
Comparison of Deep Reinforcement Learning

Approaches for Intelligent Game Playing

Anoop Jeerige, Doina Bein

Department of Computer Science

California State University, Fullerton

Fullerton, CA, USA

anoopjeerige@csu.fullerton.edu, dbein@fullerton.edu

Abhishek Verma

Department of Computer Science

New Jersey City University

Jersey City, NJ 07035

averma@njcu.edu

Abstract— In Reinforcement Learning, a category of machine

learning, learning is based on evaluative feedbacks without any

supervised signals. The paper presents work aimed to

understand the deep reinforcement learning approaches to

creating such intelligent agents, by reproducing existing research

and comparing their results. The project uses the Atari 2600

game called Breakout, in which the agent will learn control

policies using deep reinforcement learning approaches to achieve

a high score. The project explores two deep reinforcement

learning approaches, Asynchronous Advantage actor-critic and

Deep Q-Learning, both proposed by the DeepMind team, to train

intelligent agents that can interact with an environment with

automatic feature engineering thus requiring minimal domain

knowledge.

Keywords—Deep Reinforcement Learning; Neural Network;

Policy Gradient; Deep Q-Learning Network; Asynchronous

Advantage Actor-Critic; OpenAI Gym.

I. INTRODUCTION

Reinforcement Learning (RL) is a class of machine

learning (ML) models where the learning process is based on

evaluative feedbacks without any supervised signals [1, 8]. RL

aims to create agents similar to the humans, which learn for

themselves by trial-and-error, solely from rewards or

punishments, to develop successful strategies that eventually

lead to the largest long-term rewards. In the past, the success

of reinforcement learning tasks for an agent operating on a

domain has mostly relied on the hand-crafted feature

representations of that domain, thus varying the performance

based on the quality of the representation. We can conclude

that learning to control an agent solely from high-dimensional

inputs such as vision data is one of the main challenges of

reinforcement learning due to the large amount of data needed

for training. These agents need to observe the state of the

environment and take actions in this environment. The agent,

for each of the actions taken, receives either a reward or

penalty using which it learns to maximize the long-term

rewards thus allowing it to be successful in the environment.

We have used in our research the Atari 2600 game called

Breakout, in which the agent will train and learn control

policies using deep reinforcement learning approaches to

achieve a high score. In this paper we compare two existing

approaches, Asynchronous Advantage actor-critic and Deep

Q-Learning, both proposed by DeepMind team. Our goal is to

to create a deep learning model that successfully learns control

policies directly from high-dimensional sensory input (such

as image data) using reinforcement learning and understand

the deep reinforcement learning approaches to creating such

intelligent agent.

The paper is organized as follows. In Section II we define

reinforcement learning and present significant deep

reinforcement learning methods. Description of the project

functionality is given in Section III. Simulation results and

analysis are presented in Section IV. Concluding remarks and

future work are presented in Section V.

II. REINFORCEMENT LEARNING

In RL, an agent learns from evaluative feedback without

receiving any supervised signals. An RL agent interacts with

an environment as follows: at each time , the agent receives a

state in a state space and selects an action from an

action space by following a policy . The policy is

defined to be the behavior of the agent; the policy acts as a

mapping from state to action . By performing the action,

an RL agent receives a reward and transitions to the next

state based on the environment model. The model

consists of the environment’s reward function and

the state transition probability . An RL agent

continues the interaction with the environment until it reaches

some terminal state and then it restarts. The return

 of each state is the discounted,

accumulated reward with the discount factor . The

agent aims to maximize the expectation of the long-term

return from each state. The value function is the central

concept to reinforcement learning, as it measures the goodness

of a state or a state-action pair. It can be either a state value

 – the expected return for following a policy from

state or an action value – the expected return for

selecting action in state and then following policy . It is

also used as a prediction of the expected, accumulated,

discounted future reward. The goal of the agent is to find an

optimal policy to maximize the expectations of long-term

rewards.

Figure 1. RL problem

Figure 2. RL problem and algotirthm types

The RL problem (Fig. 1) defined by the 5-tuple

 can be formulated as a Markov Decision

Process (MDP) or a Partially Observable Markov Decision

Process (POMDP) and can be further divided into three

problems: prediction or policy evaluation problem, control

problem, and planning problem. Prediction or policy

evaluation problem involves computing the state or the action

value for a policy. Control problem involves finding the

optimal policy. Planning problem involves construction of a

value function or a policy with a model. In case a model is

available, dynamic programming methods (policy evaluation,

policy or value iteration to find optimal policy) are used. In

case a model is not available (a so-called model free

environment) the RL methods such as Temporal Difference

Learning, Q-Learning, and Actor-Critic are used (Fig. 2).

