
Chapter 1
Feature Representation and Extraction for
Image Search and Video Retrieval

Qingfeng Liu, Yukhe Lavinia, Abhishek Verma, Joyoung Lee, Lazar Spasovic, and
Chengjun Liu

Abstract The ever-increasing popularity of intelligent image search and video re-
trieval warrants a comprehensive study of the major feature representation and ex-
traction methods often applied in image search and video retrieval. Towards that
end, this chapter reviews some representative feature representation and extraction
approaches, such as the Spatial Pyramid Matching (SPM), the soft assignment cod-
ing, the Fisher vector coding, the sparse coding and its variants, the Local Binary
Pattern (LBP), the Feature Local Binary Patterns (FLBP), the Local Quaternary
Patterns (LQP), the Feature Local Quaternary Patterns (FLQP), the Scale-invariant
feature transform (SIFT), and the SIFT variants, which are broadly applied in intel-
ligent image search and video retrieval.

1.1 Introduction

The effective methods in intelligent image search and video retrieval are often inter-
disciplinary in nature, as they cut across the areas of probability, statistics, real anal-
ysis, digital signal processing, digital image processing, digital video processing,
computer vision, pattern recognition, machine learning, and artificial intelligence,
just to name a few. The applications of intelligent image search and video retrieval
cover a broad range from web-based image search (e.g., photo search in Facebook)
to Internet video retrieval (e.g., looking for a specific video in YouTube). Figure 1.1
shows some example images from the Caltech-256 dataset, which contains a set
of 256 object categories with a total of 30,607 images [21]. Both the Caltech-101
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Fig. 1.1 Example images from the Caltech-256 dataset.

and the Caltech-256 image datasets are commonly applied for evaluating the perfor-
mance on image search and object recognition [21]. Figure 1.2 displays some video
frames from the cameras installed along the highways. Actually, the New Jersey De-
partment of Transportation (NJDOT) operates more than 400 traffic video cameras,
but current traffic monitoring is mainly carried out by human operators. Automated
traffic incident detection and monitoring is much needed as operator-based monitor-
ing is often stressful and costly.

The ever-increasing popularity of intelligent image search and video retrieval
thus warrants a comprehensive study of the major feature representation and extrac-
tion methods often applied in image search and video retrieval. Towards that end,
this chapter reviews some representative feature representation and extraction ap-
proaches, such as the Spatial Pyramid Matching (SPM) [27], the soft assignment
coding or kernel codebook [18], [17], the Fisher vector coding [42] [24], the sparse
coding [53], the Local Binary Pattern (LBP) [40], the Feature Local Binary Pat-
terns (FLBP) [23] [31], the Local Quaternary Patterns (LQP) [22], the Feature Local
Quaternary Patterns (FLQP) [22], [31], the Scale-invariant feature transform (SIFT)
[35], and the SIFT variants, which are broadly applied in intelligent image search
and video retrieval.
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Fig. 1.2 Example video frames from the cameras installed along the highways.

1.2 Spatial Pyramid Matching, Soft Assignment Coding, Fisher
Vector Coding, and Sparse Coding

1.2.1 Spatial Pyramid Matching

The bag of visual words [13], [27] method starts with the k-means algorithm for
deriving the dictionary and the hard assignment coding method for feature coding.
One representative method is the spatial pyramid matching (SPM) [27] method,
which enhances the discriminative capability of the conventional bag of visual
words method by incorporating the spatial information.

