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Abstract— Deep learning neural networks have made 

significant progress in the area of image and video analysis. This 

success of neural networks can be directed towards 

improvements in textual sentiment classification. In this paper, 

we describe a novel approach to sentiment analysis through the 

use of combined kernel from multiple branches of convolutional 

neural network (CNN) with Long Short-term Memory (LSTM) 

layers. Our combination of CNN and LSTM schemes produces a 

model with the highest reported accuracy on the Internet Movie 

Database (IMDb) review sentiment dataset.  

Additionally, we present multiple architecture variations of 

our proposed model to illustrate our attempts to increase 

accuracy while minimizing overfitting. We experiment with 

numerous regularization techniques, network structures, and 

kernel sizes to create five high-performing models for 

comparison. These models are capable of predicting the 

sentiment polarity of reviews from the IMDb dataset with 

accuracy above 89%. Firstly, the accuracy of our best 

performing proposed model surpasses the previously published 

models and secondly it vastly improves upon the baseline 

CNN+LSTM model. The capability of the combined kernel from 

multiple branches of CNN based LSTM architecture could also 

be lucrative towards other datasets for sentiment analysis or 

simply text classification. Furthermore, the proposed model has 

the potential in machine learning in video and audio. 
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I.  INTRODUCTION 

With an ever increasing production of films, there is an 
excess of reviews and opinions of movies. Analysis of these 
sentiments becomes extremely useful to helping people 
organize and choose movies. Classification of review sentiment 
helps extract meaningful information from opinions and is a 
critical portion of analysis. 

There are different tiers to sentiment analysis: document 
view, sentence view, and aspect view [9] [25]. This paper 
focuses on a document view where the entirety of each review 
is classified as positive or negative. Additionally, learning can 
be supervised or unsupervised. Since our chosen IMDb review 
sentiment dataset has labels, this paper utilizes supervised 
machine learning. 

Neural networks have become a popular approach to a 
variety of problems that require a complex solution, such as 
computer vision and speech recognition. GoogLeNet [10], 
ResNet [12], and VGG-16 [13] are all powerful deep networks 

that have made leaps of progress in image/video classification. 
The further advancement of the aforementioned models in [14], 
[15], and [16] prove that there is still improvement possible in 
deep neural networks. This paper builds a deep neural network 
towards text classification in sentiment analysis. While textual 
classification can be processed on a letter level [4], our 
proposed model centers on word level learning. 

Our novel network successfully combines several useful 
ideas from various networks. A portion of the proposed 
network is inspired from the GoogLeNet Inception model in 
[10]. This portion uses multiple branches of convolution and 
further adds the recurrent neural layers. The resulting model 
outperforms other machine learning models on the same movie 
dataset. 

The rest of this paper is organized into six main parts. 
Section II presents the basic sections of the network and 
reviews related literature in the field of text classification. 
Section III defines the details of the IMDb review sentiment 
dataset. Section IV presents the detailed structure of the model 
layer by layer. Section V describes the specific configuration of 
the model that results in the highest accuracy. Section VI 
discusses the results and challenges. Section VII concludes the 
paper. 

II. BACKGROUND 

 To build a context to the paper, the following sub sections 
review related literature of neural networks and text 
classification. 

A. Deep Neural Networks (NN) 

Groundbreaking progress in machine learning has been 
made through the use of deep neural networks. The ability for a 
neural network to imitate the brain’s processes is a valuable 
method for problems in textual, visual, and other signals. The 
basics for neural networks are layers each with a specific 
number of nodes. Input data in the first layer and connections 
are given to the next layer. This is repeated until the final layer, 
where the output is produced. There are multiple types of 
networks and layers; in this paper, we will specifically use 
three layers: Fully-Connected Layers, Convolutional Layers, 
and LSTM layers. 

1) Fully-Connected (Dense) Layers are simple layers 

where every neuron from the previous layer is connected to 

every neuron in the dense layer [11]. These layers can do basic 

learning while reshaping the input data, for instance reducing 

the output to one neuron. 



2) Convolutional Neural Networks (CNN) are a specific 

type of neural network that can work well with spatial data. 

