enormous 

computational power, particularly with highly parallel calculations, and with Nvidia’s 

 

Figure 3: Proposed Multiple Pipelines deep learning model. 

Table 1: Results from Support Vector Regressor on S&P 500 Dataset 

Kernel C Gamma Mean Test Score 
Mean Train 
Score 

rbf 0.126485522 0.120679264 0.001659199 0.001449364 

rbf 0.059636233 0.212095089 0.001668910 0.001416561 

rbf 0.086851137 0.212095089 0.001696734 0.001458230 

rbf 0.040949151 0.372759372 0.001717464 0.001417301 

Note: rbf is radial basis function. Mean Test Score and Mean Train Score are computed from Mean 
Squared Error. 
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release of CUDA, that power became available for uses outside graphics programming, 

such as cryptocurrency mining and the training of deep learning models. GPUs are well-

suited to training neural networks due to the parallel nature of calculating neuron weights 

during back propagation. 

TensorFlow [25] is an open-source machine learning library developed by Google 

Brain, a section of Google dedicated to AI research. It uses dataflow graphs to represent 

computations in terms of the dependencies between individual operations [25]. It has uses 

in a variety of machine learning and artificial intelligence applications. Using their 

Python API directly gives us more control over how it uses hardware, and the ability to 

use multiple GPUs during training. 

Keras is a high-level API specifically for neural networks written in Python [26]. We 

chose TensorFlow to use as its backend. It operates at a higher level of abstraction than 

TensorFlow, and allows us to stack deep learning network layers with simple API calls. 

This in turn made it easier to change the model parameters so that we could experiment 

with many different combinations of values. 

Other software libraries used include Numpy, a Python library that adds a number of 

scientific computing functions, and SciKit-Learn [21], which added a number of 

functions used during training, such as grid search and cross validation. It was also used 

for the development of the support vector regressor model used as a comparison for the 

deep learning network models. Pandas was used to handle loading data from the CSV. 

Table 2: Results from Single Pipeline Deep Learning Model on S&P 500 Dataset 

Kernel Sizes LSTM Units Mean Test Score Mean Train Score 

5, 9, 13 400 0.000290009 0.000278847 

5, 7, 9 400 0.000292874 0.000281922 

5, 7, 9 200 0.000348505 0.000341443 

Note: Mean Test Score and Mean Train Score are computed from Mean Squared Error. 

Table 3: Results from Proposed Multiple Pipelines Deep Learning Model on S&P 500 Dataset 

Kernel Size LSTM Units Mean Test Score Mean Train Score 

9 400 0.000240905 0.000232545 

5 200 0.000273995 0.000262546 

5 400 0.000340446 0.000335832 

Note: Mean Test Score and Mean Train Score are computed from Mean Squared Error. 
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6. TRAINING OF SINGLE PIPELINE AND PROPOSED MULTIPLE PIPELINES DEEP 

LEARNING MODELS 

Grid search using five-fold cross-validation was used to tune the parameters for the 

single pipeline and multiple pipelines models. For each training run of single-pipeline 

models, five models could be compared at a time. Due to the increased number of 

weights, only two to four multiple pipelines models could be compared for each run, 

usually varying a single model parameter. To compensate for this, many training runs 

needed to be conducted to make enough comparisons between models of different 

parameters. Early stopping was also used to reduce the time spent training, with patience 

being set to 20 epochs. 

Adadelta was used as the optimization method for training, with mean square error 

set as the loss function. Adadelta has several advantages over traditional optimization 

methods. Unlike Stochastic Gradient Descent, Adadelta does not require setting a training 

rate, which eliminates having to optimize an additional parameter [22]. It is also robust to 

different model architecture choices [22], which is important in our case due to our 

having to compare models with varying numbers of layers, as well as the parameters for 

those layers.  

