
Abstract

Deep learning has given way to a new era of machine learning,

apart from computer vision. Convolutional neural networks have

been implemented in image classification, segmentation and object

detection. Despite recent advancements, we are still in the very

early stages and have yet to settle on best practices for network

architecture in terms of deep design, small in size and a short

training time. In this paper, we address the issue of speed and size

by proposing a compressed convolutional neural network model

namely Residual Squeeze VGG16. Proposed model compresses the

earlier very successful VGG16 network and further improves on

following aspects: (1) small model size, (2) faster speed, (3) uses

residual learning for faster convergence, better generalization, and

solves the issue of degradation, (4) matches the recognition

accuracy of the non-compressed model on the very large-scale

grand challenge MIT Places 365-Standard scene dataset.

In comparison to VGG16 the proposed model is 88.4%

smaller in size and 23.86% faster in the training time. This

supports our claim that the proposed model inherits the best aspects

of VGG16 and further improves upon it. In comparison to

SqueezeNet our proposed framework can be more easily adapted

and fully integrated with the residual learning for compressing

various other contemporary deep learning convolutional neural

network models Broader impact of our work could improve the

performance in specialized tasks such as video-based surveillance,

self-driving cars, and mobile GPU applications.

Keywords— Convolutional Neural Networks; VGG16;

Residual Learning; Squeeze Neural Networks; scene classification.

1 Introduction

Due to recent advancements in high-performing computing

systems, GPUs and large distributed clusters [16] along with

the availability of large public image repositories like

ImageNet, Deng et al. [17] Convolutional networks have

seen a lot of research and development interest as of late

(Krizhevsky et al. [2]; Zeiler & Fergus [29]; Sermanet et al.

[33]; Simonyan & Zisserman [25]). The ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) [32] has

served as a platform for multi-generational large scale image

classification systems leading to many advancements in deep

visual recognition architectures. ILSVRC has seen everything

from high-dimensional shallow feature encodings (Perronnin

et al. [11]) (winner of ILSVRC-2011) to deep ConvNets

(Krizhevsky et al. [2]) (winner of ILSVRC-2012). Since

2012, deep ConvNets have become a focus of the computer

vision field with numerous attempts to improve upon the

architecture of Krizhevsky et al. [2] to achieve higher

accuracy. Top submissions to ILSVRC-2013 (Zeiler &

Fergus [29]; Sermanet et al. [33]) called for a smaller

receptive window size and smaller stride in the first

convolutional layer. Other areas of improvement have been

concerned with the training and testing of dense networks

over an entire image and on multiple scales (Sermanet et al.

[33]; Howard [1]). Simonyan and Zisserman [25] addressed

depth in ConvNet architectural design by adding additional

convolutional layers, made possible by the use of very small

(3 x 3) convolutional filters in all layers, as shown in the

Figure 1. As a result, Simonyan and Zisserman [25]

developed a significantly more accurate ConvNet architecture

which achieved record-breaking results on ILSVRC

classification and localization tasks and similar achievements

on other image recognition datasets and tasks such as linear

SVM feature classification without the benefit of fine-tuning.

With increased network depth, come more problems

stemming from degradation. Degradation begins to saturate

network accuracy leading to an early failure. Surprisingly,

this is not a result of overfitting. Degradation has been shown

to be a cause of high training error in [3], [6] when network

depth was extended with the addition of more layers.

Degradation shows that all neural network models aren’t

easily and equivalently optimized. Residual learning [22] is a

recently developed solution to degradation. Previous work

addressed slow convergence, overfitting and degradation by

fusing the CNDS network [27] and residual learning

connections with shortcuts [22] to build the Residual-CNDS

Compressed Residual-VGG16 CNN Model for Big Data Places

Image Recognition

Hussam Qassim Abhishek Verma David Feinzimer

Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

California State University New Jersey City University California State University

Fullerton, California 92831 Jersey City, NJ 07305 Fullerton, California 92831

hualkassam(at)csu.fullerton.edu averma(at)njcu.edu dfeinzimer(at)csu.fullerton.edu

[13]. In [13] residual connections are integrated to the basic

CNDS [27] eight-layer structure. Experiments [13] showed

that a combination of both structures enhances the accuracy

of the CNDS network [27].