Specifically, given the local feature descriptors xi ∈ Rn,(i = 1,2, ...,m) and the
dictionary of visual words D = [d1,d2, ...,dk] ∈ Rn×k derived from the k-means
algorithm, the SPM method counts the frequency of the local features over the visual
words and represents the image as a histogram using the following hard assignment
coding method:

ci j =

{
1 if j = argmin ||xi−d j||2

0 otherwise
(1.1)

In other words, the SPM method activates only one non-zero coding coefficient,
which corresponds to the nearest visual word in the dictionary D for each local
feature descriptor xi. And given one image I with T local feature descriptors, the
corresponding image representation is the probability density estimation of all the
local features xi in this image I over all the visual words d j based on the histogram
of visual word frequencies as follows:

h = [
1
T

m

∑
i=1

ci1,
1
T

m

∑
i=1

ci2, ...,
1
T

m

∑
i=1

cik] (1.2)
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1.2.2 Soft Assignment Coding

The histogram estimation of the density function for the local features xi over the
visual words d j, which violates the ambiguous nature of local features, is a very
coarse estimation. Therefore, the soft assignment coding [18], [17], or kernel code-
book, is proposed as a more robust alternative to histogram.

Specifically, the soft-assignment coding of ci j is defined as follows:

ci j =
exp(−||xi−d j||2/2σ2)

∑
k
j=1 exp(−||xi−d j||2/2σ2)

(1.3)

where σ is the smoothing parameter that controls the degree of smoothness of the
assignment and exp(·) is the exponential function.

Consequently, given one image I with T local feature descriptors, the correspond-
ing image representation is the probability density estimation of the all the local
features xi in this image I over all the visual words d j based on the kernel density
estimation using the Gaussian kernel K(x) = 1√

2πσ
exp(− x2

2σ2 ) as follows:

h = [
1
T

m

∑
i=1

ci1, ...,
1
T

m

∑
i=1

cik]

= [
1
T

T

∑
i=1

wiK(d1−xi), ...,
1
T

T

∑
i=1

wiK(dk−xi)]

(1.4)

where σ in the Gaussian kernel plays the role of bandwidth in kernel density esti-
mation, and wi =

1
∑

k
j=1 K(xi−d j)

.

1.2.3 Fisher Vector Coding

The kernel density estimation in soft assignment coding is still error-prone due to its
limitation in probability in density estimation. Recently, the Fisher vector method
[42] [24] is proposed that the generative probability function of the local feature
descriptors is estimated using a more refined model, namely the Gaussian mixture
model (GMM). Then the GMM is applied to derive the Fisher kernel, which is
incorporated into the kernel based support vector machine for classification. Fisher
vector coding method [42] is essentially an explicit decomposition of the Fisher
kernel.

As for dictionary learning, unlike the spatial pyramid matching and the soft as-
signment coding method, the Fisher vector coding method replaces the k-means
algorithm with a Gaussian mixture model as follows:
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µλλλ (x) =
k

∑
j=1

w jg j(x : µ j,σ j) (1.5)

where the parameter set λλλ = {w j,µ j,σ j, j = 1,2, ...,k} represents the mixture
weight, the mean vector, and the covariance matrix of the Gaussian components,
respectively. As a result, the visual words are no longer the centroids of the clusters,
but rather the GMM components.

As for feature coding, the Fisher vector coding method applies the gradient score
of the j−th component of the GMM over its parameters (µ j is used here), instead
of the hard/soft assignment coding methods as follows:

ci j =
1
√w j

γi( j)σ−1
j (xi−µ j) (1.6)

where γi( j) = w jg j(xi)

∑
k
t=1 wt gt (xi)

As a result, given one image I with T local feature de-

scriptors, the corresponding image representation, namely the Fisher vector, is the
histogram of the gradient score of all the local features xi in this image I:

h = [
1
T

m
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ci1, ...,
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(1.7)

1.2.4 Sparse Coding

The sparse coding method deals with the dictionary learning and the feature coding
from the reconstruction point of view. Yang et al. [53] applied the sparse coding to
learn a dictionary and a vector of coefficients for the feature coding.

