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Abstract— Deep learning neural networks have made significant 
progress in image analysis and have been used for skin cancer 
recognition. Early detection and proper treatments for malignant 
skin cancer cases are vital to ensure high survival rate in patients. 
We present a novel deep learning based convolutional neural 
network (CNN) model for generating compatible models on 
mobile platforms such as Android and iOS. The proposed model 
was tested on the grand challenge PHDB melanoma dataset. The 
best performing proposed model excels in the following ways: (1) 
it outperforms the baseline model in terms of accuracy by 1%; 
(2) it consists of 60% fewer parameters compared to the base 
model and thereby it is more efficient on mobile platforms. 
Furthermore, the model is more compact and retains high 
accuracy without the need to be downsized; (3) in conjunction 
with advanced regularization techniques such as dropout and 
data augmentation, the proposed CNN model excelled when 
implemented on state-of-the-art frameworks such as Keras and 
TensorFlow. Additionally, we were able to successfully deploy it 
on the iOS and Android mobile systems. The proposed model 
could also be lucrative towards other datasets for image 
classification on mobile platform. 

Keywords—deep learning; skin cancer; melanoma; neural 
network; CNN; PHDB; mobile systems 

I.  INTRODUCTION 
Skin cancer is the most common type of cancer in the 

United States [1]. According to the American Cancer Society, 
there were about 5.4 million new cases of skin cancer in 2017. 
In fact, the number of new cases for skin cancer exceeds the 
combined total of new cases for prostate cancer, breast cancer, 
lung cancer, and colorectal cancer [2]. Malignant melanoma is 
a prevalent type of cancer that is especially deadly. Therefore, 
the goal of this research is to propose a new convolutional 
neural network based deep learning model that can detect 
melanoma in its early stage and can be used on mobile 
platforms. 

Early detection and proper treatments for new malignant 
skin cancer cases are very important to ensure high survival 
rate. For instance, the survival rate for melanoma decreases 
from 99% to 14% in more advanced stages. According to IMS 
Health, there are only 9,600 dermatologists and 7,800 
dermatology practices to serve 323 million people in the U.S 
[3]. Therefore, it is imperative to extend the reach of such 
essential diagnostic care by orchestrating deep learning for skin 
cancer classification. 

Professional dermatologists have established the ABCDEs 

(Asymmetrical shape, Border irregularities, Color, Diameter, 
and Evolution) in Fig. 1 as the standardized descriptions to 
assist with visualizing common features of malignant 
melanoma cases. One of the main challenges of classifying 
malignant skin lesions is due to the sheer amount of variations 
across the diverse skin tones from people of different ethnic 
backgrounds [4]. Moreover, according to Dr. Darrick Antell, 
some melanoma cases can have pinkish, white, red, or even 
clear appearances rather than the usual dark pigment melanin 
[5]. In recent years, new breakthroughs in the development of 
convolutional neural networks (CNNs) have allowed 
computers to outperform dermatologists in skin cancer 
classification tasks [6]. The next major step is to further 
improve the accuracy of melanoma detection. 

This paper is organized as follows. Section II presents 
background discussion. Section III provides the description of 
dataset used in our experiments. Section IV includes details of 
our proposed deep learning model. The experimental approach 
and results are introduced in Section V. Finally, the conclusion 
and future work are discussed in Section VI. 

II. BACKGROUND AND RELATED WORK 
Researchers have developed a myriad of skin cancer 

classification systems by employing large CNN architectures 
such as InceptionV3 [6], Microsoft ResNet-152 [7], VGG16 
[4], GoogleNet, and VGG-19 [8]. These large CNN 
architectures are designed to have deeper layers as parts of 
more complex neural networks in order to maximize top-1 and 

 
Figure 1. The popular ABCDEs for classifying melanoma. 



top-5 accuracies [9][10][11]. However, large-scale CNN 
architectures can consist of hundreds of millions of parameters 
which can lead to overfitting when training on small and 
imbalanced datasets [12] such as skin cancer datasets. Large 
CNN architectures also generate sizable models (larger than 
100 MB) and impede deployment to resource-constrained 
mobile systems. Typically, the size of deep learning models for 
malignant melanoma recognition should be as small as possible 
(and retain high accuracy) to ensure that the models can be 
deployed on iOS or Android systems. Furthermore, the input 
size of images must be resized to 224 x 224 pixels for the deep 
learning models to work properly on mobile systems.  