Late research on deep convolutional neural networks

(CNNs) focuses on increasing accuracy on computer vision

datasets. Multiple CNN architectures exist that attain any

given accuracy level. With a given equivalent accuracy, CNN

architectures with a smaller number of parameters may have

several advantages:

• Deployment on FPGA and embedded systems becomes

feasible. Since FPGAs commonly contain 10MB or less of

local memory and no remote memory or storage, size is a

definite issue. However, a small model can be stored and ran

directly on the FPGA rather than being streamed and

constrained by bandwidth in real-time [16]. Similarly, on

Application-Specific Integrated Circuits (ASICs), a small

CNN model can be stored onboard, enabling the ASIC for

placement on a smaller die.

• There is less overhead when exporting new models to client

devices in production environments. In the field of

autonomous driving, companies such as Tesla will often

distribute updated models from their servers to customers’

cars, a method referred to as an over-the-air update. With

this, Consumer Reports has noted that the safety and

reliability of Tesla’s Autopilot semi-autonomous driving

features have seen incremental improvements with recent

updates [7]. Unfortunately, these over-the-air updates of

current CNN/DNN models may require large data transfers.

With larger models, such as AlexNet [2], 240MB of data

would need to be sent from the server to the car. A smaller

model would require less communication, allowing for more

frequent update cycles.

• Compressed models also benefit from more efficient

distribution. Communication between servers limits the

scaling of distributed CNN training. In distributed data-

parallel training, communication overhead is directly

connected to parameter count in the model [21]. Smaller

models would complete a distributed training faster.

Therefore, compressed CNN architectures come with

several benefits. This brings us to the task of finding a CNN

architecture with a reduced parameter count but accuracy

equivalent to that of Simonyan and Zisserman’s previous

model, VGG16 [26], as shown in Figure 1. We propose such

an architecture: Residual Squeeze VGG16. We also present a

further refined approach to searching for novel CNN

architectures. This new model brings many advancements

such as being smaller and faster than VGG16 [26].

Additionally, in this paper, we show our state of the art

technique to add the residual learning to the compressed

model of the VGG16. This prevents the degradation problem

from occurring due to compression. Furthermore, proposed

model shows excellent optimization in terms of the size and

time. Moreover, our adaptable compression method surpasses

Iandola et al. [10] both in terms of improving the

generalization performance and removing the performance

degradation issue, which make us very confident that our

framework can be easily adapted for compressing various

other contemporary deep learning convolutional neural

network models.

Our paper is organized as follows: Section 2 contains a

brief background of the VGG network, residual learning and

SqueezeNet. Section 3 contains the details of the proposed

Residual Squeeze VGG16 model. Section 4 presents details

of the large-scale MIT Places365-Standard scene dataset,

which we used in our experiments. Section 5 presents our

experimental approach. Section 6 contains a discussion of our

results and section 7 summarizes our work and provides a

brief insight into our planned future work.

Figure 1: The architecture of VGG16 [26].

2 Background

2.1 VGG

The ConvNet architecture of Simonyan and Zisserman [26]

contain several differences from the ones in high-performing

entries from the ILSVRC-2012 [3] and ILSVRC-2013 (Zeiler

& Fergus [29]; Sermanet et al. [32]) competitions. For

comparison with our proposed model we show the Simonyan

and Zisserman [26] model in Figure 1. First, Simonyan and

Zisserman [26] have a very small (3 x 3) receptive field size

throughout the entire net, convolved with input at every pixel

(with a stride of 1) rather than large receptive fields in the

first convolutional layers (e.g. 11 x 11 with a stride of 4 [3]

or (7 x 7) with a stride of 2 (Zeiler & Fergus [29]; Sermanet

et al. [32]). A stack of two, (3 x 3) convolutional layers

(without any intermixed spatial pooling) have an effective

receptive field size of (5 x 5). Three of these layers would

have a (7 x 7) effective receptive field. This leads to the

question of what Simonyan and Zisserman [26] gained

through using a stack of (3 x 3) convolutional layers rather

than a single (7 x 7) layer. First, Simonyan and Zisserman

[26] used three non-linear rectification layers as opposed to

one, rendering the resulting decision more discriminative.