Specifically, the sparse coding method is the optimization of the following ob-
jective function:

min
D,W

m

∑
i=1
||xi−Dwi||2 +λ ||wi||1

s.t. ||d j|| ≤ 1,( j = 1,2, ...,k)
(1.8)

The sparse coding method applies a reconstruction criterion so that the original
local feature descriptor can be reconstructed as a linear combination of the visual
words in the dictionary and most of the coefficients are zero. Many methods are
proposed for optimizing the objective function, such as the fast iterative shrinkage-
thresholding algorithms (FISTA) [8], the efficient learning method [28], as well as
the online learning method [36]. After the optimization, both the dictionary and the
sparse coding are obtained. Then following the notation in the above sections, the
sparse coding method derives the following coding:
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ci j = wi j (1.9)

where wi j is an element in the sparse coding vector wi.
Consequently, given one image I with T local feature descriptors, the correspond-

ing image representation is computed either using the average pooling method (havg)
or the max pooling method (hmax) [53], [46] as follows:

havg = [
1
T

m

∑
i=1

ci1, ...,
1
T

m

∑
i=1

cik]

hmax = [max{ci1}, ...,max{cik}]
(1.10)

We have reviewed in the formal or mathematical means some representative fea-
ture representation and extraction methods for intelligent image search and video
retrieval. Figure 1.3 shows in a more intuitive and graphical manner the comparison
among the Spatial Pyramid Matching (SPM), the Soft Assignment Coding (SAC),
the Fisher vector coding, and the sparse coding methods.

1.2.5 Some Sparse Coding Variants

There are a lot of variants of sparse coding methods that are proposed for addressing
various issues in sparse coding. Wang et al. [46] proposed the locality-constrained
linear coding (LLC) method that incorporates the local information in the feature
coding process. Specifically, the LLC method incorporates a locality criterion into
the sparse coding criterion to derive a new coding for the local feature descriptor
that takes the local information into account. Gao et al. [16] further proposed the
Laplacian sparse coding (LSC) that preserves both the similarity and the locality
information among the local features. Specifically, the proposed LSC introduces a
graph sparse coding criterion into the sparse coding criterion to derive a new cod-
ing method to utilize the underlying structure of sparse coding. Zhoue et al. [56]
proposed a super vector coding method which takes advantage of the probability
kernel method for sparse coding. Bo et al. [9] proposed a hierarchical sparse coding
methods for image classification, which harnesses the hierarchical structure of the
sparse coding.

In addition, many papers on sparse coding focus on developing efficient learn-
ing algorithms to derive the sparse coding and the dictionary [8], [28], [36], [20],
[49], [50], [48], [47], or exploring the data manifold structures [16], [46], [55]. For
efficiency optimization, recent research applies screening rules for improving the
computational efficiency of the sparse coding (lasso) problem. Ghaoui et al. [20]
presented the SAFE screening rule for the lasso problem and sparse support vector
machine. Xiang et al. [49] derived two new screening tests for large scale dictionar-
ies and later proposed the DOME test [50] for the lasso problem. Wang et al. [48]
proposed the Dual Polytope Projection (DPP) for the lasso screening problem and
later [47] proposed the “Slores” rule for sparse logistic regression screening.
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Fig. 1.3 Intuitive and graphical comparison among the Spatial Pyramid Matching (SPM), the Soft
Assignment Coding (SAC), the Fisher vector coding, and the sparse coding methods.

1.3 Local Binary Patterns (LBP), Feature LBP (FLBP), Local
Quaternary Patterns (LQP), and Feature LQP (FLQP)

The Local Binary Patterns (LBP) method, which uses the center pixel as a thresh-
old and compares the pixels in its local neighborhood with the threshold to derive a
gray-scale invariant texture description, has broad applications in feature represen-
tation and extraction for intelligent image search and video retrieval [38], [39], [40].
Specifically, some researchers apply the LBP method for facial image representa-
tion and then utilize the LBP texture features as a descriptor for face recognition
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[1], [2]. Other researchers propose a method that fuses the local LBP features, the
global frequency features, and the color features for improving face recognition per-
formance [34]. Yet others present new color LBP descriptors for scene and image
texture classification [6].

The LBP method is popular for feature representation and extraction because of
its computational simplicity and robustness to illumination changes. The limitation
of the LBP method comes from the fact that it considers only its local pixels but
not the features that are more broadly defined, among which are the edge pixels, the
intensity peaks or valleys of an image, the color features [33], [43], [30], [5], and
the wavelet features [11], [29], [32], just to name a few.

