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Abstract— Deep convolutional neural network models have 

achieved great success in the recent years. However, the 

optimization of size and the time needed to train a deep network is a 

research area that needs much improvement. In this paper, we 

address the issue of speed and size by proposing a compressed 

convolutional neural network model namely Residual Squeeze 

CNDS. Proposed models compresses the earlier very successful 

Residual-CNDS network and further improves on following 

aspects: (1) small model size, (2) faster speed, (3) uses residual 

learning for faster convergence, better generalization, and solves 

the issue of degradation, (4) matches the recognition accuracy of 

the non-compressed model on the very large-scale grand challenge 

MIT Places 365-Standard scene dataset. In comparison to 

Residual-CNDS the proposed model is 87.64% smaller in size and 

13.33% faster in the training time. This supports our claim that the 

proposed model inherits the best aspects of Residual-CNDS model 

and further improves upon it. 

Moreover, we present our attempt at a more disciplined 

approach to searching the design space for novel CNN 

architectures. In comparison to SQUEEZENET our proposed 

framework can be more easily adapted and fully integrated with the 

residual learning for compressing various other contemporary deep 

learning convolutional neural network models. 

 

Keywords— Convolutional Neural Networks; Convolutional 

Networks with Deep Supervision; Residual Learning; Residual-

CNDS; Squeeze Neural Networks; Residual Squeeze CNDS; scene 

classification. 

I. INTRODUCTION 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) [1] is the current test bed for computer vision 

algorithms. Convolutional neural networks (CNNs) have 

achieved breakthroughs in this series of annual competition 

[4] and also in other image classification tasks [5, 6]. CNN 

layers learn the images’ low, mid, and high level features and 

classifies [7] in an end-to-end framework. The quality of 

features’ levels can be boosted by the number of layers used in 

the network. In the ILSVRC contest, it was revealed that the 

convolutional neural network’s accuracy could be improved 

by increasing the network depth, i.e., number of layers [8, 9]. 

This shows that the depth of the network is of critical 

importance. Top results obtained in [8-11] all use very deep 

convolutional neural networks models on the previous or 

current version of the ImageNet dataset [1]. The benefits of 

very deep models extends from regular image classification 

tasks to other significant recognition challenges such as object 

detection and segmentation [13-17]. On the other hand, 

increasing the depth of the network by adding more layers 

increases the number of parameters, which makes the 

convergence of back-propagation very slow and prone to 

overfitting. Furthermore, increasing the depth makes the 

gradients vulnerable to the issue of vanishing/exploding of 

gradients [18, 19]. 

Using the pre-trained weights of shallower networks to 

initialize the weight of deeper networks was proposed by 

Simonyan and Zisserman [6]. Szegedy et al. [9] use subsidiary 

branches attached to the middle layers. These subsidiary 

branches are auxiliary classifiers. The goal of Szegedy et al. 

[9] of using these classifiers is to increase the gradients to 

propagate back through layers of the deep neural network 

structure. Furthermore, the branches are used to motivate 

feature maps in the shallower layers to anticipate the labels 

used at the final layer. However, they did not specify a method 

that can determine the location of where to add these branches 

or how to add them. Lee et al. [18] follow similar idea by 

proposing to add the subsidiary branches after each 

intermediate layer. The losses from these branches get added 

with the loss of the final layer. This technique showed an 

enhancement in the rate of convergence. However, they did 

not explore the deeply supervised networks (DSN) [18] on 

very deep networks with many more convolutional layers. 

Wang et al. [19] suggested convolutional neural networks 

with deep supervision (CNDS). They addressed the issue of 

where to add the auxiliary branches. They explored the issue 

of vanishing gradients in deep networks to determine which 

intermediate layer needs to have an auxiliary branch. Adding 

auxiliary branch addresses the problem of slower convergence 

and overfitting. Even though the network is now able to start 

converging; another challenge surfaces, which is the 

degradation problem. As the depth of the network increases, 

the degradation problem increases in deeper networks. 