Second, parameter count was decreased. Assume both the

input and output of a three-layer (3 x 3) convolution stack has

C channels. The stack is therefore parameterized by 3(3
2
C

2
) =

27C
2
 weights, and a single (7 × 7) conv. layer would require

7
2
C

2
 = 49C

2
 parameters, an increase of 81%. This can be

interpreted as imposing a regularization on the (7 × 7)

convolutional filters, resulting in a decomposition through

the 3 × 3 filters (with non-linearity inserted in between). The

use of (1 x 1) convolutional layers increases the nonlinearity

of the decision function while avoiding a change to the

receptive fields of the convolutional layers. In the Simonyan

and Zisserman’s [26] model, the rectification function

introduces an extra non-linearity even though the (1 x 1)

convolution is akin to a linear projection onto the same-sized

space. It is important to highlight that (1 x 1) convolutional

layers were recently used by Lin et al. [30] in “Network in

Network” architecture. Ciresan et al. [5] used small-size

convolution filters, however, their nets are much shallower

than Simonyan and Zisserman [26], and additionally they did

not run any test on the large scale ILSVRC dataset.

Interestingly, Goodfellow et al. [14] used deep ConvNets

with 11 weight layers to recognize street numbers and their

results showed a relationship between increased depth and

better performance. Another top performer from ILSVRC-

2014, GoogLeNet [8], was created independently from

Simonyan and Zisserman’s [26] work but has similarities

because it is based on very deep ConvNets (22 weight layers)

and small convolution filters. The network topology of

GoogLeNet from Szegedy et al. [8] was more complex than

that of Simonyan and Zisserman [26], and spatial resolution

is reduced in early layers to decrease computation.

Nonetheless, Simonyan and Zisserman’s [26] model

outperforms GoogLeNet [8] in single-network classification

accuracy.

2.2 Residual Learning

Where depth should always result in improved accuracy,

degradation will decay optimization. Moreover, error in

deeper convolutional neural networks is regularly higher

when compared to results of superficial neural networks. He

et al. [22] has proposed a degradation resolution which

allows a portion of stacked layers to approve the current

residual mapping where degradation normally stops layers to

fit a required subsidiary mapping. This subsidiary mapping

Figure 2: The architecture of proposed Residual Squeeze VGG16 network. Fire modules are shown as orange box and residual

connections are shown as dashed blue line.

will follow formula (2) instead of formula (1). He et al. [22]

found it to be easier to optimize a residual mapping more

than a primary mapping.

F(x) = H(x) (1)

F(x) = H(x) – x (2)

F(x) = H(x) + x (3)

In shortcut connections, several layers in a convolutional

neural network are skipped [3], [6], [39]. Shortcut links are

depicted by formula (3) [22]. He et al. [22] use shortcut

connections to perform identity mappings. Output sent by

shortcut connections is fused with output sent by stacked

layers. Shortcut connections have the advantage of remaining

parameter free, only attaching trivial numbers for

computation. Shortcut connections combined with gating

functions with parameters [36] have been coined, Highway

networks [35]. Another advantage of He et al. [22] shortcut

connections is the option of optimization through stochastic

gradient descent (SGD). Identity shortcut connections can be

easily implemented through open source deep learning

libraries [1], [28], [34], [40].

2.3 SqueezeNet

Neural network architectures of deep and convolutional

backgrounds often leave space for differing arrangements

including choices between micro or macro architectures,

solvers and an array of hyperparameters. A healthy amount of

research work has centered on the development of automated

processes for generating network architectures with high

levels of accuracy. Some of the more popular processes

include Bayesian optimization [18], simulated annealing

[38], randomized search [15], and genetic algorithms [24].

