
Deep CNN-LSTM with Combined Kernels from Multiple

Branches for IMDb Review Sentiment Analysis

Alec Yenter Abhishek Verma
Department of Computer Science Department of Computer Science

California State University New Jersey City University

Fullerton, California 92831 Jersey City, NJ 07305

 alecyenter(at)csu.fullerton.edu av56(at)njit.edu

Abstract— Deep learning neural networks have made

significant progress in the area of image and video analysis. This

success of neural networks can be directed towards

improvements in textual sentiment classification. In this paper,

we describe a novel approach to sentiment analysis through the

use of combined kernel from multiple branches of convolutional

neural network (CNN) with Long Short-term Memory (LSTM)

layers. Our combination of CNN and LSTM schemes produces a

model with the highest reported accuracy on the Internet Movie

Database (IMDb) review sentiment dataset.

Additionally, we present multiple architecture variations of

our proposed model to illustrate our attempts to increase

accuracy while minimizing overfitting. We experiment with

numerous regularization techniques, network structures, and

kernel sizes to create five high-performing models for

comparison. These models are capable of predicting the

sentiment polarity of reviews from the IMDb dataset with

accuracy above 89%. Firstly, the accuracy of our best

performing proposed model surpasses the previously published

models and secondly it vastly improves upon the baseline

CNN+LSTM model. The capability of the combined kernel from

multiple branches of CNN based LSTM architecture could also

be lucrative towards other datasets for sentiment analysis or

simply text classification. Furthermore, the proposed model has

the potential in machine learning in video and audio.

Keywords—IMDb; sentiment analysis; text classification;

neural network; CNN; LSTM;

I. INTRODUCTION

With an ever increasing production of films, there is an
excess of reviews and opinions of movies. Analysis of these
sentiments becomes extremely useful to helping people
organize and choose movies. Classification of review sentiment
helps extract meaningful information from opinions and is a
critical portion of analysis.

There are different tiers to sentiment analysis: document
view, sentence view, and aspect view [9] [25]. This paper
focuses on a document view where the entirety of each review
is classified as positive or negative. Additionally, learning can
be supervised or unsupervised. Since our chosen IMDb review
sentiment dataset has labels, this paper utilizes supervised
machine learning.

Neural networks have become a popular approach to a
variety of problems that require a complex solution, such as
computer vision and speech recognition. GoogLeNet [10],
ResNet [12], and VGG-16 [13] are all powerful deep networks

that have made leaps of progress in image/video classification.
The further advancement of the aforementioned models in [14],
[15], and [16] prove that there is still improvement possible in
deep neural networks. This paper builds a deep neural network
towards text classification in sentiment analysis. While textual
classification can be processed on a letter level [4], our
proposed model centers on word level learning.

Our novel network successfully combines several useful
ideas from various networks. A portion of the proposed
network is inspired from the GoogLeNet Inception model in
[10]. This portion uses multiple branches of convolution and
further adds the recurrent neural layers. The resulting model
outperforms other machine learning models on the same movie
dataset.

The rest of this paper is organized into six main parts.
Section II presents the basic sections of the network and
reviews related literature in the field of text classification.
Section III defines the details of the IMDb review sentiment
dataset. Section IV presents the detailed structure of the model
layer by layer. Section V describes the specific configuration of
the model that results in the highest accuracy. Section VI
discusses the results and challenges. Section VII concludes the
paper.

II. BACKGROUND

 To build a context to the paper, the following sub sections
review related literature of neural networks and text
classification.

A. Deep Neural Networks (NN)

Groundbreaking progress in machine learning has been
made through the use of deep neural networks. The ability for a
neural network to imitate the brain’s processes is a valuable
method for problems in textual, visual, and other signals. The
basics for neural networks are layers each with a specific
number of nodes. Input data in the first layer and connections
are given to the next layer. This is repeated until the final layer,
where the output is produced. There are multiple types of
networks and layers; in this paper, we will specifically use
three layers: Fully-Connected Layers, Convolutional Layers,
and LSTM layers.

