
Abstract 

Deep learning has given way to a new era of machine learning, 

apart from computer vision. Convolutional neural networks have 

been implemented in image classification, segmentation and object 

detection. Despite recent advancements, we are still in the very 

early stages and have yet to settle on best practices for network 

architecture in terms of deep design, small in size and a short 

training time. In this paper, we address the issue of speed and size 

by proposing a compressed convolutional neural network model 

namely Residual Squeeze VGG16. Proposed model compresses the 

earlier very successful VGG16 network and further improves on 

following aspects: (1) small model size, (2) faster speed, (3) uses 

residual learning for faster convergence, better generalization, and 

solves the issue of degradation, (4) matches the recognition 

accuracy of the non-compressed model on the very large-scale 

grand challenge MIT Places 365-Standard scene dataset.  

In comparison to VGG16 the proposed model is 88.4% 

smaller in size and 23.86% faster in the training time. This 

supports our claim that the proposed model inherits the best aspects 

of VGG16 and further improves upon it. In comparison to 

SqueezeNet our proposed framework can be more easily adapted 

and fully integrated with the residual learning for compressing 

various other contemporary deep learning convolutional neural 

network models Broader impact of our work could improve the 

performance in specialized tasks such as video-based surveillance, 

self-driving cars, and mobile GPU applications. 

Keywords— Convolutional Neural Networks; VGG16; 

Residual Learning; Squeeze Neural Networks; scene classification. 

1 Introduction 

Due to recent advancements in high-performing computing 

systems, GPUs and large distributed clusters [16] along with 

the availability of large public image repositories like 

ImageNet, Deng et al. [17] Convolutional networks have 

seen a lot of research and development interest as of late 

(Krizhevsky et al. [2]; Zeiler & Fergus [29]; Sermanet et al. 

[33]; Simonyan & Zisserman [25]). The ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) [32] has 

served as a platform for multi-generational large scale image 

classification systems leading to many advancements in deep 

visual recognition architectures. ILSVRC has seen everything 

from high-dimensional shallow feature encodings (Perronnin 

et al. [11]) (winner of ILSVRC-2011) to deep ConvNets 

(Krizhevsky et al. [2]) (winner of ILSVRC-2012). Since 

2012, deep ConvNets have become a focus of the computer 

vision field with numerous attempts to improve upon the 

architecture of Krizhevsky et al. [2] to achieve higher 

accuracy. Top submissions to ILSVRC-2013 (Zeiler & 

Fergus [29]; Sermanet et al. [33]) called for a smaller 

receptive window size and smaller stride in the first 

convolutional layer. Other areas of improvement have been 

concerned with the training and testing of dense networks 

over an entire image and on multiple scales (Sermanet et al. 

[33]; Howard [1]). Simonyan and Zisserman [25] addressed 

depth in ConvNet architectural design by adding additional 

convolutional layers, made possible by the use of very small 

(3 x 3) convolutional filters in all layers, as shown in the 

Figure 1. As a result, Simonyan and Zisserman [25] 

developed a significantly more accurate ConvNet architecture 

which achieved record-breaking results on ILSVRC 

classification and localization tasks and similar achievements 

on other image recognition datasets and tasks such as linear 

SVM feature classification without the benefit of fine-tuning. 

With increased network depth, come more problems 

stemming from degradation. Degradation begins to saturate 

network accuracy leading to an early failure. Surprisingly, 

this is not a result of overfitting. Degradation has been shown 

to be a cause of high training error in [3], [6] when network 

depth was extended with the addition of more layers. 

Degradation shows that all neural network models aren’t 

easily and equivalently optimized. Residual learning [22] is a 

recently developed solution to degradation. Previous work 

addressed slow convergence, overfitting and degradation by 

fusing the CNDS network [27] and residual learning 

connections with shortcuts [22] to build the Residual-CNDS 
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[13]. In [13] residual connections are integrated to the basic 

CNDS [27] eight-layer structure. Experiments [13] showed 

that a combination of both structures enhances the accuracy 

of the CNDS network [27].  