These processes achieved improved accuracy when compared

with respective baselines. SqueezeNet by Iandola et al. [10]

aims to highlight CNN architectures that have a small

number of parameters paired with high accuracy. Iandola et

al. [1] follow three criteria when generating CNN

architectures:

1. (1 x 1) filters will take the place of former (3 x 3)

filters

2. The amount of input channels to (3 x 3) filters will

see a reduction

3. Downsampling should come later in the network, to

provide for large activation maps

Both criteria one and two serve to decrease parameter

count while three will ensure maximum accuracy even while

working with a limited parameter count.

3 Proposed Residual Squeeze VGG16

Network Architecture

Proposed Residual Squeeze VGG16 contains twelve fire

modules [10] and four convolutional layers as shown in

figure 2 in comparison to the thirteen convolutional and three

fully connected layers of VGG16 [26] as shown in figure 1.

We attach a scale layer to all fire modules and the first

convolutional layer. The kernel in layer is assigned a stride of

two and a size of (3 x 3). Next we replace the second

convolutional layer of VGG16 with one fire module. This is

done since the fire module has 9x fewer parameters than its

(3 x 3) filter equivalent. Input channels are reduced to only (3

x 3) filters. To find the number of parameters in the fire

module, we multiply the number of input channels by the

number of filters. In order to build CNN architecture with a

small parameter count it is important to decrease filter and

input channel count. Each Max Pooling layer is assigned a (3

x 3) kernel size following the strategy of downsampling late

in a network to give convolution layers’ large activation

maps [16]. Convolutional layers produce activation maps

with spatial resolutions of at least (1 x 1) but often much

larger. Height and width of activation maps is determined by

a set of two factors: size of the input data and the different

choices of layers where downsampling will occur. Szegedy et

al. [37]; Simonyan & Zisserman [26]; Krizhevsky et al. [2]

have all implemented downsampling in CNN architectures by

applying a stride greater than one to a selection of

Figure 3: Fire module architecture illustrates the convolution filters in the Fire module. In this figure, s1x1 = 3, e1x1 = 4, and

e3x3 = 4. (The convolution filters are presented without the activations)

convolution or pooling layers. It has been found that when

early layers are given large stride parameters, more layers

will have small activation maps. He & Sun [23] observed

higher classification accuracy after testing downsampling

implemented into four unique CNN architectures.

We use the fire module proposed by Iandola et al. [10] in

our: Residual Squeeze VGG16. This module is composed of

a squeeze convolution layer with (1 x 1) filters fed to an

expanded layer consisting of (1 x 1) and (3 x 3) convolution

filters. Figure 3 depicts a typical fire module which contains

three tunable dimensions: s1*1, e1*1 and e3*3 [10]. s1*1

[10] represents the count of (1 x 1) filters held in the squeeze

layer. e1*1 [10] represents the count of (1 x 1) filters held in

the expand layer. e3*3 [10] represents the count of (3 x 3)

filters held in the expand layer. We set s1*1 [10] to be less

than (e1*1 + e3*3) [10] to limit the count of input channels

to the (3 x 3) filters as shown in Table 1.

Formula (12) [22] uses shortcut connections from the

residual learning [22] in Residual Squeeze VGG16.

y = F (x, {Wi}) + x (4)

After an in-depth review of the Squeeze VGG16 neural

network, we decided to attach residual learning connections

[23] in four locations. Residual connections are attached to

locations composed of convolutional layer sequences without

any intermediate pooling. Figure 2 shows the described

architectures, including residual connections. Element-wise

addition links output from Pool1 to output of Fire3. Fire1 has

64 output channels and Fire3 has 128 output channels. We

connect a convolutional layer with a 128 size kernel between

Pool1 and the element-wise addition layers as a way to

equalize the number of output channels.