The Feature Local Binary Patterns (FLBP) method improves upon the LBP
method by introducing features that complement the conventional neighborhood
used to derive the LBP representation [23]. The FLBP method first defines a True
Center (TC) and a Virtual Center (VC): The TC is the center pixel of a neighbor-
hood and the VC is specified on the distance vector by a VC parameter and is used
to replace the center pixel of the neighborhood [23]. The FLBP representation is
then defined by comparing the pixels in the neighborhood of the true center with the
virtual center [23]. It is shown that the LBP method is a special case of the FLBP
method [23]: when the TC and VC parameters are zero, the FLBP method degen-
erates to the LBP method. There are two special cases of the FLBP method: when
the VC parameter is zero, the method is called the FLBP1 method; and when the
TC parameter is zero, the method is called the FLBP2 method [23]. As these FLBP
methods encode both the local information and the features that are broadly defined,
they are expected to perform better than the LBP method for feature representation
and extraction for intelligent image search and video retrieval [31], [23].

The Local Quaternary Patterns (LQP) method augments the LBP method by en-
coding four relationships of the local texture [22]:

Slqp(gi,gc,r) =


11, if gi ≥ gc + r
10, if gc ≤ gi < gc + r
01, if gc− r ≤ gi < gc
00, if gi < gc− r

(1.11)

where gi and gc represent the grey level of a neighbor pixel and the central pixel,
respectively. r = c+ τgc defines the radius of the interval around the central pixel
and c is a constant and τ is a parameter to control the contribution of gc to r. For
efficiency, the LQP representation can be split into two binary codes, namely the
upper half of LQP (ULQP) and the lower half of LQP (LLQP) [22]. As a result, the
LQP method encodes more information of the local texture than the LBP method
and the Local Ternary Patterns (LTP) method [22]. The Feature Local Quaternary
Patterns (FLQP) method further encodes features that are broadly defined. Thus the
FLQP method should further improve image search and video retrieval performance
when used for feature representation and extraction [22].
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1.4 Scale Invariant Feature Transform (SIFT) and SIFT Variants

SIFT [35] is one of the most commonly used local descriptors in intelligent image
search and video retrieval. Its power lies in its robustness to affine distortion, view-
points, clutters, and illumination changes. This makes SIFT an invaluable method in
various computer vision applications such as face, object recognition, robotics, hu-
man activity recognition, panorama stitching, augmented reality, and medical image
analysis.

The SIFT algorithm comprises the following steps: (1) scale space extrema de-
tection, (2) keypoint localization, (3) orientation assignment, (4) keypoint descrip-
tor construction, and (5) keypoint matching. To detect the peak keypoints, SIFT
uses Laplacian of Gaussian (LoG), which acts as a space filter by detecting blobs
in various scales and sizes. Due to its expensive computation, SIFT approximates
LoG with Difference of Gaussian (DoG). The DoG is produced by computing the
difference of Gaussian blurring on an image with two different scales that are rep-
resented in different octaves in the Gaussian pyramid. Following this, the keypoint
extrema candidates are located by selecting each pixel in an image and comparing
it with its 8 neighbors and the 9 pixels of its previous and next scales, amounting
to 26 pixels to compare. Next is keypoint localization, which analyzes the keypoint
candidates produced in the previous step. SIFT uses the Taylor series expansion to
exclude the keypoints with low contrast, thus leaving the ones with strong interest
points to continue on the next step. Orientation assignment is geared to achieve ro-
tation invariance. At each keypoint, the central derivatives, the gradient magnitude,
and the direction are computed, producing a weighted orientation histogram with
36 bins around the keypoint neighborhood. The most dominant, that is, the highest
peak of the histograms, of the orientations is selected as the direction of the key-
point. To construct the keypoint descriptor, a 16x16 neighborhood region around a
keypoint is selected to compute the keypoint relative orientation and magnitude. It
is further divided into 16 subblocks, each with 4x4 size. An 8-bin orientation his-
togram is created for each subblock. The 16 histograms are concatenated to form a
128-dimension descriptor. Finally, keypoint matching is done by computing the Eu-
clidean distance between two keypoints. First, a database of keypoints is constructed
from the training images. Next, when a keypoint is to be matched, it is compared
with the ones stored in a database. The Euclidean distance of these keypoints is
computed and the database keypoint with minimum Euclidean distance is selected
as the match.