Degradation issue starts to saturate the accuracy of the 



network and forces it to quickly break down. Surprisingly, 

overfitting is not the reason behind the degradation problem. 

Degradation leads to higher training error as reported in [23, 

24] when extending the network depth by adding more layers. 

Moreover, the degradation that happens to the accuracy during 

the training phase shows that different neural network models 

are not equivalently easy to optimize. Residual learning [22] is 

a recently developed technique that solves the issue of 

degradation. In previous research, the issues of slower 

convergence, overfitting, and degradation were simultaneously 

addressed by combining the CNDS network with residual 

learning [45]. Residual connections were added [22] into the 

basic CNDS [19] eight layers’ structure. Experimental results 

on the Residual-CNDS network [45] design shows the benefits 

of combining both structures as it enhances the accuracy upon 

CNDS network.  

Much of the recent research on deep convolutional neural 

networks (CNNs) has focused on increasing accuracy on 

computer vision datasets. For a given accuracy level, there 

typically exist multiple CNN architectures, which achieve that 

accuracy level. Given equivalent accuracy, a CNN architecture 

with fewer parameters has several advantages: 

 More efficient distributed training. Communication 

among servers is the limiting factor to the scalability of 

distributed CNN training. For distributed data-parallel 

training, communication overhead is directly proportional 

to the number of parameters in the model [36]. In short, 

small models train faster due to requiring less 

communication.  

 Less overhead when exporting new models to the clients. 

For autonomous driving, companies such as Tesla 

periodically copy new models from their servers to 

customers’ cars. This practice is often referred to as an 

over-the-air update. Consumer Reports has found that the 

safety of Tesla’s autopilot semi-autonomous driving 

functionality has incrementally improved with recent 

over-the-air updates [37]. However, over-the-air updates 

of today’s typical CNN/DNN models can require large 

data transfers. With AlexNet [38], this would require 240 

megabytes of communication from the server to the car. 

Smaller models require less communication, making 

frequent updates more feasible.  

 Feasible FPGA and embedded deployment. Field-

Programmable Gate Arrays (FPGAs) is the state of the art 

hardware technology for fast processing. FPGA boards 

often have less than 10MB of on-chip memory and no off-

chip memory or storage. For inference, a sufficiently 

small model could be stored directly on the FPGA instead 

of being bottlenecked by memory bandwidth [39]. 

As it can be seen, there are many advantages of smaller 

CNN architectures. With this in mind, we focus directly on the 

problem of developing a new CNN architecture with fewer 

parameters but equivalent accuracy compared to previous 

model Residual-CNDS [45]. We propose such an architecture, 

which we call Residual Squeeze CNDS. In addition, we 

present our attempt at a more disciplined approach to 

searching the design space for novel CNN architectures. The 

proposed Residual Squeeze CNDS is a very advanced model, 

which inherits all the features from the previous Residual-

CNDS model [45]. Furthermore, the Residual Squeeze CNDS 

model is smaller in size and faster than the previous model. 

Additionally, in this paper, we show our state of the art 

technique to add the residual learning to the compressed 

model of the CNDS. This prevents the degradation problem 

from occurring due to compression. Furthermore, proposed 

model shows excellent optimization in terms of the size and 

time. Moreover, our adaptable compression method surpasses 

Iandola et al. [40] both in terms of improving the 

generalization performance and removing the performance 

degradation issue, which make us very confident that our 

framework can be easily adapted for compressing various 

other contemporary deep learning convolutional neural 

network models. 

The remainder of this paper is organized as follows. In 

section II, we give a brief background of the CNDS network, 

residual learning and SqueezeNet. We discuss the details of 

our proposed Residual Squeeze CNDS method in section III. 

In section IV, we present the details of very large-scale MIT 

Places365-Standard scene dataset used in our experiments. 

Section V presents our experimental approach. The discussion 

 
Figure 1: Fire module architecture illustrates the convolution filters in the Fire module. In this figure, s1x1 = 3, e1x1 = 4, and 

e3x3 = 4. (the convolution filters are presented without the activations) 



of the results is given in section VI. We conclude the paper 

and suggest future work in section VII.  