1) Fully-Connected (Dense) Layers are simple layers

where every neuron from the previous layer is connected to

every neuron in the dense layer [11]. These layers can do basic

learning while reshaping the input data, for instance reducing

the output to one neuron.

2) Convolutional Neural Networks (CNN) are a specific

type of neural network that can work well with spatial data.

CNNs are particularly useful with images for tasks such as

classification or segmentation. Convolutional layers use only

certain connections from previous layer; specifically, local

neurons are connected to the neurons of the next layer [11].

This method causes the layer to gain more of an understanding

of the genreal view of the inputs.

3) Long Short-Term Memory (LSTM) is a type of

Recurrent Neural Network (RNN). RNN neurons have a

connection to the previous neuron state in addition to the layer

inputs. RNNs are particularly benefitial to data that is

sequential or that can value a contextual view; therefore,

RNNs can be impressive in text classification [19]. LSTMs are

a form of RNNs where newer information in the neurons is

more critical than older information [24]. LSTMs have been

useful in deep learning on video footage in [17] and [18]

because of films sequential nature. Similarly, they are useful

on sequential text data, because, while LSTM can incorporate

the context of a parargraph and/or a sentence, the most recent

words hold the most weight on the current neuron state.

B. Neural Network Text Classification

 When given textual data, a typical objective is to classify
the information for analytical or statistical purposes. Text
categorization is performed in [20], while [21] and [22]
performed sentiment classification, all on social media datasets
using neural networks. In [2] and [23] authors compared
multiple machine learning techniques on the sentiment analysis
of movie review. In [2] authors compared multiple n-gram
machine learning approaches on the IMDb review sentiment
dataset used in this paper. The data was preprocessed before
being vectorized and fed into various configuration of machine
learning algorithms. Many of these techniques in [2] reached
high accuracies in the 80% with the best configuration
“Unigram + Bigram + Trigram” reaching the maximum
accuracy of 88.94%.

While there are many useful mathematical algorithms, this
paper focuses on neural network approaches to textual
classification. These approaches have been split into character-
level classification and word-level classification for the
following discussion.

1) Character-Level Text Classification is a newer

approach that focuses on the letters of the text. This approach

has the benefit of avoiding the need for a dictionary or an

understanding of the language, but instead defines an albhabet

for the data. [4] explored the use of character-level

convolutional neural networks for classification of textual

documents. The use of the sequence of letters as a signal

sequence produced comparable results to other methods such

as word-level classification. [4] developed a neural network of

nine layers: six convolutional layers followed by three fully-

connected layers. These layers were accompanied my max-

pooling layers to help the nework handle the nine-layered

depth.

 In [6] authors built onto character-level text classification
by using a CNN to produce a form of word embedding from
the character inputs of a word. For each word, letter
embeddings are concatenated along axis 1, convoluted through
multiple kernels, and finally pooled and concatenated into a flat
layer. The last layer produces a representation of the word that
is fed through a highway network to a LSTM network for
classification. The benefit of this hybrid method is that no
dictionary is needed, yet the network learns on a word-level
basis that shows a human-like understanding of the language.

2) Word-Level Text Classification is a more traditional

method to text classfication with neural networks. Authors in

[5] created a shallow CNN that classifies using multiple

different kernels. In this network, a convolutional layer will

look at n words at a time when applying the filters and

pooling-over-time. The network would use multiple kernel

sizes and concatenate the results; therefore, the network finds

context from the n number of words nearby the word. The

final connected layer uses this information for classification.

This network is simple but effective in textual classification.

Authors in [1] use IMDb review data with a new LSTM

neural network to classify sentiment of the review. The review

data contained no neutral data. The dictionary was limited to

the top 2000 most used words and each review sequence was

capped at 100 words and padded with zeros if less than the

max. The proposed LSTM layer is a biologically-inspired

additive version of a traditional LSTM that produced higher

loss stability, but lower accuracy. The best accuracy achieved

between both LSTM models was still under 85%. The use of

an LSTM on textual data gives better contextual view of

words than a CNN.