CNNs are particularly useful with images for tasks such as 

classification or segmentation. Convolutional layers use only 

certain connections from previous layer; specifically, local 

neurons are connected to the neurons of the next layer [11]. 

This method causes the layer to gain more of an understanding 

of the genreal view of the inputs.  

3) Long Short-Term Memory (LSTM) is a type of 

Recurrent Neural Network (RNN). RNN neurons have a 

connection to the previous neuron state in addition to the layer 

inputs. RNNs are particularly benefitial to data that is 

sequential or that can value a contextual view; therefore, 

RNNs can be impressive in text classification [19]. LSTMs are 

a form of RNNs where newer information in the neurons is 

more critical than older information [24]. LSTMs have been 

useful in deep learning on video footage in [17] and [18] 

because of films sequential nature. Similarly, they are useful 

on sequential text data, because, while LSTM can incorporate 

the context of a parargraph and/or a sentence, the most recent 

words hold the most weight on the current neuron state. 

B. Neural Network Text Classification 

 When given textual data, a typical objective is to classify 
the information for analytical or statistical purposes. Text 
categorization is performed in [20], while [21] and [22] 
performed sentiment classification, all on social media datasets 
using neural networks. In [2] and [23] authors compared 
multiple machine learning techniques on the sentiment analysis 
of movie review. In [2] authors compared multiple n-gram 
machine learning approaches on the IMDb review sentiment 
dataset used in this paper. The data was preprocessed before 
being vectorized and fed into various configuration of machine 
learning algorithms. Many of these techniques in [2] reached 
high accuracies in the 80% with the best configuration 
“Unigram + Bigram + Trigram” reaching the maximum 
accuracy of 88.94%. 

While there are many useful mathematical algorithms, this 
paper focuses on neural network approaches to textual 
classification. These approaches have been split into character-
level classification and word-level classification for the 
following discussion. 

1) Character-Level Text Classification is a newer 

approach that focuses on the letters of the text. This approach 

has the benefit of avoiding the need for a dictionary or an 

understanding of the language, but instead defines an albhabet 

for the data. [4] explored the use of character-level 

convolutional neural networks for classification of textual 

documents. The use of the sequence of letters as a signal 

sequence produced comparable results to other methods such 

as word-level classification. [4] developed a neural network of 

nine layers: six convolutional layers followed by three fully-

connected layers. These layers were accompanied my max-

pooling layers to help the nework handle the nine-layered 

depth. 

 In [6] authors built onto character-level text classification 
by using a CNN to produce a form of word embedding from 
the character inputs of a word. For each word, letter 
embeddings are concatenated along axis 1, convoluted through 
multiple kernels, and finally pooled and concatenated into a flat 
layer. The last layer produces a representation of the word that 
is fed through a highway network to a LSTM network for 
classification. The benefit of this hybrid method is that no 
dictionary is needed, yet the network learns on a word-level 
basis that shows a human-like understanding of the language. 

2) Word-Level Text Classification is a more traditional 

method to text classfication with neural networks. Authors in 

[5] created a shallow CNN that classifies using multiple 

different kernels. In this network, a convolutional layer will 

look at n words at a time when applying the filters and 

pooling-over-time. The network would use multiple kernel 

sizes and concatenate the results; therefore, the network finds 

context from the n number of words nearby the word. The 

final connected layer uses this information for classification. 

This network is simple but effective in textual classification. 

Authors in [1] use IMDb review data with a new LSTM 

neural network to classify sentiment of the review. The review 

data contained no neutral data. The dictionary was limited to 

the top 2000 most used words and each review sequence was 

capped at 100 words and padded with zeros if less than the 

max. The proposed LSTM layer is a biologically-inspired 

additive version of a traditional LSTM that produced higher 

loss stability, but lower accuracy. The best accuracy achieved 

between both LSTM models was still under 85%. The use of 

an LSTM on textual data gives better contextual view of 

words than a CNN. 