II. BACKGROUND 

Ever since ILSVRC 2014 [47], the idea to use very deep 

artificial neural networks have been recognized as very 

important. In recent times, progress has been made on finding 

efficient ways to train very deep neural networks. Part (A) of 

this section outlines a CNDS network structure and the ways 

in which their respective authors utilized vanishing gradients 

in deciding appropriate locations for auxiliary branch 

placement. Part (B) explores the intricacies of a residual 

learning mechanism. Part (C) contains a discussion of 

SqueezeNet [40], which is an attempt at compressing 

convolutional network namely Alexnet. The following 

overview and discussion of the CNDS network structure, 

residual learning mechanism and SqueezeNet [40] should 

provide a detailed enough description to constitute a good 

basis for understanding the Residual Squeeze CNDS that we 

aim to outline in this paper.  

A. CNDS Network 

 Adding auxiliary classifiers which provide further 

supervision in the training stage improves the generalization of 

neural networks. Szegedy et al. [7] first proposed this idea 

through adding subsidiary classifiers, which links to middle 

layers. However, Szegedy et al. [7] did not explore best 

location in the network and depth of where to add subsidiary 

classifiers. Lee et al. [18] proposed an improvement namely 

Deeply-Supervised Nets (DSN) in which a support vector 

machine classifier is connected to the output of each hidden 

layer in a network. From utilizing this method in training, Lee 

et al. [18] achieved improvements in the sum of the output 

layer’s loss and subsidiary classifiers’ losses. 

Wang et al. [19] clarified where exactly to add auxiliary 

classifiers. Deep supervision networks such as the ones 

proposed by Wang et al. [19] have major distinctions from 

those proposed by Lee et al [18]. Lee et al. [18] connect the 

branch classifier in every hidden layer rather than utilizing a 

gradient focused heuristic in determining where to add an 

auxiliary classifier. Additionally, Wang et al. [19] implements 

a small artificial neural network in subsidiary supervision 

classification. This small network contains one convolutional 

layer, a small grouping of fully connected layers and one 

Softmax layer which highly resembles a design introduced by 

Szegedy et al. [7]. In contrast, Lee et al. [18] use SVM 

classifiers linked to the outputs of all hidden layers. 

To decide where to add auxiliary supervision branches, 

Wang et al. [19] measured the strength of gradients and the 

points in the network where it starts to vanish. Wang et al. [19] 

built the neural network while foregoing the use of supervision 

classifiers. Weights for this network where adapted from the 

Gaussian pattern, a mean of zero, standard deviation set to 0.01 

and bias set to zero. Wang et al. [19] performed between ten 

and fifty back-propagation epochs, the mean gradient amount 

of the shallower layers was controlled by plotting subsidiary 

supervision classifiers whenever a mean gradient rate would 

drop under a certain threshold, such as 10
-7

 for instance. Where 

an average gradient dropped under a predetermined threshold 

the auxiliary classifier is added to that layer in the network. 

B. Residual Learning 

 Degradation decays optimization in deep convolutional 

neural networks where as rising depth should always increase 

accuracy. Additionally, the error from deeper convolutional 

neural networks is often higher when compared to that of 

equivalent superficial neural networks. Nonetheless, He at al. 

[22] proposed a design with a solution to degradation. In this 

design, He et al. [22] allowed every few stacked layers to 

qualify the residual mapping whereas degradation stops layers 

to fit a required subsidiary mapping. To do this subsidiary 

mapping formula resembles (2) as opposed to formula (1). He 

et al. [22] assumed it harder to optimize a primary mapping 

then a residual one. 

    F(x) = H(x) (1) 

 F(x) = H(x) – x (2) 

 F(x) = H(x) + x (3) 

     A shortcut connection is the process in which one or more 

layers of a convolutional neural network are passed up [23-

25]. A shortcut link can be expressed by formula (3) [22]. He 

et al. [22] use the idea of shortcut connections in order to 

perform identity mapping. Shortcut connection output is 

combined with output from the stacked layers. An advantage 

of shortcut connections is that they remain parameter free and 

only attach trivial numbers for computation operations, 

thereby the model complexity in terms of hyper parameters 

does not increase. Highway networks [21] have shown 

differences as a result of using shortcut connections in 

combination with gating functions with parameters [26]. 