Since its creation, many works have been dedicated to improve SIFT. The modi-
fications are done in various steps of the SIFT algorithm and are proven to increase
not only recognition rate but also speed. The following provides brief descriptions of
the SIFT and SIFT like descriptors: Color SIFT, SURF, MSIFT, DSP-SIFT, LPSIFT,
FAIR-SURF, Laplacian SIFT, Edge-SIFT, CSIFT, RootSIFT, and PCA-SIFT.
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1.4.1 Color SIFT

The various color spaces such as RGB, HSV, rgb, oRGB, and YCbCr can be used
to enhance SIFT performance [45]. The color SIFT descriptors are constructed by
computing the 128 dimensional vector of the SIFT descriptor on the three chan-
nels, yielding 384 dimensional descriptors of RGB-SIFT, HSV-SIFT, rgb-SIFT, and
YCbCr-SIFT.

Concatenating the three image components of the oRGB color space produces the
oRGB-SIFT. Fusing RGB-SIFT, HSV-SIFT, rgb-SIFT, oRGB-SIFT, and YCbCr-
SIFT generates the Color SIFT Fusion (CSF). Further fusion of the CSF and the
grayscale SIFT produces the Color Grayscale SIFT Fusion (CGSF) [45], [44].

Results of the experiments on several grand challenge image datasets show that
oRGB-SIFT descriptor improves recognition performance upon other color SIFT
descriptors, the CSF, the CGSF, and the CGSF+PHOG descriptors perform better
than the other color SIFT descriptors. The fusion of both Color SIFT descriptors
(CSF) and Color Grayscale SIFT descriptor (CGSF) show significant improvement
in the classification performance, which indicates that various color-SIFT descrip-
tors and grayscale-SIFT descriptor are not redundant for image classification [45],
[44].

1.4.2 SURF

Speeded Up Robust Features (SURF) [7] is a SIFT-based local feature detector and
descriptor. SURF differs from SIFT in the following aspects. First, in scale space
analysis, instead of using DoG, SURF uses a fast Hessian detector that is based on
the Hessian matrix and implemented using box filters and integral images. Second,
in orientation assignment, SURF computes Haar wavelet responses in the vertical
and horizontal directions within the scale s and radius 6s from the interest points.
Estimation of the dominant orientation is computed by summing the responses ob-
tained through a sliding 60◦ angled window. Third, in extracting the descriptor,
SURF forms a square region centered at an interest point and oriented according
to the dominant orientation. The region is divided into sub-regions. For each sub-
region, SURF then computes the sum of the Haar wavelet responses in the vertical
and horizontal directions of selected interest points, producing a 64-dimensional
SURF feature descriptor.

To improve its discriminative power, the SURF descriptor can be extended to
128 dimensions. This is done by separating the summation computation for dx and
|dx| according to the sign of dy (dy < 0 and dy ≥ 0) and the computation for dy and
|dy| according to the sign of dx. The result is a doubled number of features, creating
a descriptor with increased discriminative power. SURF-128, however, performs
slightly slower than SURF-64, although still faster than SIFT. This compromise
turns out to be advantageous with SURF-128 achieving higher recognition rate than
SURF-64 and SIFT. Results in [7] show SURF’s improved performance on standard
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image datasets as well as on imagery obtained in the context of real life object
detection application.

