
Residual Squeeze CNDS Deep Learning CNN Model for Very

Large Scale Places Image Recognition

Abhishek Verma Hussam Qassim David Feinzimer
Department of Computer Science Department of Computer Science Department of Computer Science

New Jersey City University California State University California State University

Jersey City, NJ 07305 Fullerton, California 92831 Fullerton, California 92831

av56(at)njit.edu hualkassam(at)csu.fullerton.edu dfeinzimer(at)csu.fullerton.edu

Abstract— Deep convolutional neural network models have

achieved great success in the recent years. However, the

optimization of size and the time needed to train a deep network is a

research area that needs much improvement. In this paper, we

address the issue of speed and size by proposing a compressed

convolutional neural network model namely Residual Squeeze

CNDS. Proposed models compresses the earlier very successful

Residual-CNDS network and further improves on following

aspects: (1) small model size, (2) faster speed, (3) uses residual

learning for faster convergence, better generalization, and solves

the issue of degradation, (4) matches the recognition accuracy of

the non-compressed model on the very large-scale grand challenge

MIT Places 365-Standard scene dataset. In comparison to

Residual-CNDS the proposed model is 87.64% smaller in size and

13.33% faster in the training time. This supports our claim that the

proposed model inherits the best aspects of Residual-CNDS model

and further improves upon it.

Moreover, we present our attempt at a more disciplined

approach to searching the design space for novel CNN

architectures. In comparison to SQUEEZENET our proposed

framework can be more easily adapted and fully integrated with the

residual learning for compressing various other contemporary deep

learning convolutional neural network models.

Keywords— Convolutional Neural Networks; Convolutional

Networks with Deep Supervision; Residual Learning; Residual-

CNDS; Squeeze Neural Networks; Residual Squeeze CNDS; scene

classification.

I. INTRODUCTION

ImageNet Large Scale Visual Recognition Challenge

(ILSVRC) [1] is the current test bed for computer vision

algorithms. Convolutional neural networks (CNNs) have

achieved breakthroughs in this series of annual competition

[4] and also in other image classification tasks [5, 6]. CNN

layers learn the images’ low, mid, and high level features and

classifies [7] in an end-to-end framework. The quality of

features’ levels can be boosted by the number of layers used in

the network. In the ILSVRC contest, it was revealed that the

convolutional neural network’s accuracy could be improved

by increasing the network depth, i.e., number of layers [8, 9].

This shows that the depth of the network is of critical

importance. Top results obtained in [8-11] all use very deep

convolutional neural networks models on the previous or

current version of the ImageNet dataset [1]. The benefits of

very deep models extends from regular image classification

tasks to other significant recognition challenges such as object

detection and segmentation [13-17]. On the other hand,

increasing the depth of the network by adding more layers

increases the number of parameters, which makes the

convergence of back-propagation very slow and prone to

overfitting. Furthermore, increasing the depth makes the

gradients vulnerable to the issue of vanishing/exploding of

gradients [18, 19].

Using the pre-trained weights of shallower networks to

initialize the weight of deeper networks was proposed by

Simonyan and Zisserman [6]. Szegedy et al. [9] use subsidiary

branches attached to the middle layers. These subsidiary

branches are auxiliary classifiers. The goal of Szegedy et al.

[9] of using these classifiers is to increase the gradients to

propagate back through layers of the deep neural network

structure. Furthermore, the branches are used to motivate

feature maps in the shallower layers to anticipate the labels

used at the final layer. However, they did not specify a method

that can determine the location of where to add these branches

or how to add them. Lee et al. [18] follow similar idea by

proposing to add the subsidiary branches after each

intermediate layer. The losses from these branches get added

with the loss of the final layer. This technique showed an

enhancement in the rate of convergence. However, they did

not explore the deeply supervised networks (DSN) [18] on

very deep networks with many more convolutional layers.

Wang et al. [19] suggested convolutional neural networks

with deep supervision (CNDS). They addressed the issue of

where to add the auxiliary branches. They explored the issue

of vanishing gradients in deep networks to determine which

intermediate layer needs to have an auxiliary branch. Adding

auxiliary branch addresses the problem of slower convergence

and overfitting. Even though the network is now able to start

converging; another challenge surfaces, which is the

degradation problem. As the depth of the network increases,

the degradation problem increases in deeper networks.