III. DESCRIPTION OF DATASET 

 The ACL Internet Movie Database (IMDb) dataset used 
was created in [3] for learning word vectors. The dataset 
consists of 100,000 textual reviews of movies; half (50,000) of 
the reviews are for testing and have no label. The other 
(50,000) reviews are paired with a label of 0 or 1 to represent 
negative and positive sentiment, respectively. These labels 
were linearly mapped from the IMDb’s star rating system 
where reviewers can rate a movie a certain number of stars 
from 1 to 10. Fig. 1 illustrates the organization of the dataset. 
The reviews with labels are split in half; each set has 12,500 
positive reviews and 12,500 negative reviews to keep the data 
balanced. 

  

 

There are at most 30 reviews for any one movie. The mean 
number of words per review is 234.76 with a standard 

 

 

 

 

Figure 1. Shows the split of dataset [3]. 



deviation of 172.91 words. Certain punctuation and symbols 
are included, such as “?”, “!”, and “:(“. Collectively, the dataset 
contained 88,585 different words across all reviews. Fig. 2 
gives two examples of movie reviews in the dataset: one 
positive and one negative. 

 The deep learning library Keras [26] provides a simple 
import method to retrieve these reviews in a preprocessed 
format. The function grabs the reviews and encodes them into a 
sequence of word indices according to a dictionary of the D 
most frequently used words in the dataset, where D is given. 
For further flexibility, the indices are ordered by the frequency 
of the words, such that the word mapped to index 2 is the 2

nd
 

most common word in the dataset. Index 0 is reserved for 
unknown words that are not in the dictionary. The reviews are 
then padded to fit a desired maximum sequence length; longer 
reviews are truncated and shorter reviews are padded with 
zeros. As a final step, the first layer of the neural network 
converts the indices to embeddings of E dimension. 

 For this paper’s experiments, the dictionary was capped at 
5,000 words with a maximum padded sequence length of 500 
words. The indices were embedded into 32 dimensions. 

IV. PROPOSED COMBINED KERNELS FROM MULTI-BRANCH 

CNN WITH LSTM MODEL 

The proposed method in this paper utilizes a CNN and a 
LSTM on word-level classification of the IMDb review 
sentiment dataset. The method combines versions of the 
networks from [5] and [1]; novelty of the proposed network 
lies in having combined kernels through multiple branches that 
accept the data and perform convolution. The output of the 
CNN branches is fed into an LSTM before being concatenated 
and sent to a fully-connected layer in order to produce a single, 
final output. The network is trained and tested in mini-batches 
between 16 and 128. Embedding 

The first layer of the network accepts the input reviews as a 
sequence of indices and embeds each word into a vector of a 
specific size e. (e.g. a vector of 500 word indices embedded at 
32 becomes 500 vectors of length 32).  The embedding layer is 
a matrix of trainable weights that, through matrix 
multiplication, produce the vectors for each word index. 

Therefore, during training, the embedding layer improves upon 
the embeddings of each word. 

A. Convolution 

The output of the embedding layer is given to each branch 
of b branches. Each branch starts with a 1-dimensional 
convolution layer of kernel size c specific to that branch. The 
kernel during 1-dimensional convolution is of shape kernel size 
by embedding size (c x e). The kernel will then perform 
convolution on whole words instead of the typical 2-
dimensional convolution that would filter partial widths and cut 
words into pieces. The layer produces multiple outputs with the 
use of multiple filters f. 

The purpose of the CNN layer is to view word 
combinations of the kernel size c. The result is an 
understanding of words when used with other words. For 
example, when c=3, the layer views 3 words at a time and, 
therefore, establishing a sense of 3-word combinations. This 
layer’s output has a shape of input height by filters (words by 
f). 

B. Activation 

Each branch applies a rectified linear unit (ReLU) 
activation of the CNN layer’s output; this layer replaces any 
negative outputs with zero. The ReLU layer is used in order to 
introduce non-linearity into the network. The output of this 
layer is the same shape as the input shape. 