1.4.3 MSIFT

Multi-spectral SIFT (MSIFT) [10] takes advantage of near infrared (NIR) to en-
hance recognition. The NIR occupies the 750-1100 nm region on the wavelength
spectrum, and silicon, the primary semiconductor in digital camera chip, is known
to have high sensitivity to this region.

The MSIFT descriptor is developed by first decorrelating the RGB-NIR 4-
dimensional color vector, followed by linear transformation of the resulting decor-
related components. This produces four components with the first being achromatic
(luminance) with roughly the same amount of R, G, B, and high NIR, and the other
three consisting of various spectral difference of R, G, B, and NIR. Next, forming
the multi-spectral keypoint is done through Gaussian extrema detection in the achro-
matic first component. It is then followed by creation of 4x4 histogram of gradient
orientations of each channel. The color bands are normalized and concatenated to
form the final descriptor. Since the resulting RGB-NIR descriptors dimensionality
amounts to 512, a PCA dimensionality reduction is applied.

The immediate application of MSIFT is to solve scene recognition problems. As
noted above, with silicon’s high sensitivity to the NIR region, an MSIFT equipped
digital camera would be able to offer enhanced intelligent scene recognition features
to users.

1.4.4 DSP-SIFT

Domain Size Pooling (DSP) SIFT [14] defies the traditional scale space step in SIFT
descriptor construction and replaces this step with size space. Instead of forming the
descriptor from a single selected scaled lattice, in DSP-SIFT, multiple lattices with
various domain sizes are sampled, as shown in Figure 1.4(a). To make them all in
the same size, each lattice sample is rescaled, making these multiple lattice sam-
ples differ in scales, although uniform in size (Figure 1.4(b)). Pooling of the gra-
dient orientations is done across these various locations and scales (Figure 1.4(c)).
These gradient orientations are integrated and normalized by applying a uniform
density function (Figure 1.4(d)), which then yields the final DSP-SIFT descriptor
(Figure 1.4(e)).

Authors in [14] report that DSP-SIFT outperforms SIFT by a wide margin and
furthermore it outperforms CNN by 21% on the Oxford image matching dataset and
more than 5% on the Fischer dataset.
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Fig. 1.4 DSP-SIFT methodology.

1.4.5 LPSIFT

The layer parallel SIFT (LPSIFT) [12] seeks to implement SIFT on real time devices
by reducing the computational cost, time latency, and memory storage of the original
SIFT. The modification is done primarily on the most expensive steps of the original
SIFT algorithm: scale space Gaussian extrema detection and keypoint localization.
The main cause of this bottleneck, as it is observed, is the data dependency of scale
image computation. The Gaussian blurring computation on each new image is done
sequentially and this proves to cause a large memory expense for the next step in the
pipeline: computation of the Difference of Gaussian (DoG). As the DoG pyramid
requires at least three scale images to complete, a candidate image needs to wait for
the Gaussian blurring operation to compute the next two images, and thus the image
must be stored in memory.

LPSIFT solves the problem by introducing layer parallel to Gaussian pyramid
construction. To handle simultaneous computation on multiple images, the layer
parallel simply merges the kernels on the same level and forwards them to the DoG
operation. This trick significantly reduces the time latency caused by the sequential
flow and also the memory cost needed to store the images. The merged kernel, how-
ever, can potentially expand to a size that would cause an increased computational
cost. To avoid it, LPSIFT uses integral images that are implemented on modified
box kernels of sizes 3x3, 5x5, and 7x7.

The next modification on the original SIFT algorithm takes place in the contrast
test. The original SIFT algorithm contrast test aims to remove low contrast keypoints
using the Taylor expansion, which is high in complexity. LPSIFT circumvents the
use of the expensive Taylor series by modifying the algorithm to exclude low bright-
ness instead of low contrast. The rationale is that low brightness is an accompanying
characteristic of low contrast and thus excluding low brightness candidate keypoints
would also exclude low contrast candidates.