Degradation issue starts to saturate the accuracy of the

network and forces it to quickly break down. Surprisingly,

overfitting is not the reason behind the degradation problem.

Degradation leads to higher training error as reported in [23,

24] when extending the network depth by adding more layers.

Moreover, the degradation that happens to the accuracy during

the training phase shows that different neural network models

are not equivalently easy to optimize. Residual learning [22] is

a recently developed technique that solves the issue of

degradation. In previous research, the issues of slower

convergence, overfitting, and degradation were simultaneously

addressed by combining the CNDS network with residual

learning [45]. Residual connections were added [22] into the

basic CNDS [19] eight layers’ structure. Experimental results

on the Residual-CNDS network [45] design shows the benefits

of combining both structures as it enhances the accuracy upon

CNDS network.

Much of the recent research on deep convolutional neural

networks (CNNs) has focused on increasing accuracy on

computer vision datasets. For a given accuracy level, there

typically exist multiple CNN architectures, which achieve that

accuracy level. Given equivalent accuracy, a CNN architecture

with fewer parameters has several advantages:

 More efficient distributed training. Communication

among servers is the limiting factor to the scalability of

distributed CNN training. For distributed data-parallel

training, communication overhead is directly proportional

to the number of parameters in the model [36]. In short,

small models train faster due to requiring less

communication.

 Less overhead when exporting new models to the clients.

For autonomous driving, companies such as Tesla

periodically copy new models from their servers to

customers’ cars. This practice is often referred to as an

over-the-air update. Consumer Reports has found that the

safety of Tesla’s autopilot semi-autonomous driving

functionality has incrementally improved with recent

over-the-air updates [37]. However, over-the-air updates

of today’s typical CNN/DNN models can require large

data transfers. With AlexNet [38], this would require 240

megabytes of communication from the server to the car.

Smaller models require less communication, making

frequent updates more feasible.

 Feasible FPGA and embedded deployment. Field-

Programmable Gate Arrays (FPGAs) is the state of the art

hardware technology for fast processing. FPGA boards

often have less than 10MB of on-chip memory and no off-

chip memory or storage. For inference, a sufficiently

small model could be stored directly on the FPGA instead

of being bottlenecked by memory bandwidth [39].

As it can be seen, there are many advantages of smaller

CNN architectures. With this in mind, we focus directly on the

problem of developing a new CNN architecture with fewer

parameters but equivalent accuracy compared to previous

model Residual-CNDS [45]. We propose such an architecture,

which we call Residual Squeeze CNDS. In addition, we

present our attempt at a more disciplined approach to

searching the design space for novel CNN architectures. The

proposed Residual Squeeze CNDS is a very advanced model,

which inherits all the features from the previous Residual-

CNDS model [45]. Furthermore, the Residual Squeeze CNDS

model is smaller in size and faster than the previous model.

Additionally, in this paper, we show our state of the art

technique to add the residual learning to the compressed

model of the CNDS. This prevents the degradation problem

from occurring due to compression. Furthermore, proposed

model shows excellent optimization in terms of the size and

time. Moreover, our adaptable compression method surpasses

Iandola et al. [40] both in terms of improving the

generalization performance and removing the performance

degradation issue, which make us very confident that our

framework can be easily adapted for compressing various

other contemporary deep learning convolutional neural

network models.

The remainder of this paper is organized as follows. In

section II, we give a brief background of the CNDS network,

residual learning and SqueezeNet. We discuss the details of

our proposed Residual Squeeze CNDS method in section III.

In section IV, we present the details of very large-scale MIT

Places365-Standard scene dataset used in our experiments.

Section V presents our experimental approach. The discussion

Figure 1: Fire module architecture illustrates the convolution filters in the Fire module. In this figure, s1x1 = 3, e1x1 = 4, and

e3x3 = 4. (the convolution filters are presented without the activations)

of the results is given in section VI. We conclude the paper

and suggest future work in section VII.