Late research on deep convolutional neural networks 

(CNNs) focuses on increasing accuracy on computer vision 

datasets. Multiple CNN architectures exist that attain any 

given accuracy level. With a given equivalent accuracy, CNN 

architectures with a smaller number of parameters may have 

several advantages: 

• Deployment on FPGA and embedded systems becomes 

feasible. Since FPGAs commonly contain 10MB or less of 

local memory and no remote memory or storage, size is a 

definite issue. However, a small model can be stored and ran 

directly on the FPGA rather than being streamed and 

constrained by bandwidth in real-time [16]. Similarly, on 

Application-Specific Integrated Circuits (ASICs), a small 

CNN model can be stored onboard, enabling the ASIC for 

placement on a smaller die. 

• There is less overhead when exporting new models to client 

devices in production environments. In the field of 

autonomous driving, companies such as Tesla will often 

distribute updated models from their servers to customers’ 

cars, a method referred to as an over-the-air update. With 

this, Consumer Reports has noted that the safety and 

reliability of Tesla’s Autopilot semi-autonomous driving 

features have seen incremental improvements with recent 

updates [7]. Unfortunately, these over-the-air updates of 

current CNN/DNN models may require large data transfers. 

With larger models, such as AlexNet [2], 240MB of data 

would need to be sent from the server to the car. A smaller 

model would require less communication, allowing for more 

frequent update cycles. 

• Compressed models also benefit from more efficient 

distribution. Communication between servers limits the 

scaling of distributed CNN training. In distributed data-

parallel training, communication overhead is directly 

connected to parameter count in the model [21]. Smaller 

models would complete a distributed training faster. 

Therefore, compressed CNN architectures come with 

several benefits. This brings us to the task of finding a CNN 

architecture with a reduced parameter count but accuracy 

equivalent to that of Simonyan and Zisserman’s previous 

model, VGG16 [26], as shown in Figure 1. We propose such 

an architecture: Residual Squeeze VGG16. We also present a 

further refined approach to searching for novel CNN 

architectures. This new model brings many advancements 

such as being smaller and faster than VGG16 [26]. 

Additionally, in this paper, we show our state of the art 

technique to add the residual learning to the compressed 

model of the VGG16. This prevents the degradation problem 

from occurring due to compression. Furthermore, proposed 

model shows excellent optimization in terms of the size and 

time. Moreover, our adaptable compression method surpasses 

Iandola et al. [10] both in terms of improving the 

generalization performance and removing the performance 

degradation issue, which make us very confident that our 

framework can be easily adapted for compressing various 

other contemporary deep learning convolutional neural 

network models. 

Our paper is organized as follows: Section 2 contains a 

brief background of the VGG network, residual learning and 

SqueezeNet. Section 3 contains the details of the proposed 

Residual Squeeze VGG16 model. Section 4 presents details 

of the large-scale MIT Places365-Standard scene dataset, 

which we used in our experiments. Section 5 presents our 

experimental approach. Section 6 contains a discussion of our 

results and section 7 summarizes our work and provides a 

brief insight into our planned future work. 

 

Figure 1: The architecture of VGG16 [26]. 



2 Background  

2.1 VGG 

The ConvNet architecture of Simonyan and Zisserman [26] 

contain several differences from the ones in high-performing 

entries from the ILSVRC-2012 [3] and ILSVRC-2013 (Zeiler 

& Fergus [29]; Sermanet et al. [32]) competitions. For 

comparison with our proposed model we show the Simonyan 

and Zisserman [26] model in Figure 1. First, Simonyan and 

Zisserman [26] have a very small (3 x 3) receptive field size 

throughout the entire net, convolved with input at every pixel 

(with a stride of 1) rather than large receptive fields in the 

first convolutional layers (e.g. 11 x 11 with a stride of 4 [3] 

or (7 x 7) with a stride of 2 (Zeiler & Fergus [29]; Sermanet 

et al. [32]). A stack of two, (3 x 3) convolutional layers 

(without any intermixed spatial pooling) have an effective 

receptive field size of (5 x 5). Three of these layers would 

have a (7 x 7) effective receptive field. This leads to the 

question of what Simonyan and Zisserman [26] gained 

through using a stack of (3 x 3) convolutional layers rather 

than a single (7 x 7) layer. First, Simonyan and Zisserman 

[26] used three non-linear rectification layers as opposed to 

one, rendering the resulting decision more discriminative. 