With this method, LPSIFT manages to reduce 90% of computational cost and
95% of memory usage.
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1.4.6 FAIR-SURF

Fully Affine InvaRiant SURF (FAIR-SURF) [41] modifies the SURF algorithm to
be fully affine invariant by using techniques used in ASIFT [37]. Like ASIFT, FAIR-
SURF uses two camera axis parameters simulation to generate images. It then ap-
plies the SURF algorithm for feature extraction. While ASIFT uses finite rotation
and tilts to simulate camera angles in generating images and therefore runs much
slower, FAIR-SURF selects only certain rotation and tilt angles, thus improving the
speed.

The selection process is described as follows. It is observed that SURF maintains
fully affine invariant until a certain low angle and that 2 is a balanced value between
accuracy and sparsity [37]. The angles under which SURF is fully affine invariant
are chosen so as to extend this fully affine invariant trait to the resulting FAIR-SURF.
Thus, a list of rotation and tilt angles are formed.

To reduce the number of angles, Pang et al. [41] applied the modified SURF to
extract features and perform image matching. They then compared the matching
results with the list and selected several to be tested on other images. The match-
ing results became the final list of rotation and tilt angles that are used to simulate
images. These images are then used in the next steps of the SURF algorithm.

By using selected images that are simulated using angles under which SURF
is fully affine invariant, FAIR-SURF achieves full affine invariance. Its keypoints
produce higher matches compared to SURF and ASIFT and its runtime, although
1.3 times slower than the original SURF, is still faster than ASIFT.

1.4.7 Laplacian SIFT

In visual search on resource constrained devices, a descriptor’s matching ability and
compactness are critical. Laplacian SIFT [51] aims to improve these qualities by
preserving the nearest neighbor relationship of the SIFT features. This is because
it is observed that the nearest neighbors contain important information that can be
used to improve matching ability. The technique utilizes graph embedding [52] and
specifically the Laplacian embedding, to preserve more nearest neighbor informa-
tion and reduce the dimensionality.

The image retrieval process using Laplacian SIFT is implemented in two separate
segments: data preprocessing and query processing. Data preprocessing takes a set
of feature points and employs Laplacian embedding to reduce the original SIFT
128 feature dimension to a desired feature dimension. The experiment uses a 32-
bit representation with 4 dimensions and 8 bits quantization per dimension. Two
kd-trees are then created on the resulting feature points. These trees are formed to
discard the feature points located at the leaf node boundaries.

Query processing takes a set of query feature points and selects the features ac-
cording to the feature selection algorithms. Two leaf nodes are located and merged.
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On each leaf node, the algorithm performs nearest neighbor matching and compares
the results with a predetermined threshold value.

1.4.8 Edge-SIFT

Edge-SIFT [54] is developed to improve efficiency and compactness of large scale
partial duplicate image search on mobile platforms. Its main idea is to use binary
edge maps to suppress memory footprint. Edge-SIFT focuses on extracting edges
since they preserve spatial cues necessary for identification and matching yet sparse
enough to maintain compactness.

The first step to construct Edge-SIFT is creating image patches that are centered
at interest points. These patches are normalized to make them scale and rotation
invariant. Scale invariance is achieved through resizing each patch to a fixed size,
while rotation invariance is through aligning the image patches to make their dom-
inant orientations uniform. An edge extractor is then used to create the binary edge
maps with edge pixel values of 1 or 0. The edge map is further decomposed into
four sub-edge maps with four different orientations. To overcome sensitivity to reg-
istration errors in the vertical direction, an edge pixel expansion is applied in the
vertical direction of the maps orientation.

The resulting initial Edge-SIFT is further compressed. Out of the most compact
bins, the ones with the highest discriminative power are selected using RankBoost
[15]. To reduce the speed of similarity computation, the results are stored in a lookup
table. The final Edge-SIFT was proven to be more compact, efficient, and accurate
than the original SIFT. The direct application of the algorithm includes landmark
3D construction and image panoramic view generator.