Another advantage of shortcut connections of the type 

proposed by He et al. [22] is that they can be optimized 

through stochastic gradient descent (SGD). Finally, identity 

shortcut connections are easily implemented through open 

deep learning libraries [27-30]. 

 

C. SqueezeNet 

Neural network architectures (including those of deep and 

convolutional denominations) leave a lot of room for choosing 

different options such as micro/macro architectures, solvers 

and additional hyper parameters. Consequently, a good 

amount of work has been concentrated around designing 

automated ways for creating neural network architectures with 



a high level of accuracy. Well known automated approaches 

include Bayesian optimization [41], simulated annealing [42], 

randomized search [42], and genetic algorithms [44]. Each of 

these approaches has achieved higher accuracy upon their 

respective baseline. 

The objective of the SqueezeNet proposed by Iandola et 

al. [40] is to highlight CNN architectures with a small number 

of parameters and competitive accuracy. The Iandola et al. 

[40] follow three main strategies in designing CNN 

architectures:  

1. Replace 3x3 filters with 1x1 filters. 

2. Decrease the number of input channels to 3x3 filters.  

3. Downsample late in the network to give 

convolutional layers large activation maps. 

      One and two decrease the number of parameters in CNN 

while maintaining accuracy. Three would help to maximize 

accuracy when working with a limited amount of parameters. 

III. PROPOSED RESIDUAL SQUEEZE CNDS NETWORK 

ARCHITECTURE 

     Our proposed Residual Squeeze CNDS contains seven fire 

modules [40] and four convolutional neural layers in the main 

branch. Fig. 2 shows the proposed architecture. We attach a 

scale layer to all fire modules and the first convolutional layer 

in the main branch. We assign a stride of two and a size of 3x3 

to the kernel in layer one. We replace the second 

convolutional layer of the Residual-CNDS [45] with one fire 

module [40]. We choose to do this because the fire module 

[40] has 9x fewer parameters than a 3x3 filter counterpart. 

Additionally, we reduce input channels to only 3x3 filters. The 

number of parameters in the fire module is the number of 

input channels multiplied by the number of filters. Therefore, 

to maintain a small amount of parameters in a CNN 

architecture it is important to decrease the number of filters 

and the number of input channels. We set all max pooling 

layers a kernel size of 3x3 following the idea of the third 

strategy [40] in that we downsample late in the network so that 

convolutional layers can have large activation maps. A 

convolutional layer will produce an output activation map 

with a spatial resolution of at least 1x1, but often much larger. 

The resulting height and width of these activation maps are 

controlled by two factors: size of the input data and the choice 

of layers where downsampling will occur. Downsampling has 

been implemented into CNN architectures by applying a stride 

greater than one to some convolutional or pooling layers (e.g. 

(Szegedy et al. [9]; Simonyan & Zisserman [6]; Krizhevsky et 

al. [2])). When early layers have large stride parameters, as a 

result, most layers will have small activation maps. However, 

if most layers have a stride of one and those layers are towards 

the end of a network, many layers will have large activation 

map. We observe that large activation maps lead to increased 

classification accuracy. After He & Sun [46] conducted 

delayed downsampling tests on four unique CNN architectures 

they observed higher classification accuracy in each result. 

     In our Residual Squeeze CNDS model we utilize the fire 

module first proposed in Iandola et al. [40]. The fire module 

[40] is a composition of squeeze convolutional layer (with 1 x 

1 filters), which is then fed into an expanded layer comprised 

of a mix of 1x1 and 3x3 convolution filters. The fire module is 

illustrated in Fig. 1. A fire module has three adjustable 

dimensions: s1*1, e1*1, and e3*3 [40]. s1*1 [40] represents the 

number of 1x1 filters in the squeeze layer. e1*1 [40] represents 

the number of 1x1 filters in the expand layer. e3*3 [40] is the 

number of 3x3 filters in the expand layer. In order to limit the 

amount of input channels to the 3x3 filters we set s1*1 [40] to 

be less than (e1*1 + e3*3) [40] as shown in Table 1. 