Second, parameter count was decreased. Assume both the 

input and output of a three-layer (3 x 3) convolution stack has 

C channels. The stack is therefore parameterized by 3(3
2
C

2
) = 

27C
2
 weights, and a single (7 × 7) conv. layer would require 

7
2
C

2
 = 49C

2
 parameters, an increase of 81%. This can be 

interpreted as imposing a regularization on the (7 × 7) 

convolutional filters, resulting in a decomposition through 

the 3 × 3 filters (with non-linearity inserted in between). The 

use of (1 x 1) convolutional layers increases the nonlinearity 

of the decision function while avoiding a change to the 

receptive fields of the convolutional layers. In the Simonyan 

and Zisserman’s [26] model, the rectification function 

introduces an extra non-linearity even though the (1 x 1) 

convolution is akin to a linear projection onto the same-sized 

space. It is important to highlight that (1 x 1) convolutional 

layers were recently used by Lin et al. [30] in “Network in 

Network” architecture. Ciresan et al. [5] used small-size 

convolution filters, however, their nets are much shallower 

than Simonyan and Zisserman [26], and additionally they did 

not run any test on the large scale ILSVRC dataset. 

Interestingly, Goodfellow et al. [14] used deep ConvNets 

with 11 weight layers to recognize street numbers and their 

results showed a relationship between increased depth and 

better performance. Another top performer from ILSVRC-

2014, GoogLeNet [8], was created independently from 

Simonyan and Zisserman’s [26] work but has similarities 

because it is based on very deep ConvNets (22 weight layers) 

and small convolution filters. The network topology of 

GoogLeNet from Szegedy et al. [8] was more complex than 

that of Simonyan and Zisserman [26], and spatial resolution 

is reduced in early layers to decrease computation. 

Nonetheless, Simonyan and Zisserman’s [26] model 

outperforms GoogLeNet [8] in single-network classification 

accuracy. 

2.2 Residual Learning 

Where depth should always result in improved accuracy, 

degradation will decay optimization. Moreover, error in 

deeper convolutional neural networks is regularly higher 

when compared to results of superficial neural networks. He 

et al. [22] has proposed a degradation resolution which 

allows a portion of stacked layers to approve the current 

residual mapping where degradation normally stops layers to 

fit a required subsidiary mapping. This subsidiary mapping 

 

Figure 2: The architecture of proposed Residual Squeeze VGG16 network. Fire modules are shown as orange box and residual 

connections are shown as dashed blue line. 



will follow formula (2) instead of formula (1). He et al. [22] 

found it to be easier to optimize a residual mapping more 

than a primary mapping. 

F(x) = H(x)    (1) 

F(x) = H(x) – x (2) 

F(x) = H(x) + x (3) 

In shortcut connections, several layers in a convolutional 

neural network are skipped [3], [6], [39]. Shortcut links are 

depicted by formula (3) [22]. He et al. [22] use shortcut 

connections to perform identity mappings. Output sent by 

shortcut connections is fused with output sent by stacked 

layers. Shortcut connections have the advantage of remaining 

parameter free, only attaching trivial numbers for 

computation. Shortcut connections combined with gating 

functions with parameters [36] have been coined, Highway 

networks [35]. Another advantage of He et al. [22] shortcut 

connections is the option of optimization through stochastic 

gradient descent (SGD). Identity shortcut connections can be 

easily implemented through open source deep learning 

libraries [1], [28], [34], [40]. 