Figure 4: Support Vector Regressor predictions on S&P 500 Dataset. X axis shows the time 
segment for the index and prediction window. Y axis shows the closing price. Continuous plot is 
the actual closing price, predictions are shown as disjoint plots. 
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7. EXPERIMENTAL RESULTS AND DISCUSSION 

7.1 Support Vector Regressor Model Results 

Considering that in the past support vector regressor has received much attention due 

to its success in stock market prediction, we decided to compare it’s results with deep 

learning models. The results from top four Support Vector Regressor models are 

displayed in Table 1. A total of 5000 models were tested and five folds cross validation 

was performed using different kernels and different values for C and gamma. 

Performance metric is mean squared error (MSE). 

The radial basis function (rbf) was the best performing kernel out of the three tested: 

RBF, linear, and polynomial, with the degree set to two for the latter. This was expected, 

as RBF is better suited to handling data that is non-linear in nature compared to the linear 

and polynomial kernels. 

7.2 Single Pipeline Deep Learning Model Results 

While searching for optimized parameters, we found that certain parameter values 

made the model more sensitive to changing values for other parameters. For example, 

looking at the MSE results of training the single pipeline model in Table 2, we found that 

setting the CNN layers to have a kernel size of 9 gave best performing models, out of the 

three compared, with the top and bottom models set to 400 and 200 LSTM units 

respectively. 

Figure 5: Single Pipeline Deep Learning Model predictions on S&P 500 Dataset. X axis shows the 
time segment for the index and prediction window. Y axis shows the closing price. Continuous plot 
is the actual closing price, predictions are shown as disjoint plots. 
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7.3 Proposed Multiple Pipelines Deep Learning Model Results 

Examining Table 3, containing the multiple pipelines model results, we observe the 

best performing model outperforms the single pipeline model. The top performing model 

used 400 units, while the bottom used 200. Interestingly, with the 400 unit models, the 

one with larger step sizes performed better, while with the 200 unit model, the one with 

the smaller step size had a better test score. 

7.4 Comparison of Results across Models 

Multiple pipelines models generally outperformed the single pipeline models and 

support vector regressor. Best performing multiple pipelines model obtained 20% better 

MSE than single pipelining model and improved by a factor of five compared to best 

results from support vector regressor. Our idea that using multiple pipelines would allow 

the model to combine the strengths of the three different kernel sizes was reflected in the 

results. Best performing single pipeline model outperformed support vector regressor by 

a factor of four. 

The top-scoring models were used to generate graphs of the predictions for each year 

from January 1st to June 1st, with each segment representing the next seven predictions 

based on the previous fifty points. See figs. 4, 5, 6. The predictions from the multiple 

pipelines model fig. 6 seem to follow the actual prices more closely than the single 

pipeline model fig. 5 and support vector regressor fig 4 and is willing to make larger 

changes in direction. 

Figure 6: Proposed Multiple Pipelines Deep Learning Model predictions on S&P 500 Dataset. X 
axis shows the time segment for the index and prediction window. Y axis shows the closing 
price. Continuous plot is the actual closing price, predictions are shown as disjoint plots. 
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Both deep learning models greatly outperformed the support vector machine 

approach, both in terms of after examining the MSE and from looking at graphs of the 

predictions. Even comparing the performance of the best support vector machine model 

to the worst multiple pipelines model, the deep learning approach performed roughly 

three times better. Much of this is due to the simplicity of a pure support vector machine 

approach. 

8 CONCLUSION AND FUTURE RESEARCH 

In this paper we proposed a new deep learning model that combined the 
power of multiple pipelines of CNN in extracting features from data and LSTM in 
analyzing sequential data. Our model improved accuracy in stock market 
prediction upon the popular support vector regressor model and single pipeline 
deep learning models. We also presented multiple variations of our model to 
show how we have increased accuracy. 

Future research would apply deep learning towards classification of stock direction, 

rather than using it for regression. Classification of direction would result in a greatly 

simplified problem space compared to prediction of stock prices. Another area of 

research to pursue would be to include stock sentiment and event analysis in stock market 

prediction. 
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