Next, the second residual connection Pool2 is connected

and the shortcut connection crosses over three fire module

layers. As a result, the residual connection is attached to the

output of Pool2 and Fire6. Fire3 has 128 output channels

while Fire6 has 256. A new convolution layer with 256

output channels is added following Pool2, preceding the

element-wise addition layer to adjust the output channels of

Pool2 and Fire6. The third residual connection connects the

output of Pool3 and Fire9. Fire6 has 256 output channels and

Fire9 512. A new convolutional layer with 512 output

channels is added following Pool3, preceding the element-

wise addition layer to adjust the output channels of Pool3 and

Fire9. Lastly, the final residual connection fuses the output of

Pool4 and Fire12. Fire9 and Fire12 both have 512 output

channels. No new convolutional layer is added following

Pool4 as the number of output channels between Fire9 and

Fire12 is already equalized at 512 each.

4 Image Dataset Description

MIT Computer Science and Artificial Intelligence Laboratory

created and maintain the large-scale MIT Places365-Standard

[4] image dataset. This dataset outsizes ImageNet (ILSVRC

2016) [32] and SUN dataset [20]. There are 1,803,460 total

training images in MIT Places365-Standard [4] dataset with

50 validation classes and 900 test classes of sizes ranging

from a low of 3,068 to a high of 5,000. MIT Places365-

Standard [4] dataset has classes composed of different

scenes, which are images labeled with a place or name. The

purpose of this dataset is to assist in the development of

innovative computer vision and machine learning techniques

that can excel in real world image recognition, scalability,

parallelism, and deeper understanding of a very diverse

problem domain. Broader impact of designing solutions on

this dataset could improve the recognition in specialized

tasks such as self-driving cars, medical imaging, video-based

surveillance, etc. We benchmark our algorithm on this

dataset.

5 Experimental Environment and Approach

During training phase, our proposed network: Residual

Squeeze VGG16 was trained from scratch: It is composed of

twelve fire modules [10] and four convolution neural layers

with four residual connections as opposed to VGG16 [26]

with thirteen convolutions and three fully-connected layers.

Table 1: Residual Squeeze VGG16 architectural dimensions.

Layer

name/type

s1x1

(#1x1

squeeze)

e1x1

(#1x1

expand)

e3x3

(#3x3

expand)

Fire1 8 32 32

Fire2 16 64 64

Fire3 16 64 64

Fire4 32 128 128

Fire5 32 128 128

Fire6 32 128 128

Fire7 64 256 256

Fire8 64 256 256

Fire9 64 256 256

Fire10 64 256 256

Fire11 64 256 256

Fire12 64 256 256

We fined tuned VGG16 on the MIT Places365-Standard

dataset [10] from pre-trained model on ImageNet ILSVRC-

2014 [32].

To conduct training, we utilize Berkeley Vision and

Learning Center’s open source deep learning framework,

Caffe [40]. We pair Caffe and an open source deep learning

GPU training system, NVIDIA DIGITS [31], which allows

users to build and examine artificial neural networks with

real-time graphical representations. Physical hardware

consists of four NVIDIA GeForce GTX TITAN X GPUs and

two Intel Xeon processors with 48/24 logical/physical cores

and 256GB of main memory. All images in the training and

validation set are resized to (256 x 256). Batch size for

training is 128 and validation is 64. The epoch attribute is set

to 50 and learning rate to 0.01. Every 10 epochs, the learning

rate degrades 5x and average decay reduces to ½ of the

previous value. In VGG16 [26] the epoch attribute is set to

20 and learning rate to 0.001. After the completion of every 4

epochs, the learning rate degrades 5x and learning average

decays to ½ of the previous value. A randomized crop of size

(227 x 227) is applied before introduction to the first

convolutional layer. We adapt the weights of all layers from

the Xavier distribution with a standard deviation of 0.01 as

opposed to VGG16 [26] which uses a Gaussian distribution

with a 0.01 standard deviation for the weights of each layer.

The final convolutional layer of Residual Squeeze VGG16

serves as an output layer with weight adapted from the

Gaussian distribution with a 0.01 standard deviation. Data

augmentation is performed via reflection.