C. Max Pooling 

Each branch undergoes 1-dimensional max pooling 
following ReLU activation; this layer converts each kernel size 
of the input into a single output of the maximum observed 
number. The result is a reduced, down-sampled version of the 
input. The purpose of the layer is to reduce overfitting, while 
allowing for further processing. Similar to the CNN layer, the 
1-dimensional max pooling kernel shape is fit to the width of 
the data, so that the parameter kernel size p implies a kernel 
shape of p by data width. This technique allows pooling to be 
applied with the understanding that data is composed of whole 
words. The output of this layer is a reduction in height 
according to kernel size p (input height ÷ p). 

D. Dropout 

After max pooling, each branch goes through a dropout 
layer; this layer randomly sets a portion of the inputs to 0. The 
dropout is applied to specified d fraction of the inputs. This 
layer serves to prevent overfitting and generalize the network 
to not focus on specific pieces of input. The output shape is 
equivalent to the input shape. 

E. Batch Normalization 

The next layer for each branch is batch normalization; this 
layer simply normalizes the distribution for each batch after 
dropout. The purpose of batch normalization is to reduce 
internal covariate shift and therefore lead to convergence at a 
faster rate. The output of this layer holds the same shape as the 
input. 

F. LSTM 

The final layer for each branch is a LSTM layer with a 
specified number of units l. The LSTM is used because of the 

Positive Example: 

 Although this was obviously a low-budget production, the 
performances and the songs in this movie are worth seeing. One 
of Walken's few musical roles to date. (he is a marvelous 
dancer and singer and he demonstrates his acrobatic skills as 
well - watch for the cartwheel!) Also starring Jason Connery. A 
great children's story and very likable characters. 
 
Negative Example: 

 Not only is it a disgustingly made low-budget bad-acted 
movie, but the plot itself is just STUPID!!! 
 A mystic man that eats women? (And by the looks, not virgin 
ones) 
 Ridiculous!!! If you´ve got nothing better to do (like 
sleeping) you should watch this. Yeah right. 
  

Figure 2. Example of two reviews from the IMDb dataset [3]. 



nature of sequential data. The layer’s persistence allows 
knowledge of previous input (convoluted word combinations) 
to influence subsequent input. The output has a length of the 
number of units l. 

G. Concatenation 

The branches are finally merged together through 
concatenation. The LSTM layers’ outputs are combined 
together in an array. The output shape of this layer is equal to 
the summation of the output of all the branches (l x b) . 

H. Dense 

The last layer is a fully-connected layer from the 
concatenated input to a single output. The layer is followed by 
a simple sigmoid activation function to conform the output 
between 0 and 1. The final yield is a single output. 

I. Loss Function and Optimizer 

The network is compiled with a binary cross entropy loss 
function; this loss calculates loss with two classes (0 and 1). 
For this paper’s purposes, 0 represents negative sentiment and 
1 represents positive sentiment. The loss is calculated on the 
single and final output of the dense layer. 

The network is also compiled with an optimizer; Adam, 

RMSprop, and Stochastic Gradient Descent (SGD) were the 

optimizers used for testing during the experiments. Each 

optimizer was used with varying learning rates and learning 

rate decay parameters. Figure 3 gives a visualization of the 

baseline model and fig. 4 gives a visualization of our best 

performing proposed network. 

V. EXPERIMENTAL SETUP 

The hardware used for experimenting different networks 
was a dual Intel Xeon E5-2690 v3 2.60GHz processors (24 
physical cores / 48 logical cores) with a single NVIDIA 
GeForce GTX TITAN X GPU with 12 GB of VRAM and a 
256 GB RAM. The machine ran Keras 2.0.4 [26] on Ubuntu 
14.04.5 using TensorFlow 1.1.0 [27] backend on the GPU. 

Many experiments were attempted to determine the 
appropriate parameters and network structure. The IMDb 
review sentiment dataset was used for all experiments. The 
dataset was preprocessed to a dictionary size of 5,000 words 
with a zero-padded maximum sequence of 500 words per a 
review; anymore data became insignificant to the networks 
objective. The best network used a batch size of 128. The 
following sections establish the best parameters approximated 
by the experiments. 