1.4.9 CSIFT

CSIFT, or Colored SIFT [3], uses color invariance [19] to build the descriptor. As
the original SIFT is designed to be applied to gray images, modifying the algorithm
to apply to color images is expected to improve the performance. The color invari-
ance model used in CSIFT is derived from the Kubelka Munk theory of photometric
reflectance [26] and describes color invariants under various imaging conditions and
assumptions concerning illumination intensity, color, and direction, surface orienta-
tion, highlights, and viewpoint. The color invariants can be calculated from the RGB
color space using the Gaussian color model to represent spatial spectral information
[19].

CSIFT uses these color invariants to expand the input image space and invariance
for keypoint detection. The gradient orientation is also computed from these color
invariants. The resulting descriptor is robust to image translation, rotation, occlu-
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sion, scale, and photometric variations. Compared to the grayscale based original
SIFT, CSIFT generates higher detection and matching rate.

1.4.10 RootSIFT

RootSIFT [4] is based on the observation that in comparing histograms, the Hellinger
kernel generates superior results to the Euclidean in image categorization, object and
texture classification. As the original SIFT uses the Euclidean distance to compare
histograms, it is expected that using the Hellinger kernel would improve the results.
The original SIFT descriptor can be converted to RootSIFT using the Hellinger ker-
nel.

The Hellinger kernel implementation in RootSIFT requires only two additional
steps after the original SIFT: (1) L1 normalization of the original SIFT vector, and
(2) taking the square root of each element. By executing these steps, the resulting
SIFT vectors are L2 normalized. Classification results by applying the RootSIFT on
Oxford buildings dataset and the PASCAL VOC image dataset show improvement
upon SIFT [4].

1.4.11 PCA-SIFT

PCA-SIFT [25] undergoes the same few steps of the SIFT algorithm (scale space
extrema detection, keypoint localization, and gradient orientation assignment) but
modifies the keypoint descriptor construction. PCA-SIFT uses a projection matrix
to create the PCA-SIFT descriptor. To form this projection matrix, keypoints are
selected and rotated towards their dominant orientation, and a 41x41 patch that is
centered at each keypoint is created. The vertical and horizontal gradients of these
patches are computed, forming an input vector of size 2x39x39 with 3,042 elements
for each patch. The covariance matrix of these vectors is computed, followed by
the eigenvectors and eigenvalues of the matrices. The top n eigenvectors are then
selected to construct n x 3,042 projection matrix, with n being an empirically deter-
mined value. This projection matrix is computed once and stored.

The descriptor is formed by extracting a 41x41 patch around a keypoint, rotating
it to its dominant orientation, creating a normalized 3,042 element gradient image
vector from the horizontal and vertical gradients, and constructing a feature vector
by multiplying the gradient image vector with the stored n x 3,042 projection matrix.
The resulting PCA-SIFT descriptor is of size n. With n= 20 as the feature space size,
PCA-SIFT outperformed the original SIFT that uses 128-element vectors. Results
show that using this descriptor in an image retrieval application results in increased
accuracy and faster matching [25].
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1.5 Conclusion

We have reviewed in this chapter some representative feature representation and
extraction methods that are broadly applied in intelligent image search and video
retrieval. Specifically, the density estimation based methods encompass the Spatial
Pyramid Matching (SPM) [27], the soft assignment coding or kernel codebook [18],
[17], and the Fisher vector coding [42] [24]. The reconstruction based methods con-
sist of the sparse coding [53] and the sparse coding variants. The local feature based
methods inclulde the Local Binary Pattern (LBP) [40], the Feature Local Binary
Patterns (FLBP) [23] [31], the Local Quaternary Patterns (LQP) [22], and the Fea-
ture Local Quaternary Patterns (FLQP) [22], [31]. And finally the invariant methods
contain the Scale-invariant feature transform (SIFT) [35], and the SIFT like descrip-
tors, such as the Color SIFT, the SURF, the MSIFT, the DSP-SIFT, the LPSIFT, the
FAIR-SURF, the Laplacian SIFT, the Edge-SIFT, the CSIFT, the RootSIFT, and the
PCA-SIFT.
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