II. BACKGROUND

Ever since ILSVRC 2014 [47], the idea to use very deep

artificial neural networks have been recognized as very

important. In recent times, progress has been made on finding

efficient ways to train very deep neural networks. Part (A) of

this section outlines a CNDS network structure and the ways

in which their respective authors utilized vanishing gradients

in deciding appropriate locations for auxiliary branch

placement. Part (B) explores the intricacies of a residual

learning mechanism. Part (C) contains a discussion of

SqueezeNet [40], which is an attempt at compressing

convolutional network namely Alexnet. The following

overview and discussion of the CNDS network structure,

residual learning mechanism and SqueezeNet [40] should

provide a detailed enough description to constitute a good

basis for understanding the Residual Squeeze CNDS that we

aim to outline in this paper.

A. CNDS Network

 Adding auxiliary classifiers which provide further

supervision in the training stage improves the generalization of

neural networks. Szegedy et al. [7] first proposed this idea

through adding subsidiary classifiers, which links to middle

layers. However, Szegedy et al. [7] did not explore best

location in the network and depth of where to add subsidiary

classifiers. Lee et al. [18] proposed an improvement namely

Deeply-Supervised Nets (DSN) in which a support vector

machine classifier is connected to the output of each hidden

layer in a network. From utilizing this method in training, Lee

et al. [18] achieved improvements in the sum of the output

layer’s loss and subsidiary classifiers’ losses.

Wang et al. [19] clarified where exactly to add auxiliary

classifiers. Deep supervision networks such as the ones

proposed by Wang et al. [19] have major distinctions from

those proposed by Lee et al [18]. Lee et al. [18] connect the

branch classifier in every hidden layer rather than utilizing a

gradient focused heuristic in determining where to add an

auxiliary classifier. Additionally, Wang et al. [19] implements

a small artificial neural network in subsidiary supervision

classification. This small network contains one convolutional

layer, a small grouping of fully connected layers and one

Softmax layer which highly resembles a design introduced by

Szegedy et al. [7]. In contrast, Lee et al. [18] use SVM

classifiers linked to the outputs of all hidden layers.

To decide where to add auxiliary supervision branches,

Wang et al. [19] measured the strength of gradients and the

points in the network where it starts to vanish. Wang et al. [19]

built the neural network while foregoing the use of supervision

classifiers. Weights for this network where adapted from the

Gaussian pattern, a mean of zero, standard deviation set to 0.01

and bias set to zero. Wang et al. [19] performed between ten

and fifty back-propagation epochs, the mean gradient amount

of the shallower layers was controlled by plotting subsidiary

supervision classifiers whenever a mean gradient rate would

drop under a certain threshold, such as 10
-7

 for instance. Where

an average gradient dropped under a predetermined threshold

the auxiliary classifier is added to that layer in the network.

B. Residual Learning

 Degradation decays optimization in deep convolutional

neural networks where as rising depth should always increase

accuracy. Additionally, the error from deeper convolutional

neural networks is often higher when compared to that of

equivalent superficial neural networks. Nonetheless, He at al.

[22] proposed a design with a solution to degradation. In this

design, He et al. [22] allowed every few stacked layers to

qualify the residual mapping whereas degradation stops layers

to fit a required subsidiary mapping. To do this subsidiary

mapping formula resembles (2) as opposed to formula (1). He

et al. [22] assumed it harder to optimize a primary mapping

then a residual one.

 F(x) = H(x) (1)

 F(x) = H(x) – x (2)

 F(x) = H(x) + x (3)

 A shortcut connection is the process in which one or more

layers of a convolutional neural network are passed up [23-

25]. A shortcut link can be expressed by formula (3) [22]. He

et al. [22] use the idea of shortcut connections in order to

perform identity mapping. Shortcut connection output is

combined with output from the stacked layers. An advantage

of shortcut connections is that they remain parameter free and

only attach trivial numbers for computation operations,

thereby the model complexity in terms of hyper parameters

does not increase. Highway networks [21] have shown

differences as a result of using shortcut connections in

combination with gating functions with parameters [26].