A. Embedding 

An embedding size of 32 best fit the dataset. Attempts to 
use GoogleNews word2vec pre-trained embeddings from [7] 
and Wikipedia fastText pre-trained embeddings from [8] (as 
untrainable word embeddings) proved to have no positive 
effect. Therefore we do not include it in our proposed model. 

B. Convolution and Activation in Multiple Branches 

The largest alterations were determined by the number of 
branches to be used; this was directly tied to the kernel sizes 
used. The optimal 1-dimensional kernel sizes were three, five, 
seven, and nine; therefore, four branches were setup. Viewing 
words in these kernel sizes proved to extract the most critical 
information and produce higher accuracy. The optimal number 
of filters was found to be 128. Additionally, the convolutional 
layer was accompanied by a ridge regression (l2) kernel 
regularizer to help prevent overfitting. The l2 parameter was 
set to 0.01. 

The ReLU activation layer proved crucial to reaching a 
higher accuracy. This layer has no parameters.  

C. Max Pooling, Dropout, and Batch Normalization 

Although max pooling assisted with the chief issue of 
overfitting, large pooling sizes proved to decrease accuracy. 
The optimum kernel size during the experiments was 2; 
reducing the height of the input by half.  

The dropout layer was recognized to be the best option to 
reduce overfitting. The dropout was set at a rate of 0.5 to force 
other weights to help generalize the network. While ensuring 
convergence, this method led to higher accuracy and a better 
understanding of the data.  

Batch normalization was added to the network to help with 
overfitting with the LSTM network. This layer has no 
parameters.  

 

 Figure 3. Diagram of basic structure of CNN based LSTM network. 

We use this in our experiments as a baseline model to compare with 

our novel model. 
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D. LSTM, Concatenation, Dense Layer, and Optimizer 

Each branch’s LSTM layer has 128 units. Any less or more 
units reduce accuracy or increase overfitting. The merging 
layer and dense layer have no tuning parameters. While the 
optimizer did not have a profound effect, RMSprop showed the 
best results. The learning rate was increased to 0.01 and the 
learning rate decay was set to 0.1. These parameters reached 

the highest overall accuracy. Fig. 4 illustrates the entirety of the 
network. 

VI. RESULTS AND ANALYSIS 

The best performing proposed network reached 89.5% 
accuracy. This accuracy was achieved despite the main 
challenge of overfitting. Many models and variations were 
tested to attempt to reduce overfitting and generalize the 
learning. Figure 5 shows performance of best proposed model. 
Figure 6 and table 6 show the performance of various models. 

A. Accuracy 

The achieved accuracy surpassed other models’ results on 
the same IMDb review sentiment dataset. Both the traditional 
and the proposed LSTM models in [1] plateaued at an accuracy 
just over 80%, with a maximum under 85%. The accuracy in 
[1] was used as a baseline accuracy for a simple, lone LSTM 
model. Our model’s performance can also be compared to 
other machine learning methods. Authors in [3] proposed a 
hybrid supervised-unsupervised model when they created the 
IMDb review sentiment dataset. Their highest reported 
accuracy was 88.89% from their full model with additional 
unlabeled reviews and bag of words vectors. Authors in [2] 
experimented with multiple variation of machine learning 
models on the IMDb dataset. The best accuracy achieved in [2] 
was 88.94% from their combined Unigram-Bigram-Trigram 
model. From reviewing these other machine learning models, it 
is clear that our proposed method outperforms prior work. 

B. Overfitting 

During the experiments, overfitting became the primary 
issue. Within a few epochs, 80% was easily achieved in most 
networks. However, the networks would begin to memorize the 
data and overfit. Figure 6 shows the accuracy comparison of 
five variants of proposed models from epoch 3 to epoch 10. 
Except for model_63 the rest of the models suffered from 
performance degradation and overfitting after epoch 4. 
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Figure 5. Graph of accuracy of top performing proposed model (Model_63). 

