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Abstract— In Reinforcement Learning, a category of machine 

learning, learning is based on evaluative feedbacks without any 

supervised signals. The paper presents work aimed to 

understand the deep reinforcement learning approaches to 

creating such intelligent agents, by reproducing existing research 

and comparing their results. The project uses the Atari 2600 

game called Breakout, in which the agent will learn control 

policies using deep reinforcement learning approaches to achieve 

a high score. The project explores two deep reinforcement 

learning approaches, Asynchronous Advantage actor-critic and 

Deep Q-Learning, both proposed by the DeepMind team, to train 

intelligent agents that can interact with an environment with 

automatic feature engineering thus requiring minimal domain 

knowledge. 
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Policy Gradient; Deep Q-Learning Network; Asynchronous 
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I. INTRODUCTION 

Reinforcement Learning (RL) is a class of machine 

learning (ML) models where the learning process is based on 

evaluative feedbacks without any supervised signals [1, 8]. RL 

aims to create agents similar to the humans, which learn for 

themselves by trial-and-error, solely from rewards or 

punishments, to develop successful strategies that eventually 

lead to the largest long-term rewards. In the past, the success 

of reinforcement learning tasks for an agent operating on a 

domain has mostly relied on the hand-crafted feature 

representations of that domain, thus varying the performance 

based on the quality of the representation. We can conclude 

that learning to control an agent solely from high-dimensional 

inputs such as vision data is one of the main challenges of 

reinforcement learning due to the large amount of data needed 

for training. These agents need to observe the state of the 

environment and take actions in this environment. The agent, 

for each of the actions taken, receives either a reward or 

penalty using which it learns to maximize the long-term 

rewards thus allowing it to be successful in the environment. 

We have used in our research the Atari 2600 game called 

Breakout, in which the agent will train and learn control 

policies using deep reinforcement learning approaches to 

achieve a high score. In this paper we compare two existing 

approaches, Asynchronous Advantage actor-critic and Deep 

Q-Learning, both proposed by DeepMind team. Our goal is to 

to create a deep learning model that successfully learns control 

policies directly from high-dimensional sensory input  (such 

as image data) using reinforcement learning and understand 

the deep reinforcement learning approaches to creating such 

intelligent agent.  

The paper is organized as follows. In Section II we define 

reinforcement learning and present significant deep 

reinforcement learning methods. Description of the project 

functionality is given in Section III.  Simulation results and 

analysis are presented in Section IV. Concluding remarks and 

future work are presented in Section V. 

II. REINFORCEMENT LEARNING 

In RL, an agent learns from evaluative feedback without 

receiving any supervised signals. An RL agent interacts with 

an environment as follows: at each time , the agent receives a 

state in a state space  and selects an action  from an 

action space  by following a policy . The policy is 

defined to be the behavior of the agent; the policy acts as a 

mapping from state  to action . By performing the action, 

an RL agent receives a reward  and transitions to the next 

state  based on the environment model. The model 

consists of the environment’s reward function  and 

the state transition probability . An RL agent 

continues the interaction with the environment until it reaches 

some terminal state and then it restarts. The return 

 of each state is the discounted, 

accumulated reward with the discount factor . The 

agent aims to maximize the expectation of the long-term 

return from each state. The value function is the central 

concept to reinforcement learning, as it measures the goodness 

of a state or a state-action pair. It can be either a state value 

 – the expected return for following a policy  from 

state  or an action value  – the expected return for 

selecting action  in state  and then following policy . It is 

also used as a prediction of the expected, accumulated, 

discounted future reward. The goal of the agent is to find an 

optimal policy  to maximize the expectations of long-term 

rewards. 



 

 

 

 

Figure 1. RL problem 

 

 
Figure 2. RL problem and algotirthm types 

 

The RL problem (Fig. 1) defined by the 5-tuple 

 can be formulated as a Markov Decision 

Process (MDP) or a Partially Observable Markov Decision 

Process (POMDP) and can be further divided into three 

problems: prediction or policy evaluation problem, control 

problem, and planning problem. Prediction or policy 

evaluation problem involves computing the state or the action 

value for a policy. Control problem involves finding the 

optimal policy. Planning problem involves construction of a 

value function or a policy with a model. In case a model is 

available, dynamic programming methods (policy evaluation, 

policy or value iteration to find optimal policy) are used. In 

case a model is not available (a so-called model free 

environment) the RL methods such as Temporal Difference 

Learning, Q-Learning, and Actor-Critic are used (Fig. 2). 

