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Abstract— One of the most investigated methods to increase the 

accuracy of convolutional neural networks (CNN) is by 

increasing its depth. However, increasing the depth also increases 

the number of parameters, which makes convergence of back-

propagation very slow and prone to overfitting. Convolutional 

networks with deep supervision (CNDS) add auxiliary branch to 

addresses the problem of slower convergence and overfitting. 

However, CNDS does not resolve the issue of degradation, which 

can be addressed by residual learning. In order to effectively 

train deep neural networks, in this paper, we propose Residual-

CNDS network, which adds residual learning to CNDS. Residual 

connections are parameter free and add only negligible amount 

of computation, thereby it has very little impact over complexity 

of the network. Results of our experiments on very large-scale 

MIT Places 205 scene dataset support our hypothesis that adding 

the residual connections to the CNDS will enhance the accuracy 

of the network. Our experiments show that the proposed network 

improves upon other recently introduced state of the art 

networks both in terms of top-1 and top-5 classification accuracy.  

 
Keywords— Convolutional Neural Networks; Convolutional 

Networks with Deep Supervision; Residual Learning; Residual-
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I. INTRODUCTION 

ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) [1] is the current test bed for computer vision 
algorithms. Convolutional neural networks (CNNs) have 
achieved breakthroughs in this competition [2] and also in 
other image classification tasks [3, 4]. CNN layers learn the 
images’ low, mid, and high level features and classifies [5] in 
an end to end framework. The quality of features’ levels can be 
boosted by the number of layers used in the network. In the 
ILSVRC contest, it was revealed that the convolutional neural 
network’s accuracy could be improved by increasing the 
network depth, i.e., number of layers [6, 7]. This shows that the 
depth of the network is of critical importance. Top results 
obtained in [6-9] all use very deep convolutional neural 
networks models on the ImageNet dataset [10]. The benefits of 
very deep models can be extended from regular image 
classification tasks to other significant recognition challenges 
such as object detection and segmentation [11-15].  On the 
other hand, increasing the depth of the network by adding more 
layers increases the number of parameters, which makes the 

convergence of back-propagation very slow and also prone to 
overfitting. Furthermore, increasing the depth makes the 
gradients vulnerable to the issue of vanishing/exploding of 
gradients [16, 17]. 

Using the pre-trained weights of shallower networks to 
initialize the weight of deeper networks was proposed by 
Simonyan and Zisserman [6]. The proposed solution is to solve 
the problem of slower convergence and overfitting. 
Nevertheless, using this technique to train multiple networks of 
incremental depth is computationally expensive and may result 
in difficulty of tuning the parameters. Another technique to 
overcome this challenge is proposed by Szegedy et al. [7]. 
Where they used subsidiary branches attached to the middle 
layers. These subsidiary branches are auxiliary classifiers. The 
goal of Szegedy et al. [7] of using these classifiers is to 
increase the gradients to propagate back through layers of the 
deep neural network structure. Also, the branches are used to 
motivate feature maps in the shallower layers to anticipate the 
labels used at the final layer. However, they did not specify a 
method that can determine the location of where to add these 
branches or how to add them. Lee et al. [18] follow similar idea 
by proposing to add the subsidiary branches after each 
intermediate layer.  The losses from these branches are 
summed with the loss of the final layer. This technique showed 
an enhancement in the rate of convergence. However, they did 
not explore the deeply supervised networks (DSN) [18] with 
very deep networks. 