III. DESCRIPTION OF DATASET

 The ACL Internet Movie Database (IMDb) dataset used
was created in [3] for learning word vectors. The dataset
consists of 100,000 textual reviews of movies; half (50,000) of
the reviews are for testing and have no label. The other
(50,000) reviews are paired with a label of 0 or 1 to represent
negative and positive sentiment, respectively. These labels
were linearly mapped from the IMDb’s star rating system
where reviewers can rate a movie a certain number of stars
from 1 to 10. Fig. 1 illustrates the organization of the dataset.
The reviews with labels are split in half; each set has 12,500
positive reviews and 12,500 negative reviews to keep the data
balanced.

There are at most 30 reviews for any one movie. The mean
number of words per review is 234.76 with a standard

Figure 1. Shows the split of dataset [3].

deviation of 172.91 words. Certain punctuation and symbols
are included, such as “?”, “!”, and “:(“. Collectively, the dataset
contained 88,585 different words across all reviews. Fig. 2
gives two examples of movie reviews in the dataset: one
positive and one negative.

 The deep learning library Keras [26] provides a simple
import method to retrieve these reviews in a preprocessed
format. The function grabs the reviews and encodes them into a
sequence of word indices according to a dictionary of the D
most frequently used words in the dataset, where D is given.
For further flexibility, the indices are ordered by the frequency
of the words, such that the word mapped to index 2 is the 2

nd

most common word in the dataset. Index 0 is reserved for
unknown words that are not in the dictionary. The reviews are
then padded to fit a desired maximum sequence length; longer
reviews are truncated and shorter reviews are padded with
zeros. As a final step, the first layer of the neural network
converts the indices to embeddings of E dimension.

 For this paper’s experiments, the dictionary was capped at
5,000 words with a maximum padded sequence length of 500
words. The indices were embedded into 32 dimensions.

IV. PROPOSED COMBINED KERNELS FROM MULTI-BRANCH

CNN WITH LSTM MODEL

The proposed method in this paper utilizes a CNN and a
LSTM on word-level classification of the IMDb review
sentiment dataset. The method combines versions of the
networks from [5] and [1]; novelty of the proposed network
lies in having combined kernels through multiple branches that
accept the data and perform convolution. The output of the
CNN branches is fed into an LSTM before being concatenated
and sent to a fully-connected layer in order to produce a single,
final output. The network is trained and tested in mini-batches
between 16 and 128. Embedding

The first layer of the network accepts the input reviews as a
sequence of indices and embeds each word into a vector of a
specific size e. (e.g. a vector of 500 word indices embedded at
32 becomes 500 vectors of length 32). The embedding layer is
a matrix of trainable weights that, through matrix
multiplication, produce the vectors for each word index.

Therefore, during training, the embedding layer improves upon
the embeddings of each word.

A. Convolution

The output of the embedding layer is given to each branch
of b branches. Each branch starts with a 1-dimensional
convolution layer of kernel size c specific to that branch. The
kernel during 1-dimensional convolution is of shape kernel size
by embedding size (c x e). The kernel will then perform
convolution on whole words instead of the typical 2-
dimensional convolution that would filter partial widths and cut
words into pieces. The layer produces multiple outputs with the
use of multiple filters f.

The purpose of the CNN layer is to view word
combinations of the kernel size c. The result is an
understanding of words when used with other words. For
example, when c=3, the layer views 3 words at a time and,
therefore, establishing a sense of 3-word combinations. This
layer’s output has a shape of input height by filters (words by
f).

B. Activation

Each branch applies a rectified linear unit (ReLU)
activation of the CNN layer’s output; this layer replaces any
negative outputs with zero. The ReLU layer is used in order to
introduce non-linearity into the network. The output of this
layer is the same shape as the input shape.

C. Max Pooling

Each branch undergoes 1-dimensional max pooling
following ReLU activation; this layer converts each kernel size
of the input into a single output of the maximum observed
number. The result is a reduced, down-sampled version of the
input. The purpose of the layer is to reduce overfitting, while
allowing for further processing. Similar to the CNN layer, the
1-dimensional max pooling kernel shape is fit to the width of
the data, so that the parameter kernel size p implies a kernel
shape of p by data width. This technique allows pooling to be
applied with the understanding that data is composed of whole
words. The output of this layer is a reduction in height
according to kernel size p (input height ÷ p).