Table 1 shows the comparisons between results of proposed 
model and results from [4][6][7]. An interesting aspect 
regarding the listed comparisons is that we have created a new 
CNN model (with 86% top-1 accuracy) and trained on a 
balanced dataset from scratch, whereas other researchers have 
selected to use transfer learning techniques via large-scale 
CNNs on imbalanced datasets. Furthermore, based on the 
published papers, other researchers have not reported the size 
of their models and it is unknown if they deploy their models 
on mobile platform such as iOS. The proposed deep learning 
model is compact and takes 29 megabytes (MB) in size. 

Large CNNs are pretrained on the ImageNet dataset which 
contains 1.4 million images of common objects and thousands 
of different classes. Traditionally, transfer learning techniques 
are used to solve image classification problems such as 
classifying cats and dogs because the ImageNet dataset 
contains animal classes that include several types of cats and 

dogs. Contrarily, the ImageNet dataset comprised of images 
that are very different in comparison to skin lesion images. 
Thus, it is a safer approach to train deep learning models (for 
malignant melanoma recognition) from scratch because it 
allows us to have more control over the exact inputs and 
outputs of CNNs. Such an important but subtle aspect of 
training CNNs from scratch allows us to have a more direct 
impact on the ways CNNs learn about the features from the 
input of data and how they generate predictions for 
classification. For mobile applications to successfully perform 
early detection of malignant melanoma, we need to maximize 
the accuracy of the deep learning model as much as possible. 

Another important aspect regarding Table 1 is that other 
researchers used imbalanced datasets. Typically, CNN models 
that are trained using imbalanced datasets are likely to be 
biased toward the classes that consist of larger number of 
images [4]. In other words, deep learning models for skin 
cancer classification are forced to make the wrong predictions 
in favor of benign cases because the CNNs learn more about 
the features of benign images during training. Thus, we must 
balance the numbers for benign and malignant cases during 
construction of skin lesion datasets. As we obtain more 
malignant images, we can then add an equal number of benign 
images to our dataset. Most skin lesion datasets contain higher 
numbers of benign images compared to malignant images. 
Thus, it is intuitive to use a balanced dataset to acquire the 
model with the best possible accuracy.  

We use Keras [15] to train our model. Note that in Keras 
version 2.0, the Keras team has removed metrics such as recall, 

Table 1. Comparison of Results from Various Deep Learning Researches for Skin Cancer Classification 
 

Author 
Best 

Classifier 
(Accuracy) 

Classification 
Technique 

Neural 
Network 

Input Size 
(Pixels) 

Dataset 
Type 

Size of 
Model 
(MB) 

Mobile 
Platform 

Authors of 
Proposed Model 86% Train from scratch Model_A 224 x 224 Balanced 29 iOS and 

Android 

Esteva [6] 72.1% Transfer learning Inception V3 299 x 299 Imbalanced Not 
reported 

Not 
reported 

Kalouche [4] 78% Transfer learning VGG - 16 256 x 256 Imbalanced Not 
reported 

Not 
reported 

Han [7] 57.3% Transfer learning ResNet - 152 224 x 224 Imbalanced Not 
reported 

Not 
specified 

 

 
Figure 2. Visualization of baseline CNN model (Model_B). 



precision, and fmeasure to implicitly promote the use of 
accuracy as the main metric for CNNs that are trained on 
balanced datasets [17]. Ultimately, large deep learning models 
require a downsizing methodology that would decrease the 
overall performance of proposed skin cancer classification on 
mobile platform. Therefore, we propose a more efficient CNN 
architecture that can accommodate deep learning on mobile 
systems. 

III. DESCRIPTION OF OUR DATASET 
The proposed methodology in Section IV entails the 

construction of a novel convolutional neural network that is 
trained on a composite dataset of skin lesion images. This 
composite dataset comprises of several publicly available 
datasets, which include ISIC Archive [19], Dermnet NZ [20], 
MED-NODE [21], and PH2 [22]. A composite skin cancer 
dataset titled “PHDB” is created from the combination of listed 
datasets.  

The dataset is divided into two parts representing the benign 
and malignant classes. Each part contains a balanced number of 
malignant or benign skin lesion images. In other words, 50% of 
the PHDB dataset is comprised of benign images and the 
remaining 50% are malignant images. The PHDB dataset is 
partitioned as follows: 80% for training, 10% for validation, 
and 10% for testing. We have manually inspected all images 
after they are partitioned to ensure that the various versions of 
images generated via data augmentation of original skin lesion 
image do not overlap across the train/validation/test sets. 
Furthermore, we have ensured that the skin lesion images in the 
test and validation sets are high-quality and biopsy-proven.   