The RL algorithms design to solve the RL problems can be

some value function and/or policy based, model-free or

model-based, on-policy or off-policy based, some function

approximation or not. Usually the RL methods are used with

tabular spaces of state and action that tend to be small. To

generalize to much larger or continuous spaces, the concept of

function approximation is used. A function approximation is

an attempt to construct an approximate of an entire function

using examples of the function and is a more general method.

OpenAI Gym [2] provides a toolkit for reinforcement

learning research. It consists of a collection of environments

that are modelled as POMDPs. At each step the RL agent

takes an action, receives an observation and a reward from the

environment (Fig. 3).

Figure 3. Agent-environment interaction

The agent continues to interact with the environment until

it reaches the terminal state and then restarts. The goal of this

episodic reinforcement learning is to maximize the

expectation of the total reward for each episode. The OpenAI

Gym’s Atari environment offers the Atari 2600 games as

testbeds for developing AI agents. The project uses the

Breakout game environment for evaluating the RL algorithms.

The Breakout game environment is created using the Gym’s

make module, and initialized to get the first observation of the

environment, which consists of a 210 x 160 pixels RGB image

that represents the state of the environment. The created

environment provides a step function that allows for an action,

taken from game’s action space, to be inputted and returns the

new observation, a float reward, a Boolean flag, and a

dictionary info. The new observation represents the new state

of environment after performing the action and corresponding

reward received for that action. The Boolean flag denoted the

terminal state of the environment thus notifying if an

environment restart is required. The info dictionary provides

additional information helpful for debugging.

Figure 4. RGB image representing state of environment

The RBG image is cropped, resized into 84 x 84 and

converted to grayscale as a part of the preprocessing step (see

Fig. 5). This reduces the number of computations required by

the learning network and speed up the training process.

Figure 5. Preprocessed observation

Deep Reinforcement Learning methods [3,4,5,6,7] use

deep neural networks as function approximator to approximate

either the value function / , or the policy

, or the model (state transition function and reward

function). The parameter represents the weights of the deep

neural network and stochastic gradient descent, optimization

technique, is used to update the weight parameters during the

learning steps. The project explores two deep reinforcement

learning approaches, Deep Q-Learning and Asynchronous

Advantage actor-critic, proposed by the DeepMind team.

For each of the two methods, we follow the steps below:

1. Environment loading:

a. Selecting the environment where the agent will

learn. The environment presents the agent with

observations, performs actions specified by the agent

and returns the rewards.

b. Setting the parameters of the environment as

required for the learning process.

c. Preprocessing the observations to create the state.

2. Network implementation:

a. Implementing the primary network – to choose an

action

b. Implementing the target network – to generate Q-

values for that action

c. Creating helper functions to:

 i. Implement experience replay to help the

network train from experience.

 ii. Update the parameters of target network

with primary network.

3. Network training:

a. Setting the training parameters. The parameters

include – number of experiences to use for each

training, frequency of training step, discount factor

on the target Q-values, path to save the model, and

many others.

b. Training the network. With the set parameters the

networks are trained, training metrics are logged.

throughout the process to help check and debug, and

periodically the model is saved.

4. Visualizing results:

a. Plotting graphs for the various stats to understand

the network performance.

b. Viewing the TensorBoard readings to check and

debug the model.

Q-Learning is an off-policy control method used to find

the optimal policy. It learns the action value function using the

update rule, al;so called the Bellman Equation:

Q-Learning refines the policy greedily with respect to the

action values using the max operator. This learning is applied

to smaller spaces where the value function or the policy is

stored in tabular form. So, the action space and state space

 can be represented as a two-dimensional array () and

Q-Learning employs dynamic programming methods to

update the values of the array. But the learning does not

generalize well to estimate value for unseen states.

Figure 6. Steps for DQN

Figure 7. A3C algorithm model

To overcome this issue, Deep Q-Learning Network

(DQN) replaces the tabular array with a deep neural network

and leverages this network to estimate the action value

function. DQN uses a Convolution Neural Network (CNN) as

the function approximator of the raw pixels of the Atari 2600

breakout game. DQN stabilizes the training of the value

function approximation with CNN using a replay memory and

target network. By using only, the raw pixels of the game state

there is no need for feature engineering and minimal domain

knowledge is required. CNN function approximator, also

called the Q-Network uses three convolution layers and two

fully connected layer as a part of it network architecture.