     As observed by Wang et al. [19], the subsidiary branch, 

which contains the supervision classifier, follows the 

convolutional neural layer, which experiences the problem of 

vanishing gradients (Fire3) as shown in the Fig. 2. 

Characteristic maps that the shallower layers create are noisy 

and it is very important to minimize this noise in the 

convolutional layers before it reaches the classifiers. In order 

to minimize the noise, we decrease the dimensionality of the 

characteristic maps as in Wang et al. [19] paper, and then pass 

them into non-linear functions before placing them into 

classifiers. This results in the subsidiary classifier with an 

average pooling layer of kernel size 5x5 and a stride of two. 

Furthermore, a convolutional layer follows the average 

pooling layer with a kernel of size one and a stride of one, we 

add a scale layer to it. Then we add two additional 

convolutional layers in place of fully connected layers, each 

 
Figure 3: The architecture of proposed Residual Squeeze CNDS network. Fire modules and residual connections are shown in red  



with a size of 512 and a kernel of size 3x3, connected by a 0.5 

dropout ratio. The master and subsidiary branch have their 

own output convolutional layer with an output that resembles 

the amount of classes in the dataset, a kernel of size one, an 

average pooling layer and a softmax layer for classification. 

                  Wmain = (W1, …, W11) (4) 

                Wbranch = (Ws5, …, Ws8) (5) 

Weights in master branch names are illustrated in formula 

(4) [19]. These weights match with the eight convolutional 

layers and three fully connected layers, which resemble those 

of the original Residual-CNDS model [45]. The eight 

convolutional layers in [45] are replaced by one convolutional 

layer and seven fire modules in the proposed Residual Squeeze 

CNDS. Each fire module (three convolutional layers) replaces 

one convolutional layer in the original Residual-CNDS [45]. 

Additionally, the auxiliary classifier’s weight computation in 

formula (5) [19], is matched to the four convolutional layers in 

the auxiliary branch. If we consider the characteristic map 

generated from the output layer in the master branch at the 

beginning to be X11 then we are able to calculate likelihood by 

using the softmax function from the labels k =1, ..., K, 

illustrated by formula (6) [19]. We can calculate the reply 

through formula (7) [19] if the characteristic map is S8, 

generated from the output layer in the subsidiary branch.  

 pk = 
𝑒𝑥𝑝(𝑋11(𝑘))

∑ 𝑒𝑥𝑝(𝑋11(𝑘))𝑘
 (6) 

 psk = 
𝑒𝑥𝑝(𝑆8(𝑘))

∑ 𝑒𝑥𝑝(𝑆8(𝑘))𝑘
 (7) 

Formula (8) [19] illustrates the loss calculated by the 

master branch by computing from the probabilities initialized 

in the softmax. The auxiliary branch loss is calculated using 

formula (9) [19]. This loss includes weights from the auxiliary 

branch and the early convolutional layers from the master 

branch.  

𝐿0 (Wmain) = - ∑ 𝑦𝑘 𝑙𝑛 𝑝𝑘𝐾
𝑘=1  (8) 

𝐿s (Wmain, Wbranch) = - ∑ 𝑦𝑘 𝑙𝑛 𝑝𝑠𝑘𝐾
𝑘=1  (9) 

Loss from master and auxiliary branches can be calculated 

using formula (10) [19]. Formula (10) calculates a weighted 

sum as the master branch is exposed to additional weight than 

the subsidiary branch. In order to manage the value of the 

subsidiary branch as a regularization parameter we use the 

parameter αt. This parameter degenerates over sequential 

iterations as illustrated in formula (11) [19].  