2.3 SqueezeNet 

Neural network architectures of deep and convolutional 

backgrounds often leave space for differing arrangements 

including choices between micro or macro architectures, 

solvers and an array of hyperparameters. A healthy amount of 

research work has centered on the development of automated 

processes for generating network architectures with high 

levels of accuracy. Some of the more popular processes 

include Bayesian optimization [18], simulated annealing 

[38], randomized search [15], and genetic algorithms [24]. 

These processes achieved improved accuracy when compared 

with respective baselines. SqueezeNet by Iandola et al. [10] 

aims to highlight CNN architectures that have a small 

number of parameters paired with high accuracy. Iandola et 

al. [1] follow three criteria when generating CNN 

architectures: 

1. (1 x 1) filters will take the place of former (3 x 3) 

filters 

2. The amount of input channels to (3 x 3) filters will 

see a reduction 

3. Downsampling should come later in the network, to 

provide for large activation maps 

Both criteria one and two serve to decrease parameter 

count while three will ensure maximum accuracy even while 

working with a limited parameter count. 

3 Proposed Residual Squeeze VGG16 

Network Architecture 

Proposed Residual Squeeze VGG16 contains twelve fire 

modules [10] and four convolutional layers as shown in 

figure 2 in comparison to the thirteen convolutional and three 

fully connected layers of VGG16 [26] as shown in figure 1. 

We attach a scale layer to all fire modules and the first 

convolutional layer. The kernel in layer is assigned a stride of 

two and a size of (3 x 3). Next we replace the second 

convolutional layer of VGG16 with one fire module. This is 

done since the fire module has 9x fewer parameters than its 

(3 x 3) filter equivalent. Input channels are reduced to only (3 

x 3) filters. To find the number of parameters in the fire 

module, we multiply the number of input channels by the 

number of filters. In order to build CNN architecture with a 

small parameter count it is important to decrease filter and 

input channel count. Each Max Pooling layer is assigned a (3 

x 3) kernel size following the strategy of downsampling late 

in a network to give convolution layers’ large activation 

maps [16]. Convolutional layers produce activation maps 

with spatial resolutions of at least (1 x 1) but often much 

larger. Height and width of activation maps is determined by 

a set of two factors: size of the input data and the different 

choices of layers where downsampling will occur. Szegedy et 

al. [37]; Simonyan & Zisserman [26]; Krizhevsky et al. [2] 

have all implemented downsampling in CNN architectures by 

applying a stride greater than one to a selection of 

 

Figure 3: Fire module architecture illustrates the convolution filters in the Fire module. In this figure, s1x1 = 3, e1x1 = 4, and 

e3x3 = 4. (The convolution filters are presented without the activations)  



convolution or pooling layers. It has been found that when 

early layers are given large stride parameters, more layers 

will have small activation maps. He & Sun [23] observed 

higher classification accuracy after testing downsampling 

implemented into four unique CNN architectures. 

We use the fire module proposed by Iandola et al. [10] in 

our: Residual Squeeze VGG16. This module is composed of 

a squeeze convolution layer with (1 x 1) filters fed to an 

expanded layer consisting of (1 x 1) and (3 x 3) convolution 

filters. Figure 3 depicts a typical fire module which contains 

three tunable dimensions: s1*1, e1*1 and e3*3 [10]. s1*1 

[10] represents the count of (1 x 1) filters held in the squeeze 

layer. e1*1 [10] represents the count of (1 x 1) filters held in 

the expand layer. e3*3 [10] represents the count of (3 x 3) 

filters held in the expand layer. We set s1*1 [10] to be less 

than (e1*1 + e3*3) [10] to limit the count of input channels 

to the (3 x 3) filters as shown in Table 1. 