6 Results and Discussion

This paper ensembles approaches from three popular

methods: VGG16 [26], residual learning [22] and the

Squeeze technique [10]. We set out to examine whether

residual connections can boost VGG16 [26] network

effectiveness while simultaneously making the network

smaller and faster. We modify the fire module concept [10]

and added residual connections at places in the network

where they would be most effective. Since the residual

connections are parameter free, the network does not see an

increase in complexity except for a small amount of

computation for the collection process. Furthermore, our

network size, training time and complexity was reduced with

the help of the fire modules [10] and sees only a marginal

top-1 and top-5 accuracy loss. Table 2 compares results

between our new network: Residual Squeeze VGG16 and the

original VGG16 [26] on top-1 outcome based on the MIT

Places 365-Standard dataset [4]. Our new network got a

result of 51.68% compared to VGG16’s [26] result of 54%

(after fine-tuning from ImageNet ILSVRC-2014 [32]), a

difference of only 2.32% in top-1 accuracy. Top-5 results are

comparable as well: Residual Squeeze VGG16 at 82.04% and

VGG16 [26] at 84.3%, a difference of only 2.26%.

VGG16 model [26] took three days and 16 hours to

converge with a total size of (10.6 gigabytes). In comparison,

the new Residual Squeeze VGG16 took only two days and

nineteen hours and a total size of (1.23 gigabytes). This

means, our proposed Residual Squeeze VGG16 model is

23.86% faster and 88.4% smaller in size than the original

VGG16 [26]. This is excellent saving in terms of space and

time with minimal impact on accuracy.

7 Conclusion and Future Work

This paper proposed a Residual Squeeze VGG16 network to

address the issue of speed and size. Proposed models

compresses the earlier very successful VGG16 network and

further improves on following aspects: small model size;

faster speed; uses residual learning for faster convergence,

better generalization, and solves the issue of degradation;

matches the recognition accuracy of the non-compressed

Table 2: Comparison of the Top 1 & 5 validation classification accuracy (%), duration, size, and number of training epochs

between the VGG16 [26] and Proposed Residual Squeeze VGG16 on the MIT Places 365-Standard Dataset [4]

Network
Top-1 Validation

%

Top-5 Validation

%
Duration Size No. of Epoch

VGG16 54 84.3 3 Days 16 Hours 10.6 GB 20

Proposed Residual

Squeeze VGG16
51.68 82.04 2 Days 19 Hours 1.23 GB 50

model. In comparison to SQUEEZENET our proposed

framework can be more easily adapted and fully integrated

with the residual learning for compressing various other deep

learning convolutional neural network models.

Future work will focus on the application of the

techniques we have outlined in this paper to compress other

highly-regarded networks including but not limited to ResNet

[22] and Densely Connected Convolutional Networks [12].

We hope to achieve similar reductions in size and complexity

and match the recognition accuracy.

References

[1] A. G. Howard. Some improvements on deep convolutional
neural network based image classification. CoRR,
abs/1312.5402, 2013.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. Neural
Information Processing Systems, Lake Tahoe, NV, 2012, pp.
1097-1105.

[3] B. D. Ripley, Pattern Recognition and Neural Networks.
Cambridge university press, 1996.

[4] B. Zhou, A. Khosla, A. Lapedriza, A. Torralba, and A. Oliva.
Places: An image database for deep scene understanding. arXiv
preprint arXiv:1610.02055, 2016.

[5] D. C. Ciresan et al. Flexible, high performance convolutional
neural networks for image classification. Int. Joint Conf. on
Artificial Intelligence, Barcelona, Spain, 2011.

[6] C. M. Bishop, Neural Networks for Pattern Recognition.
Oxford university press, 1995.

[7] Consumer Reports. Teslas new autopilot: Better but still needs
improvement. http: //www.consumerreports.org/tesla/tesla-
new-autopilot-better-but-needs-improvement, 2016.

[8] C. Szegedy et al.. Going deeper with convolutions. Conf. on
Computer Vision and Pattern Recognition, Boston, MA, 2015.

[9] F. Chollet. “Keras”. GitHub repository, https:
//github.com/fchollet/keras, 2015.

[10] F. N. Iandola et al. Squeezenet: alexnet-level accuracy with
50x fewer parameters and << 1mb model size. arXiv preprint
arXiv:1602.07360, 2016.