III. PROJECT DESCRIPTION

The project currently uses the Atari 2600 game called

Breakout, in which the agent will learning control policies

using deep reinforcement learning approaches to achieve a

high score. A few roadblocks have been encountered during

the various steps of the project. Their mitigation has been

listed in Table 1. The main steps of DQN are shown in Fig. 6.

Recall that a policy is the mapping between state and

action and value function measures the goodness of a state or

state-action pair. DQN learns an action value function and

defines the policy from that value function. The Asynchronous

Advantage Actor-Critic (A3C) algorithm learns both the

policy and value function. The actor representing the policy

and critic representing the value function will be implemented

as fully connected layers on top of the network. The learning

will use the value function (the critic) to update the policy (the

actor) more intelligently. The advantage estimate gives a

measure of how much better the actions taken in a state turned

out to be than expected. Multiple worker agents, each with

their own set of network parameters, explore their own copy

of the environment to learn the experience and update the

global network with the diverse experience (see Fig. 7). This

is much more intuitive than the discounted rewards which

plainly measure if an action was good or bad.

Table 1. Project roadblocks and mitigation

Roadblocks Mitigation

Reinforcement Learning

Environment

• Environment domain

knowledge and feature

engineering

OpenAI Gym

• Collection of environments

(Partially observable Markov

Decision Processes) POMDPs

• Simple interface

• Monitoring tools

Deep Reinforcement Learning

Agents

• Mathematical complexity

• Design complexity

• Implementation complexity

• Baseline on existing research

• Early proof-of-concept

Design-Implement-Test-Extend

cycle too long

Choose simpler environment

Understand RL algorithms (WIP)

Custom environment Understand existing environment

wrappers (WIP)

IV. RESEARCH RESULTS AND ANALYSIS

In both DQN and A3C approaches the agent successfully

learned to play the Atari Breakout game well and was able to

reach a high score of 79 with A3C and 44 with DQN (Fig. 8).

The A3C algorithm proved to be much better than DQN

in terms of training time, stability and higher score. As seen in

the rewards graph (Fig . 9 and 10) the DQN rewards are much

noisier and dips overtime, while A3C rewards increases

gradually. The A3C algorithm employs asynchronous methods

that can run efficiently on a multi – core CPU with multiple

workers and environments interacting concurrently whereas

DQN is a single agent single environment that needs a

powerful GPU to train faster and is much slower a CPU.

Figure 8. Breakout high scores for DQN and A3C

IV. CONCLUSION AND FUTURE WORK

The trained models and checkpoints, source code, agent

gameplay, and references to original authors has been placed

in a GitHub repository [9].

The project explored and compared reinforcement learning

approaches to train intelligent agents that can interact with an

environment with automatic feature engineering thus requiring

minimal domain knowledge. That can learn control policies

for the given task to enable them to maximize the expected

long-term rewards for that task in the environment thus

succeeding in the task.

References

[1] Britz, D. (2016). Learning Reinforcement Learning. Retrieved from

http://www.wildml.com/2016/10/learning-reinforcement-learning/

[2] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J.,

Tang, J., & Zaremba, W. (2016). OpenAI Gym. CoRR, abs/1606.01540.

[3] Gron, A. (2017). Hands-On Machine Learning with Scikit-Learn and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems. O'Reilly Media, Inc.

[4] Juliani, A. (2016). Simple Reinforcement Learning with Tensorflow Part

4: Deep Q-Networks and Beyond..

[5] Li, Y. (2017). Deep Reinforcement Learning: An Overview. CoRR,

abs/1701.07274.

[6] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,

Wierstra, D., & Riedmiller, M. A. (2013). Playing Atari with Deep

Reinforcement Learning. CoRR, abs/1312.5602.

[7] Mnih, V., Puigdomènech Badia, A., Mirza, M., Graves, A., Lillicrap, T.

P., Harley, T., Kavukcuoglu, K. (2016). Asynchronous Methods for Deep

Reinforcement Learning. CoRR, abs/1602.01783.

[8] Pedersen, M. E. (n.d.). Reinforcement Learning (Q-Learning). Retrieved

from TensorFlow Tutorial#16:https://github.com/Hvass-

Labs/TensorFlow-

Tutorials/blob/master/16_Reinforcement_Learning.ipynb

[9] GitHub, https://github.com/anoopjeerige/deep-learning.

Figure 9 - Episode reward with steps

Figure 10 - Epsilon for DQN