At run time, the PHDB dataset is increased to about 80,192 
images for training via a combination of various regularization 
techniques. Regarding data augmentation technique from 
related work, Esteva [6] performed random image rotations 
between 0° to 359°. Likewise, Han [7] performed similar 
image augmentation techniques to increase his dataset (by 20 to 
40 times the original total of 20,826 images). All skin lesion 

images from the specified datasets are publicly available and 
are free to use for educational and research purposes.  

IV. PROPOSED DEEP LEARNING CNN MODEL 
In Fig. 2 we present the baseline CNN. The baseline CNN 

architecture has a sequence of alternating Conv2D and 
MaxPooling2D layers that form the core building blocks of 
modern CNNs. The first convolutional layer takes in 224 x 224 
skin lesion images. The last dense layer of the baseline CNN 
contains a single unit with sigmoid activation in order to output 
the resulting classes (benign and malignant).   

Fig. 3 shows the architecture of proposed CNN (Model_A). 
We have added additional batch normalization layers after 
every Conv2D layers and dense layers to facilitate 
normalization of distribution for each batch of data. The 
proposed CNN has five sets of Conv2D, BatchNorm, and 
MaxPooling2D. Based on many experiments, these sets 
represent the most optimal CNN setup to process skin lesion 
images from the PHDB dataset and attains the highest possible 
accuracy using the train from scratch method. Furthermore, 
Fig. 3 shows the proposed CNN that attains higher accuracy 
and has 5,860,736 fewer parameters in comparison to the 
baseline model. More specifically, the baseline CNN has a total 
of 9,679,041 parameters, whereas the aggregate number of 
parameters of the proposed model is 3,818,305. 

The PHDB dataset consists of high resolution images that 
necessitate a larger neural network with more layers and 
capacity. As seen in Fig. 2, the Conv2D and MaxPooling2D 
layers help to augment the CNN’s capacity. This baseline CNN 
has attained an accuracy of 85%. Furthermore, the size of the 
feature maps is reduced such that they would be compatible as 
inputs into the Flatten layer. For example, when skin cancer 
images are fed into the CNN, the initial size of the feature maps 
in the first Conv2D layer is 224 x 224. Then, as the CNN 
processes data through the alternating Conv2D and 
MaxPooling2D layers, the feature maps are transformed into 

 
Figure 3. Architecture of the best proposed CNN model (Model_A). 

 



the size of 12 x 12 in the last MaxPooling2D layer right before 
the Flatten layer. 

An important aspect regarding the proposed CNN is that the 
depth of the feature maps gradually becomes larger (from 32 to 
128). In contrast, the size of the feature maps decreases from 
224 x 224 to 12 x 12 as data traverses from input layer (first 
Conv2D layer) to output layer, Dense (1). Moreover, the 
proposed CNNs in this section are used to solve binary-
classification problem (malignant or benign). Thus, the Dense 
(1) in Fig. 3 contains a single unit with sigmoid activation. This 
unit is responsible for encoding the probability, which CNN 
utilizes to determine either malignant or benign category of the 
input images. 

As shown in Fig. 3, the proposed CNN utilizes batch 
normalization layers and consists of 3,818,305 parameters in 
total. The proposed CNN is significantly smaller than the 
baseline CNN. Furthermore, the modified CNN has an 
additional Conv2D layer with the output shape of (10, 10, 256). 
This helps to further simplify the representations and reduces 
the overall number of parameters. Most importantly, the 
accuracy of the modified CNN (Model_A) increased to 86% 

using the same training and data augmentation configurations 
as the baseline CNN (Model_B). Furthermore, the depth of the 
feature maps (the last number of the feature map’s shape in 
layers as shown in Fig. 3) gradually increases (from 32 to 256) 
in a way that is like larger CNN architectures such as VGG-16 
[10].  

Table 2 shows the comparison between various proposed 
models and the baseline model in terms of feature maps 
structure, hyperparameters, and parameters. All models were 
trained for 50 epochs. The structure of feature maps column 
represents the shape of the feature map at each layer of 
proposed CNN as shown in Fig 3. The dropout layer (0.5) was 
placed before or after the Flatten layer as a part of experiments. 