𝐿s (Wmain, Wbranch) = 𝐿0 (Wmain)+αt 𝐿s (Wmain, Wbranch)   (10) 

 αt = αt * (1 – t/N) (11) 

Formula (12) [22] uses shortcut connections from the 
residual learning [22] in Residual Squeeze CNDS.  

 y = F(x, {Wi}) + x (12) 

Following a deep study of the Squeeze-CNDS neural 

network we decided to attach residual learning connections 

[23] to only the master branch. The residual connections are 

attached to places with sequences of convolutional layers and 

no pooling in between. Fig. 2 illustrates our architecture 

showing residual connections in the main branch. The residual 

connection links input of the Fire2 to output of Fire3. The 

kernel of Fire1 is 128 and kernel of Fire3 is 256. In order to 

make the kernels’ output equal we use element-wise addition. 

We also connect a convolutional layer of kernel size 256 

between Pool2 and the element-wise addition layers. An 

element-wise addition links the output of Pool2 to output of 

(Fire3). 

The second residual connection connects to Pool3 and 

crosses over two Fire module layers. This results in the residual 

connection being connected between the output of Pool3 and 

the output of Fire5. The Fire3 has a kernel of size 256 and 

Fire5 has a kernel of size 512. In order to adjust the size of 

kernels of Pool3 and Fire5, we insert a convolutional layer with 

a kernel of size 512 after Pool3 but before the element-wise 

addition layer. We add the subsidiary branch after the 

integration process between the output of Pool2 and Fire3. The 

last third residual connection links the output of Pool4 to the 

Fire7. Finally, we add a convolutional layer with a kernel of 

size 512 after Pool4 but before the element-wise addition layer 

in order to boost the feature mapping at the end of the CNN 

architecture.  

IV. MIT PLACES365-STANDARD IMAGE DATASET 

DESCRIPTION 

MIT Places365-Standard [34] is a very large-scale dataset 

and perhaps the largest publicly available image dataset. It is 

created and maintained by MIT Computer Science and 

Artificial Intelligence Laboratory. It is bigger than ImageNet 

(ILSVRC2016) [35] and SUN dataset [32]. MIT Places365-

Standard [34] dataset has 365 places categories, in total 

1,803,460 training images, each class contains anywhere from 

3,068 to 5,000 images. It has 50 images per class as validation 

set and 900 images per class as test set. This dataset is scene 

TABLE I 
 

RESIDUAL SQUEEZE CNDS MAIN BRANCH ARCHITECTURAL DIMENSIONS  

 

Layer 

name/type 

s1x1 

(#1x1 

squeeze) 

e1x1 

(#1x1 

expand) 

e3x3 

(#3x3 

expand) 

Fire1 16 64 64 

Fire2 and 3 32 128 128 

Fire4 to 7 64 256 256 

 



based, meaning it includes images labeled with a scene or 

place name. The purpose of this dataset is to assist in the 

development of innovative computer vision and machine 

learning techniques that can excel in real world image 

recognition, scalability, parallelism, and deeper understanding 

of a very diverse problem domain. Broader impact of 

designing solutions on this dataset could improve the 

recognition in specialized tasks such as self-driving cars, 

medical imaging, video-based surveillance, etc. We 

benchmark our algorithm on this dataset. 

V. EXPERIMENTAL ENVIRONMENT AND APPROACH 

The Residual-CNDS [45] and proposed Residual Squeeze 

CNDS are trained from scratch. We compare performance of 

these two networks on the MIT Places dataset. Residual-CNDS 

[45] contains eight convolutional layers with three residual 

connections in the main branch and one convolutional layer in 

the subsidiary branch in contrast the Residual Squeeze CNDS, 

which has four convolutional layers and seven Fire modules 

with three residual connections in the main branch, and four 

convolutional layers in the subsidiary branch. We use Caffe 

[28], an open source deep learning framework from the 

Berkeley Vision and Learning Center. In conjunction with 

Caffe, we use NVIDIA DIGITS an open source deep learning 

GPU training system [33], which allows users to build and 

examine their artificial neural networks for object detection and 

image classification with real-time visualization. As for 

physical hardware, we operate on four NVIDIA GeForce GTX 

TITAN X GPUs and two Intel Xeon processors allowing us a 

total of 48/24 logical/physical cores and 256 GB of main 

memory. 