Another advantage of shortcut connections of the type

proposed by He et al. [22] is that they can be optimized

through stochastic gradient descent (SGD). Finally, identity

shortcut connections are easily implemented through open

deep learning libraries [27-30].

C. SqueezeNet

Neural network architectures (including those of deep and

convolutional denominations) leave a lot of room for choosing

different options such as micro/macro architectures, solvers

and additional hyper parameters. Consequently, a good

amount of work has been concentrated around designing

automated ways for creating neural network architectures with

a high level of accuracy. Well known automated approaches

include Bayesian optimization [41], simulated annealing [42],

randomized search [42], and genetic algorithms [44]. Each of

these approaches has achieved higher accuracy upon their

respective baseline.

The objective of the SqueezeNet proposed by Iandola et

al. [40] is to highlight CNN architectures with a small number

of parameters and competitive accuracy. The Iandola et al.

[40] follow three main strategies in designing CNN

architectures:

1. Replace 3x3 filters with 1x1 filters.

2. Decrease the number of input channels to 3x3 filters.

3. Downsample late in the network to give

convolutional layers large activation maps.

 One and two decrease the number of parameters in CNN

while maintaining accuracy. Three would help to maximize

accuracy when working with a limited amount of parameters.

III. PROPOSED RESIDUAL SQUEEZE CNDS NETWORK

ARCHITECTURE

 Our proposed Residual Squeeze CNDS contains seven fire

modules [40] and four convolutional neural layers in the main

branch. Fig. 2 shows the proposed architecture. We attach a

scale layer to all fire modules and the first convolutional layer

in the main branch. We assign a stride of two and a size of 3x3

to the kernel in layer one. We replace the second

convolutional layer of the Residual-CNDS [45] with one fire

module [40]. We choose to do this because the fire module

[40] has 9x fewer parameters than a 3x3 filter counterpart.

Additionally, we reduce input channels to only 3x3 filters. The

number of parameters in the fire module is the number of

input channels multiplied by the number of filters. Therefore,

to maintain a small amount of parameters in a CNN

architecture it is important to decrease the number of filters

and the number of input channels. We set all max pooling

layers a kernel size of 3x3 following the idea of the third

strategy [40] in that we downsample late in the network so that

convolutional layers can have large activation maps. A

convolutional layer will produce an output activation map

with a spatial resolution of at least 1x1, but often much larger.

The resulting height and width of these activation maps are

controlled by two factors: size of the input data and the choice

of layers where downsampling will occur. Downsampling has

been implemented into CNN architectures by applying a stride

greater than one to some convolutional or pooling layers (e.g.

(Szegedy et al. [9]; Simonyan & Zisserman [6]; Krizhevsky et

al. [2])). When early layers have large stride parameters, as a

result, most layers will have small activation maps. However,

if most layers have a stride of one and those layers are towards

the end of a network, many layers will have large activation

map. We observe that large activation maps lead to increased

classification accuracy. After He & Sun [46] conducted

delayed downsampling tests on four unique CNN architectures

they observed higher classification accuracy in each result.

 In our Residual Squeeze CNDS model we utilize the fire

module first proposed in Iandola et al. [40]. The fire module

[40] is a composition of squeeze convolutional layer (with 1 x

1 filters), which is then fed into an expanded layer comprised

of a mix of 1x1 and 3x3 convolution filters. The fire module is

illustrated in Fig. 1. A fire module has three adjustable

dimensions: s1*1, e1*1, and e3*3 [40]. s1*1 [40] represents the

number of 1x1 filters in the squeeze layer. e1*1 [40] represents

the number of 1x1 filters in the expand layer. e3*3 [40] is the

number of 3x3 filters in the expand layer. In order to limit the

amount of input channels to the 3x3 filters we set s1*1 [40] to

be less than (e1*1 + e3*3) [40] as shown in Table 1.

 As observed by Wang et al. [19], the subsidiary branch,

which contains the supervision classifier, follows the

convolutional neural layer, which experiences the problem of

vanishing gradients (Fire3) as shown in the Fig. 2.