The proposed CNN architecture is very versatile in terms of 
scalability. It can be used to solve other binary classification 
problems (such as classifying cats and dogs). We can add or 
remove additional sets of Conv2D, BatchNorm, and 
MaxPooling layers as needed (and tweak the size of the feature 
maps) to solve many classification problems that use 
combination of various datasets. 

The batch normalization layers are a special type of layer 
that was first introduced by Ioffe and Szegedy [13]. Batch 
normalization layers perform normalization of data in an 
adaptive manner by taking into consideration the alterations of 
mean and variance during training. Internally, it functions by 
preserving the moving average of the batch-wise mean and 
variable of the processed data during training. Moreover, batch 
normalization layers are pivotal for building deep neural 
networks because they help to facilitate the gradient 
propagation in a similar way to residual connections [12]. In 
the case of building CNNs for skin cancer classification, batch 
normalization layers help to speed up the training process [14]. 

Figure 4 displays the general workflow for the proposed 
CNN. The CNN models generated through Keras are converted 
to Core ML models and deployed on iOS mobile systems. 
Likewise, Keras models can be transformed into protocol 
buffer files and deployed on Android systems. 

V. EXPERIMENTAL ENVIRONMENT AND RESULTS 
All experiments are performed on an Ubuntu 16.04 server 

equipped with seven NVIDIA GeForce GTX 1080 Ti (12GB of 
VRAM each). Moreover, this server also includes two Intel 

Table 2. Comparison of Results from Various Proposed Models and the Baseline Model (Model_B). 
 

Proposed 
Models 

 

Accuracy 
(Trained 

for 50 
Epochs) 

Structure of Feature 
Maps 

Total 
Parameters Dropout Activation Max 

Pooling 
Batch 
Norm Optimizer 

Conv2D, MaxPool, 
BatchNorm Trainable Rate and 

Location Type Total 
Layers 

Total 
Layers 

Type 
 

Learning 
Rate 

Model_A 86% 32x3 => 64x3 => 
128x6 => 256x3 3,818,305 0.5 

Before ReLU 5 5 RMSprop 0.0001 

Model_B 
(Baseline) 85% 32x2 => 64x2 => 

128x4 9,679,041 0.5 
Before ReLU 4 0 RMSprop 0.0001 

Model_C 84.5% 32x3 => 64x3 => 
128x6 => 256x3 3,818,305 0.5 

Before ReLU 5 5 Adam 0.0010 

Model_D 85.5% 32x3 => 64x3 => 
128x6 => 256x3 3,818,305 0.5 

After ReLU 5 5 RMSprop 0.0001 

 

 

 
 

Figure 4. General workflow for proposed models. 



Xeon processors E5-2630 v4 2.20GHz which have 2 threads 
per core, 10 cores per socket, and 256 GB of main memory. 

A. Configuration for Training 
The configuration to train the model is as follows: 

RMSProp is set as optimizer, 0.0001 as learning rate, loss 
function is binary_crossentropy, and the metrics is set to ‘acc’. 
The previously mentioned hyperparameters are configured via 
the compile method in Keras [15]. Google’s TensorFlow [16] 
machine learning library is used alongside Keras as the 
backend.  

B. Configuration for Data Augmentation 
The configuration for data augmentation is as follow: 

rotation_range = 45, width_shift_range = 0.05, 
height_shift_range = 0.05, shear_range = 0.1, zoom_range = 
0.1, horizontal_flip = True, and fill_mode = ‘nearest’.  

Finally, the batch generator is instantiated for the 
declarations of hyperparameters that would determine the 
training duration of the proposed models. The configurations 
are assigned as follow: steps_per_epoch = 100, epochs = 50, 
and validation_steps = 50. 

C. Analysis of Results 
Figure 5 displays the experimental results of best 

performing proposed model (Model_A) with 86% top-1 
accuracy. The duration of training lasted for 50 epochs; models 
seemed to converge around that mark. Regularization 
techniques such as dropout (0.5) and data augmentation 
techniques were heavily relied upon to combat the overfitting 
problem. The process to build the PHDB dataset was initiated 
back in June 2017. Thus, the valuable HAM10000 [23] dataset 
was not publicly available at the time. Furthermore, we are 
working with a balanced dataset as input and proposed models 

are trained from scratch. Thus, the validation accuracy curve is 
not expected to be perfectly smooth compared with results that 

          

 

 
 
Figure 6. Visualization of feature maps generated from 
proposed CNN model with three dimensional (width, height, 
depth) channels for a skin lesion image from PHDB dataset. 
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Figure 5. Training and validation performance of the best proposed deep learning model (Model_A). 



are generated from transfer learning techniques. However, in 
future, with the availability of additional skin lesion images 
from the HAM10000 and Dermofit [24] to the PHDB dataset, 
we expect the validation accuracy curve to further smooth out. 
Moreover, the training accuracy and the training loss curves 
from Fig. 5 for the best performing model are very smooth. 