We resize all images to 256x256 for training, validation and 
testing. Preprocessing step on each image subtracts from the 
pixel value the average of the pixel values for each color 
channel in RGB color space. We set the batch size for the 
training phase to 256, while we set the batch size of the 
validation to 128. We set our epoch count to 50, and we set the 
learning rate to 0.01. Our learning rate degrades 5x during 
training after every 10 epochs and the decay in the learning rate 
is half of its previous values. Images are cropped to 227x227 in 
random areas before being fed into the first convolutional 
layer. Next, the weights of all layers are adapted from the 
Xavier distribution with a 0.01 standard deviation. The final 
convolutional layer, which acts as our output layer has its 
weight adapted from the Gaussian distribution with a 0.01 
standard deviation as well. Data augmentation is performed by 
reflection. 

VI. RESULTS AND DISCUSSION 

This paper ensembles approaches from three popular 

methods: convolutional neural networks with deep supervision 

[19], residual learning [22] and the Squeeze technique [40]. We 

set out to examine whether residual connections can boost 

CNDS [19] network effectiveness while simultaneously 

making the network smaller and faster. To do this we adapted 

and modified the Fire module concept [40] and added residual 

connections. We observe that the residual connections are 

parameter free, even after a trivial amount of computation for 

the collection process; the networks complexity does not see 

much increase. Additionally, the fire modules [40] help in the 

reduction of our network size, training time and complexity of 

our network with only a small Top-1 and Top-5 accuracy loss. 

Table II shows that after training from scratch, Residual 

Squeeze CNDS Top-1 outcome is 51.32% whereas the original 

Residual-CNDS [45] Top-1 outcome was almost a similar 

51.98% on the validation set in the MIT Places 365-Standard 

dataset [34], a difference of mere 0.66 %. Our Residual 

Squeeze CNDS Top-5 result is 81.34% very close to the 

performance of Residual-CNDS [45]. 

Residual-CNDS model [45] took one day and 21 hours to 
converge with a total size of (14 gigabyte). In comparison, the 
new Residual Squeeze CNDS took only one day and fifteen 
hours and a total size of (1.73 gigabyte). This means, our 
proposed Residual Squeeze CNDS model is 13.33% faster and 
87.64% smaller in size that the original Residual-CNDS [45]. 
This is excellent saving in terms of space and time with 
minimal impact on accuracy. 

VII. CONCLUSION 

Compressed CNN architecture leads to more efficient 
distributed training, less network overhead when exporting new 
models to the clients, and feasible FPGA and embedded 
deployment. This paper proposed a Residual Squeeze CNDS 
network to address the issue of speed and size. Proposed 
models compresses the earlier very successful Residual-CNDS 
network and further improves on following aspects: small 
model size; faster speed; uses residual learning for faster 
convergence, better generalization, and solves the issue of 
degradation; matches the recognition accuracy of the non-
compressed model. 

TABLE II 
 

COMPARISON OF THE TOP 1 & 5 VALIDATION CLASSIFICATION 

ACCURACY (%), DURATION AND SIZE BETWEEN RESIDUAL-CNDS [45] 

AND PROPOSED RESIDUAL SQUEEZE CNDS ON THE MIT PLACES 365-

STANDARD DATASET [34] 

 

Network 

Top-1 

Validation 

% 

Top-5 

Validation 

% 

Duration Size 

Residual-

CNDS 
51.98 82.11 

1 Day 21 

Hour 
14 GB 

Proposed 

Residual 

Squeeze 

CNDS 

51.32 81.34 
1 Day 15 

Hour 
1.73 GB 

 



In comparison to SQUEEZENET our proposed framework 
can be more easily adapted and fully integrated with the 
residual learning for compressing various other deep learning 
convolutional neural network models. Broader impact of our 
work could improve the performance in specialized tasks such 
as self-driving cars, video-based surveillance, and mobile GPU 
applications. 
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