[11] F. Perronnin, J. Sanchez, and T. Mensink. Improving the Fisher
kernel for large-scale image classification. In Proc. ECCV,
2010.

[12] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected
convolutional networks. arXiv preprint arXiv:1608.06993,
2016.

[13] H. A. Al-Barazanchi, H. Qassim and A. Verma. Novel CNN
architecture with residual learning and deep supervision for
large-scale scene image categorization. IEEE 7th Annual
Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), New York, NY, 2016, pp. 1-7. doi:
10.1109/UEMCON.2016.7777858.

[14] I. J. Goodfellow et al. Multi-digit number recognition from
street view imagery using deep convolutional neural networks.
arXiv preprint arXiv:1312.6082, 2013.

[15] J. Bergstra and Y. Bengio. An optimization methodology for
neural network weights and architectures. JMLR, 2012.

[16] J. Dean et al. Large Scale Distributed Deep Networks. NIPS,
2012.

[17] J. Deng et al.. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR, 2009.

[18] J. Snoek, H. Larochelle, and R.P. Adams. Practical bayesian
optimization of machine learning algorithms. In NIPS, 2012.

[19] J. Qiu et al. Going deeper with embedded fpga platform for
convolutional neural network. In FPGA, 2016.

[20] J. Xiao et al.. SUN Database: Large-scale Scene Recognition
from Abbey to Zoo. Conf. on Computer Vision and Pattern
Recognition, San Francisco, CA, 2010.

[21] K. Ashraf et al. Shallow networks for high-accuracy road
object-detection. arXiv:1606.01561, 2016.

[22] K. He et al. Deep residual learning for image recognition.
arXiv:1512.03385, 2015.

[23] K. He and J. Sun. Convolutional neural networks at constrained
time cost. Conf. on Computer Vision and Pattern Recognition,
Boston, MA, 2015.

[24] K.O. Stanley and R. Miikkulainen. Evolving neural networks
through augmenting topologies. Neurocomputing, 2002.

[25] K. Simonyan and A. Zisserman. Two-stream convolutional
networks for action recognition in videos. arXiv preprint
arXiv:1406.2199, 2014.

[26] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. Int. Conf. on
Learning Representations, San Diego, CA, 2015.

[27] L. Wang et al.. Training deeper convolutional networks with
deep supervision. arXiv:1505.02496, 2015.

[28] M. Abadi et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv:1603.04467, 2016.

[29] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional neural networks. European Conf. on Computer
Vision, Zurich, Switzerland, 2014.

[30] M. Lin, Q. Chen, and S. Yan. Network in network. CoRR,
abs/1312.4400, 2013.

[31] NVIDIA DIGITS Software. (2017). Retrieved April 28, 2017,
from https: //developer.nvidia.com/digits.

[32] O. Russakovsky et al. Imagenet large scale visual recognition
challenge. arXiv:1409.0575, 2014.

[33] P. Sermanet et al. Overfelt: Integrated recognition, localization,
and detection using convolutional networks. Int. Conf. on
Learning Representations, Banff, Canada, 2014.

[34] R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
MATAB-like environment for machine learning. Conf. on
Neural Information Processing Systems: BigLearn Workshop,
Granada, Spain, 2011.

[35] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway
networks. arXiv:1505.00387, 2015.

[36] S. Hochreiter and J. Schmidhuber. Long short-term memory. J.
of Neural computation, 9(8):1735–1780, 1997.

[37] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deepnetwork training by reducing internal covariate shift. Int.
Conf. on Machine Learning, Lille, France, 2015.

[38] T.B. Ludermir, A. Yamazaki, and C. Zanchettin. An
optimization methodology for neural network weights and
architectures. IEEE Trans. Neural Networks, 17(6):1452-1469,
2006.

[39] W. Venables and B. Ripley, Modern Applied Statistics with S-
Plus. Springer-Verlag New York, 2002.

[40] Y. Jia et al.. Caffe: Convolutional architecture for fast feature
embedding. arXiv:1408.5093, 2014.