Characteristic maps that the shallower layers create are noisy

and it is very important to minimize this noise in the

convolutional layers before it reaches the classifiers. In order

to minimize the noise, we decrease the dimensionality of the

characteristic maps as in Wang et al. [19] paper, and then pass

them into non-linear functions before placing them into

classifiers. This results in the subsidiary classifier with an

average pooling layer of kernel size 5x5 and a stride of two.

Furthermore, a convolutional layer follows the average

pooling layer with a kernel of size one and a stride of one, we

add a scale layer to it. Then we add two additional

convolutional layers in place of fully connected layers, each

Figure 3: The architecture of proposed Residual Squeeze CNDS network. Fire modules and residual connections are shown in red

with a size of 512 and a kernel of size 3x3, connected by a 0.5

dropout ratio. The master and subsidiary branch have their

own output convolutional layer with an output that resembles

the amount of classes in the dataset, a kernel of size one, an

average pooling layer and a softmax layer for classification.

 Wmain = (W1, …, W11) (4)

 Wbranch = (Ws5, …, Ws8) (5)

Weights in master branch names are illustrated in formula

(4) [19]. These weights match with the eight convolutional

layers and three fully connected layers, which resemble those

of the original Residual-CNDS model [45]. The eight

convolutional layers in [45] are replaced by one convolutional

layer and seven fire modules in the proposed Residual Squeeze

CNDS. Each fire module (three convolutional layers) replaces

one convolutional layer in the original Residual-CNDS [45].

Additionally, the auxiliary classifier’s weight computation in

formula (5) [19], is matched to the four convolutional layers in

the auxiliary branch. If we consider the characteristic map

generated from the output layer in the master branch at the

beginning to be X11 then we are able to calculate likelihood by

using the softmax function from the labels k =1, ..., K,

illustrated by formula (6) [19]. We can calculate the reply

through formula (7) [19] if the characteristic map is S8,

generated from the output layer in the subsidiary branch.

 pk =
𝑒𝑥𝑝(𝑋11(𝑘))

∑ 𝑒𝑥𝑝(𝑋11(𝑘))𝑘
 (6)

 psk =
𝑒𝑥𝑝(𝑆8(𝑘))

∑ 𝑒𝑥𝑝(𝑆8(𝑘))𝑘
 (7)

Formula (8) [19] illustrates the loss calculated by the

master branch by computing from the probabilities initialized

in the softmax. The auxiliary branch loss is calculated using

formula (9) [19]. This loss includes weights from the auxiliary

branch and the early convolutional layers from the master

branch.

𝐿0 (Wmain) = - ∑ 𝑦𝑘 𝑙𝑛 𝑝𝑘𝐾
𝑘=1 (8)

𝐿s (Wmain, Wbranch) = - ∑ 𝑦𝑘 𝑙𝑛 𝑝𝑠𝑘𝐾
𝑘=1 (9)

Loss from master and auxiliary branches can be calculated

using formula (10) [19]. Formula (10) calculates a weighted

sum as the master branch is exposed to additional weight than

the subsidiary branch. In order to manage the value of the

subsidiary branch as a regularization parameter we use the

parameter αt. This parameter degenerates over sequential

iterations as illustrated in formula (11) [19].

𝐿s (Wmain, Wbranch) = 𝐿0 (Wmain)+αt 𝐿s (Wmain, Wbranch) (10)

 αt = αt * (1 – t/N) (11)

Formula (12) [22] uses shortcut connections from the
residual learning [22] in Residual Squeeze CNDS.

 y = F(x, {Wi}) + x (12)

Following a deep study of the Squeeze-CNDS neural

network we decided to attach residual learning connections

[23] to only the master branch. The residual connections are

attached to places with sequences of convolutional layers and

no pooling in between. Fig. 2 illustrates our architecture

showing residual connections in the main branch. The residual

connection links input of the Fire2 to output of Fire3. The

kernel of Fire1 is 128 and kernel of Fire3 is 256. In order to

make the kernels’ output equal we use element-wise addition.

We also connect a convolutional layer of kernel size 256

between Pool2 and the element-wise addition layers. An

element-wise addition links the output of Pool2 to output of

(Fire3).