D. Dropout

After max pooling, each branch goes through a dropout
layer; this layer randomly sets a portion of the inputs to 0. The
dropout is applied to specified d fraction of the inputs. This
layer serves to prevent overfitting and generalize the network
to not focus on specific pieces of input. The output shape is
equivalent to the input shape.

E. Batch Normalization

The next layer for each branch is batch normalization; this
layer simply normalizes the distribution for each batch after
dropout. The purpose of batch normalization is to reduce
internal covariate shift and therefore lead to convergence at a
faster rate. The output of this layer holds the same shape as the
input.

F. LSTM

The final layer for each branch is a LSTM layer with a
specified number of units l. The LSTM is used because of the

Positive Example:

 Although this was obviously a low-budget production, the
performances and the songs in this movie are worth seeing. One
of Walken's few musical roles to date. (he is a marvelous
dancer and singer and he demonstrates his acrobatic skills as
well - watch for the cartwheel!) Also starring Jason Connery. A
great children's story and very likable characters.

Negative Example:

 Not only is it a disgustingly made low-budget bad-acted
movie, but the plot itself is just STUPID!!!
 A mystic man that eats women? (And by the looks, not virgin
ones)
 Ridiculous!!! If you´ve got nothing better to do (like
sleeping) you should watch this. Yeah right.

Figure 2. Example of two reviews from the IMDb dataset [3].

nature of sequential data. The layer’s persistence allows
knowledge of previous input (convoluted word combinations)
to influence subsequent input. The output has a length of the
number of units l.

G. Concatenation

The branches are finally merged together through
concatenation. The LSTM layers’ outputs are combined
together in an array. The output shape of this layer is equal to
the summation of the output of all the branches (l x b) .

H. Dense

The last layer is a fully-connected layer from the
concatenated input to a single output. The layer is followed by
a simple sigmoid activation function to conform the output
between 0 and 1. The final yield is a single output.

I. Loss Function and Optimizer

The network is compiled with a binary cross entropy loss
function; this loss calculates loss with two classes (0 and 1).
For this paper’s purposes, 0 represents negative sentiment and
1 represents positive sentiment. The loss is calculated on the
single and final output of the dense layer.

The network is also compiled with an optimizer; Adam,

RMSprop, and Stochastic Gradient Descent (SGD) were the

optimizers used for testing during the experiments. Each

optimizer was used with varying learning rates and learning

rate decay parameters. Figure 3 gives a visualization of the

baseline model and fig. 4 gives a visualization of our best

performing proposed network.

V. EXPERIMENTAL SETUP

The hardware used for experimenting different networks
was a dual Intel Xeon E5-2690 v3 2.60GHz processors (24
physical cores / 48 logical cores) with a single NVIDIA
GeForce GTX TITAN X GPU with 12 GB of VRAM and a
256 GB RAM. The machine ran Keras 2.0.4 [26] on Ubuntu
14.04.5 using TensorFlow 1.1.0 [27] backend on the GPU.

Many experiments were attempted to determine the
appropriate parameters and network structure. The IMDb
review sentiment dataset was used for all experiments. The
dataset was preprocessed to a dictionary size of 5,000 words
with a zero-padded maximum sequence of 500 words per a
review; anymore data became insignificant to the networks
objective. The best network used a batch size of 128. The
following sections establish the best parameters approximated
by the experiments.

A. Embedding

An embedding size of 32 best fit the dataset. Attempts to
use GoogleNews word2vec pre-trained embeddings from [7]
and Wikipedia fastText pre-trained embeddings from [8] (as
untrainable word embeddings) proved to have no positive
effect. Therefore we do not include it in our proposed model.

B. Convolution and Activation in Multiple Branches

The largest alterations were determined by the number of
branches to be used; this was directly tied to the kernel sizes
used. The optimal 1-dimensional kernel sizes were three, five,
seven, and nine; therefore, four branches were setup. Viewing
words in these kernel sizes proved to extract the most critical
information and produce higher accuracy. The optimal number
of filters was found to be 128. Additionally, the convolutional
layer was accompanied by a ridge regression (l2) kernel
regularizer to help prevent overfitting. The l2 parameter was
set to 0.01.