Formula (12) [22] uses shortcut connections from the 

residual learning [22] in Residual Squeeze VGG16.  

y = F (x, {Wi}) + x (4) 

After an in-depth review of the Squeeze VGG16 neural 

network, we decided to attach residual learning connections 

[23] in four locations. Residual connections are attached to 

locations composed of convolutional layer sequences without 

any intermediate pooling. Figure 2 shows the described 

architectures, including residual connections. Element-wise 

addition links output from Pool1 to output of Fire3. Fire1 has 

64 output channels and Fire3 has 128 output channels. We 

connect a convolutional layer with a 128 size kernel between 

Pool1 and the element-wise addition layers as a way to 

equalize the number of output channels. 

Next, the second residual connection Pool2 is connected 

and the shortcut connection crosses over three fire module 

layers. As a result, the residual connection is attached to the 

output of Pool2 and Fire6. Fire3 has 128 output channels 

while Fire6 has 256. A new convolution layer with 256 

output channels is added following Pool2, preceding the 

element-wise addition layer to adjust the output channels of 

Pool2 and Fire6. The third residual connection connects the 

output of Pool3 and Fire9. Fire6 has 256 output channels and 

Fire9 512. A new convolutional layer with 512 output 

channels is added following Pool3, preceding the element-

wise addition layer to adjust the output channels of Pool3 and 

Fire9. Lastly, the final residual connection fuses the output of 

Pool4 and Fire12. Fire9 and Fire12 both have 512 output 

channels. No new convolutional layer is added following 

Pool4 as the number of output channels between Fire9 and 

Fire12 is already equalized at 512 each. 

4 Image Dataset Description 

MIT Computer Science and Artificial Intelligence Laboratory 

created and maintain the large-scale MIT Places365-Standard 

[4] image dataset. This dataset outsizes ImageNet (ILSVRC 

2016) [32] and SUN dataset [20]. There are 1,803,460 total 

training images in MIT Places365-Standard [4] dataset with 

50 validation classes and 900 test classes of sizes ranging 

from a low of 3,068 to a high of 5,000. MIT Places365-

Standard [4] dataset has classes composed of different 

scenes, which are images labeled with a place or name. The 

purpose of this dataset is to assist in the development of 

innovative computer vision and machine learning techniques 

that can excel in real world image recognition, scalability, 

parallelism, and deeper understanding of a very diverse 

problem domain. Broader impact of designing solutions on 

this dataset could improve the recognition in specialized 

tasks such as self-driving cars, medical imaging, video-based 

surveillance, etc. We benchmark our algorithm on this 

dataset. 

5 Experimental Environment and Approach 

During training phase, our proposed network: Residual 

Squeeze VGG16 was trained from scratch: It is composed of 

twelve fire modules [10] and four convolution neural layers 

with four residual connections as opposed to VGG16 [26] 

with thirteen convolutions and three fully-connected layers. 

 

Table 1: Residual Squeeze VGG16 architectural dimensions. 

 

Layer 

name/type 

s1x1 

(#1x1 

squeeze) 

e1x1 

(#1x1 

expand) 

e3x3 

(#3x3 

expand) 

Fire1 8 32 32 

Fire2 16 64 64 

Fire3 16 64 64 

Fire4 32 128 128 

Fire5 32 128 128 

Fire6 32 128 128 

Fire7 64 256 256 

Fire8 64 256 256 

Fire9 64 256 256 

Fire10 64 256 256 

Fire11 64 256 256 

Fire12 64 256 256 

 



We fined tuned VGG16 on the MIT Places365-Standard 

dataset [10] from pre-trained model on ImageNet ILSVRC-

2014 [32]. 