The second residual connection connects to Pool3 and

crosses over two Fire module layers. This results in the residual

connection being connected between the output of Pool3 and

the output of Fire5. The Fire3 has a kernel of size 256 and

Fire5 has a kernel of size 512. In order to adjust the size of

kernels of Pool3 and Fire5, we insert a convolutional layer with

a kernel of size 512 after Pool3 but before the element-wise

addition layer. We add the subsidiary branch after the

integration process between the output of Pool2 and Fire3. The

last third residual connection links the output of Pool4 to the

Fire7. Finally, we add a convolutional layer with a kernel of

size 512 after Pool4 but before the element-wise addition layer

in order to boost the feature mapping at the end of the CNN

architecture.

IV. MIT PLACES365-STANDARD IMAGE DATASET

DESCRIPTION

MIT Places365-Standard [34] is a very large-scale dataset

and perhaps the largest publicly available image dataset. It is

created and maintained by MIT Computer Science and

Artificial Intelligence Laboratory. It is bigger than ImageNet

(ILSVRC2016) [35] and SUN dataset [32]. MIT Places365-

Standard [34] dataset has 365 places categories, in total

1,803,460 training images, each class contains anywhere from

3,068 to 5,000 images. It has 50 images per class as validation

set and 900 images per class as test set. This dataset is scene

TABLE I

RESIDUAL SQUEEZE CNDS MAIN BRANCH ARCHITECTURAL DIMENSIONS

Layer

name/type

s1x1

(#1x1

squeeze)

e1x1

(#1x1

expand)

e3x3

(#3x3

expand)

Fire1 16 64 64

Fire2 and 3 32 128 128

Fire4 to 7 64 256 256

based, meaning it includes images labeled with a scene or

place name. The purpose of this dataset is to assist in the

development of innovative computer vision and machine

learning techniques that can excel in real world image

recognition, scalability, parallelism, and deeper understanding

of a very diverse problem domain. Broader impact of

designing solutions on this dataset could improve the

recognition in specialized tasks such as self-driving cars,

medical imaging, video-based surveillance, etc. We

benchmark our algorithm on this dataset.

V. EXPERIMENTAL ENVIRONMENT AND APPROACH

The Residual-CNDS [45] and proposed Residual Squeeze

CNDS are trained from scratch. We compare performance of

these two networks on the MIT Places dataset. Residual-CNDS

[45] contains eight convolutional layers with three residual

connections in the main branch and one convolutional layer in

the subsidiary branch in contrast the Residual Squeeze CNDS,

which has four convolutional layers and seven Fire modules

with three residual connections in the main branch, and four

convolutional layers in the subsidiary branch. We use Caffe

[28], an open source deep learning framework from the

Berkeley Vision and Learning Center. In conjunction with

Caffe, we use NVIDIA DIGITS an open source deep learning

GPU training system [33], which allows users to build and

examine their artificial neural networks for object detection and

image classification with real-time visualization. As for

physical hardware, we operate on four NVIDIA GeForce GTX

TITAN X GPUs and two Intel Xeon processors allowing us a

total of 48/24 logical/physical cores and 256 GB of main

memory.

We resize all images to 256x256 for training, validation and
testing. Preprocessing step on each image subtracts from the
pixel value the average of the pixel values for each color
channel in RGB color space. We set the batch size for the
training phase to 256, while we set the batch size of the
validation to 128. We set our epoch count to 50, and we set the
learning rate to 0.01. Our learning rate degrades 5x during
training after every 10 epochs and the decay in the learning rate
is half of its previous values. Images are cropped to 227x227 in
random areas before being fed into the first convolutional
layer. Next, the weights of all layers are adapted from the
Xavier distribution with a 0.01 standard deviation. The final
convolutional layer, which acts as our output layer has its
weight adapted from the Gaussian distribution with a 0.01
standard deviation as well. Data augmentation is performed by
reflection.