The ReLU activation layer proved crucial to reaching a
higher accuracy. This layer has no parameters.

C. Max Pooling, Dropout, and Batch Normalization

Although max pooling assisted with the chief issue of
overfitting, large pooling sizes proved to decrease accuracy.
The optimum kernel size during the experiments was 2;
reducing the height of the input by half.

The dropout layer was recognized to be the best option to
reduce overfitting. The dropout was set at a rate of 0.5 to force
other weights to help generalize the network. While ensuring
convergence, this method led to higher accuracy and a better
understanding of the data.

Batch normalization was added to the network to help with
overfitting with the LSTM network. This layer has no
parameters.

 Figure 3. Diagram of basic structure of CNN based LSTM network.

We use this in our experiments as a baseline model to compare with

our novel model.

s

D. LSTM, Concatenation, Dense Layer, and Optimizer

Each branch’s LSTM layer has 128 units. Any less or more
units reduce accuracy or increase overfitting. The merging
layer and dense layer have no tuning parameters. While the
optimizer did not have a profound effect, RMSprop showed the
best results. The learning rate was increased to 0.01 and the
learning rate decay was set to 0.1. These parameters reached

the highest overall accuracy. Fig. 4 illustrates the entirety of the
network.

VI. RESULTS AND ANALYSIS

The best performing proposed network reached 89.5%
accuracy. This accuracy was achieved despite the main
challenge of overfitting. Many models and variations were
tested to attempt to reduce overfitting and generalize the
learning. Figure 5 shows performance of best proposed model.
Figure 6 and table 6 show the performance of various models.

A. Accuracy

The achieved accuracy surpassed other models’ results on
the same IMDb review sentiment dataset. Both the traditional
and the proposed LSTM models in [1] plateaued at an accuracy
just over 80%, with a maximum under 85%. The accuracy in
[1] was used as a baseline accuracy for a simple, lone LSTM
model. Our model’s performance can also be compared to
other machine learning methods. Authors in [3] proposed a
hybrid supervised-unsupervised model when they created the
IMDb review sentiment dataset. Their highest reported
accuracy was 88.89% from their full model with additional
unlabeled reviews and bag of words vectors. Authors in [2]
experimented with multiple variation of machine learning
models on the IMDb dataset. The best accuracy achieved in [2]
was 88.94% from their combined Unigram-Bigram-Trigram
model. From reviewing these other machine learning models, it
is clear that our proposed method outperforms prior work.

B. Overfitting

During the experiments, overfitting became the primary
issue. Within a few epochs, 80% was easily achieved in most
networks. However, the networks would begin to memorize the
data and overfit. Figure 6 shows the accuracy comparison of
five variants of proposed models from epoch 3 to epoch 10.
Except for model_63 the rest of the models suffered from
performance degradation and overfitting after epoch 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
cc
ur
a
cy

Lo
ss

Epochs

Best	Mode	(Accuracy)l

training	loss

validation	loss

training	accuracy

validation	accuracy

Figure 5. Graph of accuracy of top performing proposed model (Model_63).

Figure 4. Diagram of the best performing proposed model

(Model_63).

Best Model (Accuracy)