Figure 4. Diagram of the best performing proposed model 

(Model_63). 
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Proposed 
Models 

Convolution Activation 
Max 

Pooling 
Branch 
Dropout 

Batch 
Normalization 

LSTM 
Merge 

Dropout 
Optimizer Accuracy 

Branches / 
Kernel 
Sizes 

Filters 
Kernel 

Regulaizer 
Type 

Pool 
Size 

Rate Present Units Rate Type 
Learning 

Rate 

Learning 
Rate 

Decay 
Maximum 

Model_08 3/4/5 32 None ReLU 2 0 yes 100 0 Adam 0.001 0 0.8922 

Model_16 3/4/5 32 L2(0.01) ReLU 2 0.5 yes 100 0 Adam 0.001 0 0.8934 

Model_43 2/3/4/5/6/7 128 L2(0.01) ReLU 2 0 yes 128 0.8 Adam 0.001 0 0.8914 

Model_57 3/5/7/9 128 L2(0.01) ReLU 2 0.5 yes 128 0 RMSprop 0.001 0 0.8936 

Model_63 3/5/7/9 128 L2(0.01) ReLU 2 0.5 yes 128 0 RMSprop 0.01 0.1 0.895 

              

Base Model 5 64 None ReLU 4 0.25 no 70 0 Adam 0.001 0 0.8498 

 

1) Layers were able to help recude overfitting; these 

included Max Pooling, Dropout, and Normalization. By 

reducing dimensionality, max pooling assisted with 

generalizing the learning process; max pooling performed best 

at a size of 2 (1-dimensionally) across all networks. Dropout 

layers were assessed at different locations in the network. 

They were found to be most helpful after max pooling and 

before batch normalization or, in some cases, after 

concatenation of all the layers. Dropout was typically found to 

be helpful at a rate higher than or equal to 0.5. Batch 

normalization was found to always be helpful in both 

increasing accuracy and reducing overfitting. 

2) Parameters of regularization, learning rate, and decay 

played a large part in reducing overfitting. Although any 

activity regularizer reduced accuracy with no other benefit, a 

ridge regression regularizer of the kernel decreased 

overfitting. The optimal kernel regularizer was L2(0.01). 

Changing the learning rate from its default did not typicallly 

help unless accompanied by a learning rate decay. The best 

performing model utilized a higher learning rate of 0.01 with a 

learning rate decay of 0.1. As shown in Fig. 5, this 

combination caused the accuracy percent to jump to the high 

80’s and then stay there with little alterations. Without the 

decay, the training accuracy would drop down to below 85% 

because of overfitting. The loss also did not fluctuate too 

much after reaching its lowest. 

3) Depth had to be kept low in order to keep the network 

from decaying. The deeper the network, the greater the 

likelihood of overfitting. Since the data was more simple than 

images, deeper networks were not able to extract anymore 

useful information. Attempts to add additional dense or 

convolutional layers were fruitless. 

C. Comparison of Other Experimented Models 

Table 1 shows the comparisons between the proposed 5 

top networks structure and parameters. Fig. 6 graphs and 

compares the accuracy of the top 5 models. Model_63 is the 

best performing proposed network; its use of learning rate 

decay resulted in the least overfitting.  

Table 1. Table comparing the structure, parameters, and highest accuracy of the top 5 performing proposed models in the experiments, 

as well as the base model. 
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VII. CONCLUSION AND FUTURE WORK 

This paper shows the effectiveness of the novel combined 
kernel from multi-branch convolution with LSTM network on 
the IMDb review sentiment dataset. It is evident that different 
convolution branches are able to pull significant information 
from textual information in a shallow network. Additionally, 
LSTM layers are able to use the information to dig deeper into 
classifying the reviews. The accuracy of our best performing 
proposed model surpasses the previously published models and 
vastly improves upon the baseline CNN+LSTM model. While 
overfitting was a challenge for most versions of the model, 
proper layers and parameters were able to reduce the 
deterioration and reach new accuracy highs on the dataset. 

One area of investigating that could be beneficial is the use 
of different types of word representations. While the 
embedding was used, other methods, such as bag of words and 
TF-IDF, could be mixed in to produce different results. While 
it was established that GoogleNews embeddings from [7] and 
Wiki FastText embeddings from [8] did not add to the 
accuracy, other pre-trained models may have better effect. 
There may also be other pre-processing techniques that could 
raise the efficacy of the model. 
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