VI. RESULTS AND DISCUSSION

This paper ensembles approaches from three popular

methods: convolutional neural networks with deep supervision

[19], residual learning [22] and the Squeeze technique [40]. We

set out to examine whether residual connections can boost

CNDS [19] network effectiveness while simultaneously

making the network smaller and faster. To do this we adapted

and modified the Fire module concept [40] and added residual

connections. We observe that the residual connections are

parameter free, even after a trivial amount of computation for

the collection process; the networks complexity does not see

much increase. Additionally, the fire modules [40] help in the

reduction of our network size, training time and complexity of

our network with only a small Top-1 and Top-5 accuracy loss.

Table II shows that after training from scratch, Residual

Squeeze CNDS Top-1 outcome is 51.32% whereas the original

Residual-CNDS [45] Top-1 outcome was almost a similar

51.98% on the validation set in the MIT Places 365-Standard

dataset [34], a difference of mere 0.66 %. Our Residual

Squeeze CNDS Top-5 result is 81.34% very close to the

performance of Residual-CNDS [45].

Residual-CNDS model [45] took one day and 21 hours to
converge with a total size of (14 gigabyte). In comparison, the
new Residual Squeeze CNDS took only one day and fifteen
hours and a total size of (1.73 gigabyte). This means, our
proposed Residual Squeeze CNDS model is 13.33% faster and
87.64% smaller in size that the original Residual-CNDS [45].
This is excellent saving in terms of space and time with
minimal impact on accuracy.

VII. CONCLUSION

Compressed CNN architecture leads to more efficient
distributed training, less network overhead when exporting new
models to the clients, and feasible FPGA and embedded
deployment. This paper proposed a Residual Squeeze CNDS
network to address the issue of speed and size. Proposed
models compresses the earlier very successful Residual-CNDS
network and further improves on following aspects: small
model size; faster speed; uses residual learning for faster
convergence, better generalization, and solves the issue of
degradation; matches the recognition accuracy of the non-
compressed model.

TABLE II

COMPARISON OF THE TOP 1 & 5 VALIDATION CLASSIFICATION

ACCURACY (%), DURATION AND SIZE BETWEEN RESIDUAL-CNDS [45]

AND PROPOSED RESIDUAL SQUEEZE CNDS ON THE MIT PLACES 365-

STANDARD DATASET [34]

Network

Top-1

Validation

%

Top-5

Validation

%

Duration Size

Residual-

CNDS
51.98 82.11

1 Day 21

Hour
14 GB

Proposed

Residual

Squeeze

CNDS

51.32 81.34
1 Day 15

Hour
1.73 GB

In comparison to SQUEEZENET our proposed framework
can be more easily adapted and fully integrated with the
residual learning for compressing various other deep learning
convolutional neural network models. Broader impact of our
work could improve the performance in specialized tasks such
as self-driving cars, video-based surveillance, and mobile GPU
applications.

REFERENCES

[1] O. Russakovsky et al., “Imagenet large scale visual recognition
challenge,” Int. J. of Computer Vision, vol. 115, no. 3, pp. 2011-252,
2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Neural Information
Processing Systems, Lake Tahoe, NV, 2012, pp. 1097-1105.

[3] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.

[4] P. Sermanet et al., “Overfelt: Integrated recognition, localization, and
detection using convolutional networks,” Int. Conf. on Learning
Representations, Banff, Canada, 2014.

[5] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional neural networks,” European Conf. on Computer Vision,
Zurich, Switzerland, 2014.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” Int. Conf. on Learning Representations,
San Diego, CA, 2015.

[7] C. Szegedy et al., “Going deeper with convolutions,” Conf. on Computer
Vision and Pattern Recognition, Boston, MA, 2015.

[8] K. He et al., “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” Int. Conf. on Computer Vision,
Santiago, Chile, 2015.

[9] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deepnetwork training by reducing internal covariate shift,” Int. Conf. on
Machine Learning, Lille, France, 2015.

[10] O. Russakovsky et al., “Imagenet large scale visual recognition
challenge,” arXiv:1409.0575, 2014.

[11] R. Girshick et al., “Rich feature hierarchies for accurate object detection
and semantic segmentation,” Conf. on Computer Vision and Pattern
Recognition, Columbus, OH, 2014.

[12] K. He et al., “Spatial pyramid pooling in deep convolutional networks
for visual recognition,” European Conf. on Computer Vision, Zurich,
Switzerland, 2014.