training loss

validation loss

training accuracy

validation accuracy

Proposed
Models

Convolution Activation
Max

Pooling
Branch
Dropout

Batch
Normalization

LSTM
Merge

Dropout
Optimizer Accuracy

Branches /
Kernel
Sizes

Filters
Kernel

Regulaizer
Type

Pool
Size

Rate Present Units Rate Type
Learning

Rate

Learning
Rate

Decay
Maximum

Model_08 3/4/5 32 None ReLU 2 0 yes 100 0 Adam 0.001 0 0.8922

Model_16 3/4/5 32 L2(0.01) ReLU 2 0.5 yes 100 0 Adam 0.001 0 0.8934

Model_43 2/3/4/5/6/7 128 L2(0.01) ReLU 2 0 yes 128 0.8 Adam 0.001 0 0.8914

Model_57 3/5/7/9 128 L2(0.01) ReLU 2 0.5 yes 128 0 RMSprop 0.001 0 0.8936

Model_63 3/5/7/9 128 L2(0.01) ReLU 2 0.5 yes 128 0 RMSprop 0.01 0.1 0.895

Base Model 5 64 None ReLU 4 0.25 no 70 0 Adam 0.001 0 0.8498

1) Layers were able to help recude overfitting; these

included Max Pooling, Dropout, and Normalization. By

reducing dimensionality, max pooling assisted with

generalizing the learning process; max pooling performed best

at a size of 2 (1-dimensionally) across all networks. Dropout

layers were assessed at different locations in the network.

They were found to be most helpful after max pooling and

before batch normalization or, in some cases, after

concatenation of all the layers. Dropout was typically found to

be helpful at a rate higher than or equal to 0.5. Batch

normalization was found to always be helpful in both

increasing accuracy and reducing overfitting.

2) Parameters of regularization, learning rate, and decay

played a large part in reducing overfitting. Although any

activity regularizer reduced accuracy with no other benefit, a

ridge regression regularizer of the kernel decreased

overfitting. The optimal kernel regularizer was L2(0.01).

Changing the learning rate from its default did not typicallly

help unless accompanied by a learning rate decay. The best

performing model utilized a higher learning rate of 0.01 with a

learning rate decay of 0.1. As shown in Fig. 5, this

combination caused the accuracy percent to jump to the high

80’s and then stay there with little alterations. Without the

decay, the training accuracy would drop down to below 85%

because of overfitting. The loss also did not fluctuate too

much after reaching its lowest.

3) Depth had to be kept low in order to keep the network

from decaying. The deeper the network, the greater the

likelihood of overfitting. Since the data was more simple than

images, deeper networks were not able to extract anymore

useful information. Attempts to add additional dense or

convolutional layers were fruitless.

C. Comparison of Other Experimented Models

Table 1 shows the comparisons between the proposed 5

top networks structure and parameters. Fig. 6 graphs and

compares the accuracy of the top 5 models. Model_63 is the

best performing proposed network; its use of learning rate

decay resulted in the least overfitting.

Table 1. Table comparing the structure, parameters, and highest accuracy of the top 5 performing proposed models in the experiments,

as well as the base model.

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

3 4 5 6 7 8 9 10

A
cc
ur
ac
y

Epochs

Top	5	Models	(Accuracy)

Model_63

Model_57

Model_16

Model_08

Model_43

Figure 6. Accuracy graph of the top 5 performing proposed models.

Top Five Models (Accuracy)

VII. CONCLUSION AND FUTURE WORK

This paper shows the effectiveness of the novel combined
kernel from multi-branch convolution with LSTM network on
the IMDb review sentiment dataset. It is evident that different
convolution branches are able to pull significant information
from textual information in a shallow network. Additionally,
LSTM layers are able to use the information to dig deeper into
classifying the reviews. The accuracy of our best performing
proposed model surpasses the previously published models and
vastly improves upon the baseline CNN+LSTM model. While
overfitting was a challenge for most versions of the model,
proper layers and parameters were able to reduce the
deterioration and reach new accuracy highs on the dataset.

One area of investigating that could be beneficial is the use
of different types of word representations. While the
embedding was used, other methods, such as bag of words and
TF-IDF, could be mixed in to produce different results. While
it was established that GoogleNews embeddings from [7] and
Wiki FastText embeddings from [8] did not add to the
accuracy, other pre-trained models may have better effect.
There may also be other pre-processing techniques that could
raise the efficacy of the model.

REFERENCES

[1] L. Rahman, N. Mohammed, and A. Kalam Al Azad, "A new LSTM
model by introducing biological cell state." In Electrical Engineering
and Information Communication Technology (ICEEICT), 2016 3rd
International Conference on, pp. 1-6, 2016.