To conduct training, we utilize Berkeley Vision and 

Learning Center’s open source deep learning framework, 

Caffe [40]. We pair Caffe and an open source deep learning 

GPU training system, NVIDIA DIGITS [31], which allows 

users to build and examine artificial neural networks with 

real-time graphical representations. Physical hardware 

consists of four NVIDIA GeForce GTX TITAN X GPUs and 

two Intel Xeon processors with 48/24 logical/physical cores 

and 256GB of main memory. All images in the training and 

validation set are resized to (256 x 256). Batch size for 

training is 128 and validation is 64. The epoch attribute is set 

to 50 and learning rate to 0.01. Every 10 epochs, the learning 

rate degrades 5x and average decay reduces to ½ of the 

previous value. In VGG16 [26] the epoch attribute is set to 

20 and learning rate to 0.001. After the completion of every 4 

epochs, the learning rate degrades 5x and learning average 

decays to ½ of the previous value. A randomized crop of size 

(227 x 227) is applied before introduction to the first 

convolutional layer. We adapt the weights of all layers from 

the Xavier distribution with a standard deviation of 0.01 as 

opposed to VGG16 [26] which uses a Gaussian distribution 

with a 0.01 standard deviation for the weights of each layer. 

The final convolutional layer of Residual Squeeze VGG16 

serves as an output layer with weight adapted from the 

Gaussian distribution with a 0.01 standard deviation. Data 

augmentation is performed via reflection. 

6 Results and Discussion 

This paper ensembles approaches from three popular 

methods: VGG16 [26], residual learning [22] and the 

Squeeze technique [10]. We set out to examine whether 

residual connections can boost VGG16 [26] network 

effectiveness while simultaneously making the network 

smaller and faster. We modify the fire module concept [10] 

and added residual connections at places in the network 

where they would be most effective. Since the residual 

connections are parameter free, the network does not see an 

increase in complexity except for a small amount of 

computation for the collection process. Furthermore, our 

network size, training time and complexity was reduced with 

the help of the fire modules [10] and sees only a marginal 

top-1 and top-5 accuracy loss. Table 2 compares results 

between our new network: Residual Squeeze VGG16 and the 

original VGG16 [26] on top-1 outcome based on the MIT 

Places 365-Standard dataset [4]. Our new network got a 

result of 51.68% compared to VGG16’s [26] result of 54% 

(after fine-tuning from ImageNet ILSVRC-2014 [32]), a 

difference of only 2.32% in top-1 accuracy. Top-5 results are 

comparable as well: Residual Squeeze VGG16 at 82.04% and 

VGG16 [26] at 84.3%, a difference of only 2.26%. 

VGG16 model [26] took three days and 16 hours to 

converge with a total size of (10.6 gigabytes). In comparison, 

the new Residual Squeeze VGG16 took only two days and 

nineteen hours and a total size of (1.23 gigabytes). This 

means, our proposed Residual Squeeze VGG16 model is 

23.86% faster and 88.4% smaller in size than the original 

VGG16 [26]. This is excellent saving in terms of space and 

time with minimal impact on accuracy. 

7 Conclusion and Future Work 

This paper proposed a Residual Squeeze VGG16 network to 

address the issue of speed and size. Proposed models 

compresses the earlier very successful VGG16 network and 

further improves on following aspects: small model size; 

faster speed; uses residual learning for faster convergence, 

better generalization, and solves the issue of degradation; 

matches the recognition accuracy of the non-compressed 

Table 2: Comparison of the Top 1 & 5 validation classification accuracy (%), duration, size, and number of training epochs 

between the VGG16 [26] and Proposed Residual Squeeze VGG16 on the MIT Places 365-Standard Dataset [4] 

Network 
Top-1 Validation 

% 

Top-5 Validation 

% 
Duration Size No. of Epoch 

VGG16 54 84.3 3 Days 16 Hours 10.6 GB 20 

Proposed Residual 

Squeeze VGG16 
51.68 82.04 2 Days 19 Hours 1.23 GB 50 

 



model. In comparison to SQUEEZENET our proposed 

framework can be more easily adapted and fully integrated 

with the residual learning for compressing various other deep 

learning convolutional neural network models. 

Future work will focus on the application of the 

techniques we have outlined in this paper to compress other 

highly-regarded networks including but not limited to ResNet 

[22] and Densely Connected Convolutional Networks [12]. 

We hope to achieve similar reductions in size and complexity 

and match the recognition accuracy. 
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