The RL algorithms design to solve the RL problems can be 

some value function and/or policy based, model-free or 

model-based, on-policy or off-policy based, some function 

approximation or not. Usually the RL methods are used with 

tabular spaces of state and action that tend to be small. To 

generalize to much larger or continuous spaces, the concept of 

function approximation is used. A function approximation is 

an attempt to construct an approximate of an entire function 

using examples of the function and is a more general method. 

OpenAI Gym [2] provides a toolkit for reinforcement 

learning research. It consists of a collection of environments 

that are modelled as POMDPs. At each step the RL agent 

takes an action, receives an observation and a reward from the 

environment (Fig. 3).  

 

Figure 3. Agent-environment interaction 



 

 

 

The agent continues to interact with the environment until 

it reaches the terminal state and then restarts. The goal of this 

episodic reinforcement learning is to maximize the 

expectation of the total reward for each episode. The OpenAI 

Gym’s Atari environment offers the Atari 2600 games as 

testbeds for developing AI agents. The project uses the 

Breakout game environment for evaluating the RL algorithms. 

The Breakout game environment is created using the Gym’s 

make module, and initialized to get the first observation of the 

environment, which consists of a 210 x 160 pixels RGB image 

that represents the state of the environment. The created 

environment provides a step function that allows for an action, 

taken from game’s action space, to be inputted and returns the 

new observation, a float reward, a Boolean flag, and a 

dictionary info. The new observation represents the new state 

of environment after performing the action and corresponding 

reward received for that action. The Boolean flag denoted the 

terminal state of the environment thus notifying if an 

environment restart is required. The info dictionary provides 

additional information helpful for debugging.   
 

 
Figure 4. RGB image representing state of environment 

 

The RBG image is cropped, resized into 84 x 84 and 

converted to grayscale as a part of the preprocessing step (see 

Fig. 5). This reduces the number of computations required by 

the learning network and speed up the training process. 

 
Figure 5. Preprocessed observation 

Deep Reinforcement Learning methods [3,4,5,6,7] use 

deep neural networks as function approximator to approximate 

either the value function  / , or the policy 

, or the model (state transition function and reward 

function). The parameter  represents the weights of the deep 

neural network and stochastic gradient descent, optimization 

technique, is used to update the weight parameters during the 

learning steps. The project explores two deep reinforcement 

learning approaches, Deep Q-Learning and Asynchronous 

Advantage actor-critic, proposed by the DeepMind team.  

For each of the two methods, we follow the steps below: 

1. Environment loading: 

a. Selecting the environment where the agent will 

learn. The environment presents the agent with 

observations, performs actions specified by the agent 

and returns the rewards.  

b. Setting the parameters of the environment as 

required for the learning process. 

c. Preprocessing the observations to create the state. 

2. Network implementation: 

a. Implementing the primary network – to choose an 

action 

b. Implementing the target network – to generate Q-

values for that action 

c. Creating helper functions to: 

  i. Implement experience replay to help the 

network train from experience. 

  ii. Update the parameters of target network 

with primary network. 

3. Network training: 

a. Setting the training parameters. The parameters 

include – number of experiences to use for each 

training, frequency of training step, discount factor 

on the target Q-values, path to save the model, and 

many others. 

b. Training the network. With the set parameters the 

networks are trained, training metrics are logged. 

throughout the process to help check and debug, and 

periodically the model is saved. 

4. Visualizing results: 

a. Plotting graphs for the various stats to understand 

the network performance. 

b. Viewing the TensorBoard readings to check and 

debug the model. 

Q-Learning is an off-policy control method used to find 

the optimal policy. It learns the action value function using the 

update rule, al;so called the Bellman Equation: 

  

Q-Learning refines the policy greedily with respect to the 

action values using the max operator. This learning is applied 

to smaller spaces where the value function or the policy is 

stored in tabular form. So, the action space  and state space 

 can be represented as a two-dimensional array ( ) and 

Q-Learning employs dynamic programming methods to 

update the values of the array. But the learning does not 

generalize well to estimate value for unseen states. 