[2] A. Tripathy, A. Agrawal, and S. Kumar Rath, "Classification of
sentiment reviews using n-gram machine learning approach." Expert
Systems with Applications, vol. 57, pp. 117-126, 2016.

[3] A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, and C. Potts,
"Learning word vectors for sentiment analysis." In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, vol.1, pp. 142-150, 2011.

[4] X. Zhang, J. Zhao, and Y. LeCun, "Character-level convolutional
networks for text classification." In Advances in neural information
processing systems, pp. 649-657, 2015.

[5] Y. Kim, "Convolutional neural networks for sentence classification,"
arXiv preprint arXiv:1408.5882, 2014.

[6] Y. Kim, Y. Jernite, D. Sontag, and A.M. Rush, "Character-aware neural
language models," In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[7] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, and J. Dean,
"Distributed representations of words and phrases and their
compositionality." In Advances in neural information processing
systems, pp. 3111-3119, 2013.

[8] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, "Enriching word
vectors with subword information," arXiv preprint arXiv:1607.04606,
2016.

[9] R. Feldman, "Techniques and applications for sentiment analysis,"
Communications of the ACM, vol. 56, no. 4, pp. 82-89, 2013.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.
Erhan, V. Vanhoucke, and A. Rabinovich, "Going deeper with
convolutions." In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-9, 2015.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based
learning applied to document recognition," Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278-2324, 1998.

[12] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,”
arXiv preprint arXiv:1602.07261, 2016.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[14] A. Verma and Y. Liu, "Hybrid Deep Learning Ensemble Model for
Improved Large-Scale Car Recognition," IEEE Smart World Congress,
San Francisco, CA, 2017. (to appear)

[15] H. Vo and A. Verma, "New Deep Neural Nets for Fine-Grained Diabetic
Retinopathy Recognition on Hybrid Color Space," the 12th IEEE
International Symposium on Multimedia, Dec. 11-13, 2016, San Jose,
CA, USA.

[16] H. Al-Barazanchi, H. Qassim, and A. Verma, "Novel CNN Architecture
with Residual Learning and Deep Supervision for Large-Scale Scene
Image Categorization," the 7th IEEE Annual Ubiquitous Computing,
Electronics & Mobile Communication Conference (UEMCON), Oct. 20-
22, 2016, New York, NY, USA.

[17] K. Zhang, W.-L. Chao, F. Sha, and K. Grauman, “Video summarization
with long short-term memory,” In European Conference on Computer
Vision, pp. 766–782, Springer, 2016.

[18] J. R. Medel and A. Savakis, “Anomaly detection in video using
predictive convolutional long short-term x networks,” arXiv preprint
arXiv:1612.00390.

[19] S. Lai, L. Xu, K. Liu, and J. Zhao, "Recurrent Convolutional Neural
Networks for Text Classification," In AAAI, vol. 333, pp. 2267-2273,
2015.

[20] F. Sebastiani, "Machine learning in automated text categorization," ACM
computing surveys (CSUR), vol. 34, no. 1, pp 1-47, 2002.

[21] L. Chen, C. Liu, and H. Chiu, "A neural network based approach for
sentiment classification in the blogosphere," Journal of Informetrics,
vol. 5, no. 2, pp. 313-322, 2011.

[22] A. Severyn, and A. Moschitti, "Unitn: Training deep convolutional
neural network for twitter sentiment classification," In Proceedings of
the 9th International Workshop on Semantic Evaluation (SemEval
2015), Association for Computational Linguistics, Denver, Colorado, pp.
464-469. 2015.

[23] B. Pang, L. Lee, and S. Vaithyanathan, "Thumbs up?: sentiment
classification using machine learning techniques," In Proceedings of the
ACL-02 conference on Empirical methods in natural language
processing, vol. 10, pp. 79-86, 2002.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[25] J. Mir and M. Usman, "An effective model for aspect based opinion
mining for social reviews," 2015 Tenth International Conference on
Digital Information Management (ICDIM), Jeju, pp. 49-56, 2015.

[26] Keras. (2017). Retrieved June 19, 2017, from keras.io
[27] Tensorflow (2017). Retrieved May 20, 2017, from tensorflow.org