[13] R. Girshick, “Fast R-CNN,” Int. Conf. on Computer Vision, Santiago,
Chile, 2015.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” Neural
Information Processing Systems, Montreal, Canada, 2015.

[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” Conf. on Computer Vision and Pattern
Recognition, Boston, MA, 2015.

[16] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Trans. on Neural
Networks, vol. 5, no. 2, pp. 157–166, 1994.

[17] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” Int. Conf. on Artificial Intelligence and
Statistics, Sardinia, Italy, 2010.

[18] C.-Y. Lee et al., “Deeply supervised nets,” arXiv:1409.5185, 2014.
[19] L. Wang et al., “Training deeper convolutional networks with deep

supervision,” arXiv:1505.02496, 2015.
[20] K. He and J. Sun, “Convolutional neural networks at constrained time

cost,” Conf. on Computer Vision and Pattern Recognition, Boston, MA,
2015.

[21] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
arXiv:1505.00387, 2015.

[22] K. He et al., “Deep residual learning for image recognition,”
arXiv:1512.03385, 2015.

[23] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
university press, 1995.

[24] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge
university press, 1996.

[25] W. Venables and B. Ripley, Modern Applied Statistics with S-Plus.
Springer-Verlag New York, 2002.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” J. of
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[27] M. Abadi et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv:1603.04467, 2016.

[28] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” arXiv:1408.5093, 2014.

[29] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A MATAB-like
environment for machine learning,” Conf. on Neural Information
Processing Systems: BigLearn Workshop, Granada, Spain, 2011.

[30] F. Chollet. “Keras”. GitHub repository, https:
//github.com/fchollet/keras, 2015.

[31] B. Zhou et al., “Learning deep features for scene recognition using
places database,” Conf. on Neural Information Processing Systems,
Montreal, Canada, 2014.

[32] J. Xiao et al., “SUN Database: Large-scale scene recognition from abbey
to Zoo,” Conf. on Computer Vision and Pattern Recognition, San
Francisco, CA, 2010.

[33] NVIDIA DIGITS Software. (2016). Retrieved June 19, 2016, from https:
//developer.nvidia.com/digits.

[34] B. Zhou et al., “Places: an image database for deep scene
understanding,” arXiv, 2016.

[35] O. Russakovsky et al., “ImageNet large scale visual recognition
challenge,” CoRR, abs/1409.0575, 2014.

[36] K. Ashraf et al., “Shallow networks for high-accuracy road object-
detection,” arXiv:1606.01561, 2016.

[37] Consumer Reports. Teslas new autopilot: better but still needs
improvement (2016). Retrieved Feb 20, 2016, from
http://www.consumerreports.org/tesla/tesla-new-autopilot-better-but-
needs-improvement.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Neural Information
Processing Systems, Lake Tahoe, NV, 2012, pp. 1097-1105.

[39] J. Qiu et al., “Going deeper with embedded FPGA platform for
convolutional neural network,” Proc. ACM/SIGDA Int. Symposium on
Field-Programmable Gate Arrays, 2016, pp. 26-35.

[40] F. N. Iandola et al., “Squeezenet: alexnet-level accuracy with 50x fewer
parameters and << 1mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[41] J. Snoek, H. Larochelle, and R.P. Adams, “Practical bayesian
optimization of machine learning algorithms,” Neural Information
Processing Systems, Lake Tahoe, CA, 2012.

[42] T.B. Ludermir, A. Yamazaki, and C. Zanchettin, “An optimization
methodology for neural network weights and architectures,” IEEE
Trans. On Neural Networks, vol. 17, no. 6, pp. 1452-1459, 2006.

[43] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely connected
convolutional networks,” arXiv preprint arXiv:1608.06993, 2016.

[44] K.O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99-127, 2002.

[45] H. A. Al-Barazanchi, H. Qassim and A. Verma, "Novel CNN
architecture with residual learning and deep supervision for large-scale
scene image categorization,” IEEE 7th Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON), New
York, NY, 2016, pp. 1-7.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on Imagenet classification,” Int.
Conf. on Computer Vision, Santiago, Chile, 2015.