 

 

 

 

 
Figure 6. Steps for DQN 

 

 
 

Figure 7. A3C algorithm model 

 

To overcome this issue, Deep Q-Learning Network 

(DQN) replaces the tabular array with a deep neural network 

and leverages this network to estimate the action value 

function. DQN uses a Convolution Neural Network (CNN) as 

the function approximator of the raw pixels of the Atari 2600 

breakout game. DQN stabilizes the training of the value 

function approximation with CNN using a replay memory and 

target network. By using only, the raw pixels of the game state 

there is no need for feature engineering and minimal domain 

knowledge is required. CNN function approximator, also 

called the Q-Network uses three convolution layers and two 

fully connected layer as a part of it network architecture. 

III. PROJECT DESCRIPTION 

The project currently uses the Atari 2600 game called 

Breakout, in which the agent will learning control policies 

using deep reinforcement learning approaches to achieve a 



 

 

 

high score. A few roadblocks have been encountered during 

the various steps of the project. Their mitigation has been 

listed in Table 1.  The main steps of DQN are shown in Fig. 6.  

Recall that a policy is the mapping between state and 

action and value function measures the goodness of a state or 

state-action pair. DQN learns an action value function and 

defines the policy from that value function. The Asynchronous 

Advantage Actor-Critic (A3C) algorithm learns both the 

policy and value function. The actor representing the policy 

and critic representing the value function will be implemented 

as fully connected layers on top of the network. The learning 

will use the value function (the critic) to update the policy (the 

actor) more intelligently. The advantage estimate gives a 

measure of how much better the actions taken in a state turned 

out to be than expected. Multiple worker agents, each with 

their own set of network parameters, explore their own copy 

of the environment to learn the experience and update the 

global network with the diverse experience (see Fig. 7). This 

is much more intuitive than the discounted rewards which 

plainly measure if an action was good or bad. 

 
Table 1. Project roadblocks and mitigation 

 

Roadblocks Mitigation 

Reinforcement Learning 

Environment 

• Environment domain 

knowledge and feature 

engineering 

OpenAI Gym 

• Collection of environments 

(Partially observable Markov 

Decision Processes) POMDPs 

• Simple interface 

• Monitoring tools 

Deep Reinforcement Learning 

Agents 

• Mathematical complexity 

• Design complexity 

• Implementation complexity 

• Baseline on existing research 

• Early proof-of-concept 

 

Design-Implement-Test-Extend 

cycle too long 

Choose simpler environment 

Understand RL algorithms (WIP) 

Custom environment Understand existing environment 

wrappers (WIP) 

 

IV. RESEARCH RESULTS AND ANALYSIS 

In both DQN and A3C approaches the agent successfully 

learned to play the Atari Breakout game well and was able to 

reach a high score of 79 with A3C and 44 with DQN (Fig. 8). 

The A3C algorithm proved to be much better than DQN 

in terms of training time, stability and higher score. As seen in 

the rewards graph (Fig . 9 and 10) the DQN rewards are much 

noisier and dips overtime, while A3C rewards increases 

gradually. The A3C algorithm employs asynchronous methods 

that can run efficiently on a multi – core CPU with multiple 

workers and environments interacting concurrently whereas 

DQN is a single agent single environment that needs a 

powerful GPU to train faster and is much slower a CPU. 

 

 
 

Figure 8. Breakout high scores for DQN and A3C 

IV. CONCLUSION AND FUTURE WORK 

The trained models and checkpoints, source code, agent 

gameplay, and references to original authors has been placed 

in a GitHub repository [9]. 

The project explored and compared reinforcement learning 

approaches to train intelligent agents that can interact with an 

environment with automatic feature engineering thus requiring 

minimal domain knowledge. That can learn control policies 

for the given task to enable them to maximize the expected 

long-term rewards for that task in the environment thus 

succeeding in the task. 
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Figure 9 - Episode reward with steps 

 

 
Figure 10 - Epsilon for DQN 

 

 