The hyperparameters to perform data augmentation are 
adjusted as follow: rotation_range = 45, width_shift_range = 
0.03, height_shift_range = 0.03, shear_range = 0, zoom_range 
= 0.1, horizontal_flip = True, and fill_mode = ‘nearest’. The 
learning rate remains at 0.0001 with RMSprop optimizer. 

Fig. 6 shows the visualization of feature maps of a skin 
lesion image as it traverses through the proposed CNN layers. 

This visualization assists us to understand how the layers of 
proposed CNN model transform the input of skin lesion images 
and generate the corresponding predictions. 

Figure 7 displays an actual demonstration of the deep 
learning model, which represents a much more reliable way to 
validate the performance of the proposed CNN model. 
Additionally, we can successfully deploy the model on the iOS 
and Android mobile systems. Fig. 7 shows a demonstration of 
malignant melanoma recognition on an iPad with iOS version 
11.4 installed. The glare from the fluorescent lamp is 
introduced on the top right corner of the image in order to test 
the robustness of the deep learning model. Malignant 
melanoma classifier managed to correctly classify the image as 
malignant with 90% confidence.  

We strongly believe in deploying deep learning models on 
mobile systems and testing them in the real world represents a 
much more reliable methodology than any generic metrics 
when it comes to measuring how a model performs a certain 
task. The rationale is that future users will use the products in 
real-world situations. The malignant image in Fig. 7 is a part of 
Fig. 1. We have correctly, in the real world, classified 7 out of 
8 images from columns A through D. The images from Fig. 1 
are new images that the proposed CNN has never seen before. 
Moreover, the images from column E are ignored due to the 
insufficiently available features for the classifier to correctly 
analyze and generate reliable prediction.  

D. Validation Accuracy Graph  
Figure 8 shows the comparison of validation accuracy for 

the models listed in Table 2. Model_A has the highest 

 
 
Figure 7. Demonstration of malignant melanoma recognition 
on an iOS mobile system. 

 

 

 
Figure 8. Validation accuracy graph for best four proposed models. 



accuracy at 86%. It was trained for approximately 43 hours. 
All the other models were trained between 30 to 45 hours 
depending on the distributed workload on the Ubuntu server. 
Furthermore, we could have selected the smoother training 
accuracy curves to display in Fig. 8. However, the validation 
accuracy is used instead because it represents a more reliable 
metric than the training accuracy to measure the performance 
of deep learning models. Many experiments were carried out 
and those four represent the best performing models. 

E. Confusion Matrix 
Figure 9 presents the confusion matrix for Model_A. The 

sensitivity, i.e., correctly classified instances of malignant 
lesions is 88.23% whereas the specificity, i.e., correctly 
classified instances of benign lesions is 83.82%. 

VI. CONCLUSION AND FUTURE WORK 
This paper presents a novel convolutional neural network 

based deep learning model for generating mobile compatible 
models. The proposed model outperforms the baseline model in 
terms of accuracy. We trained the network from scratch. 
Furthermore, it has the highest accuracy for malignant 
melanoma recognition in comparison to previous researches. 
The new model consists of less number of parameters, making 
it more efficient on mobile platforms, thereby making it more 
compact and highly accurate without the need to be downsized. 
In conjunction with advanced regularization techniques such as 
dropout and data augmentation, the proposed CNN model has 
excellent performance when implemented on state-of-the-art 
frameworks such as Keras and TensorFlow.  

A critical area of future work is to incorporate new data to 
acquire models with even higher accuracy. New datasets such 
as HAM10000 and Dermofit would be added to the PHDB 
dataset in the future. Furthermore, new generation of neural 
networks inspired by Google’s MobileNetV2 and Geoffrey 
Hinton’s Capsule Networks may offer further possibilities of 
improving the accuracy [18]. Ultimately, we expect deep 
learning and mobile systems to be a promising combination 
that could transform healthcare for billions of people. 
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Figure 9. Confusion matrix for best model (Model_A). 
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