Wang et al. [19] suggested convolutional neural networks 
with deep supervision (CNDS).  They addressed the issue of 
where to add the auxiliary branches. They explored the issue of 
vanishing gradients in deep networks to determine which 
intermediate layer needs to have an auxiliary branch. Adding 
auxiliary branch addresses the problem of slower convergence 
and overfitting. Even though the network is now able to start 
converging; another challenge surfaces, which is the 
degradation problem. As the depth of the network increases, 
the degradation problem increases in deeper networks. 
Degradation issue starts to saturate the accuracy of the network 
and forces it to quickly break down. Surprisingly, overfitting is 
not the reason behind the degradation problem. Degradation 
leads to higher training error as reported in [20, 21] when 
extending the network depth by adding more layers. Moreover, 
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the degradation that happens to the accuracy during the training 
phase shows that different neural network models are not 
equivalently easy to optimize. Residual learning [22] is a 
recently developed technique that solves the issue of 
degradation. In our paper, we address issues of overfitting and 
degradation together by combining the CNDS network with 
residual learning. We add residual connections [22] into the 
basic CNDS [19] eight layers structure. Experimental results 
on our proposed Residual-CNDS network design shows the 
benefits of combining both structures as it enhances the 
accuracy upon CNDS network. 

The rest of this paper is organized as follows. In section II, 
we give a brief background of the CNDS network and residual 
learning. We discuss the details of our proposed Residual-
CNDS method in section III. In section IV, we present the 
details of very large-scale MIT Places 205 scene dataset used 
in our experiments. Section V presents our experimental 
approach. The discussion of the results is given in section VI. 
We conclude the paper and suggest future work in section VII. 

II. BACKGROUND 

The idea behind using very deep neural networks first 
gained prominence in ILSVRC 2014 contest [1] in context of 
computer vision tasks. As a result, the research on how to 
effectively train such networks has more recently shown signs 
of advancement. In this section we explore the architecture of 
CNDS network and how their authors used vanishing gradients 
to locate the best position to add the auxiliary branch.  Next, 
we discuss the residual learning technique in section B. The 
discussion on CNDS and residual learning covers the essential 
background and serves as a good basis for our proposed 
Residual-CNDS method, which is explained later in this paper. 

A. CNDS Network 

Adding auxiliary classifiers that connect to layers in the 
middle was introduced by Szegedy et al. [7]. These extra 
classifiers help the generalization of the network by allowing 

extra supervision in the training phase. However, the procedure 
discussed in Szegedy et al. [7] does not provide any rules as to 
where the auxiliary classifiers should be connected and what 
might be their depth. Thorough analysis of where to insert 
auxiliary classifier branches is provided in Lee et al. [18]. In 
their network named deeply-supervised nets (DSN), they insert 
SVM classifier at the output of every hidden layer. They use 
this technique only during the training phase. Their 
optimization is on the sum of the output layer’s loss and the 
losses of auxiliary classifiers. 

Wang et al. [19] addressed the issue of where to insert the 
auxiliary branches in their convolutional neural networks with 
deep supervision (CNDS). CNDS network [19] has some major 
differences from the Lee et al. [18] network. The first 
difference is Lee et al. [18] inserts auxiliary classifier after each 
hidden layer, whereas Wang et al. [19] use gradient-based 
heuristic rule to decide where they should connect the 
supervision branches. The second difference is Wang et al. [19] 
model uses a small neural network as an auxiliary classifier. 
This small network consists of convolutional layer, several 
fully connected layers, and a final softmax layer where it is 
very similar to [7]. Whereas Lee et al. [16] used SVM 
classifiers that are connected to the outputs of each hidden 
layer.  

 

Fig 1. The architecture of convolutional networks with deep supervision (CNDS) [19]. 

 

 Fig. 2. Residual connection [22]. 



Wang et al. [19] built their decision of where to put the 
auxiliary supervision classifiers (branches) based on vanishing 
of gradients. First, they designed the network without any 
branches. The weights were initialized from Gaussian 
distribution with zero mean, std=0.01, and bias=0. After that, 
they execute several backpropagation epochs in the range of 
10-50 and they monitored the average gradient values of 
middle layers by plotting them. Then they added the auxiliary 
classifier branch where the average gradient value degrades, 
i.e., falls below the threshold of 10-7. In their design, in the 
fourth convolutional layer the mean gradient falls below the 
specified threshold. As a result, they added the auxiliary branch 
after the fourth layer.  Fig. 1 shows Wang et al. [19] network 
design. In order for us to make the comparison easier with our 
proposed design, in Fig. 1, we follow the naming convention of 
convolutional layers similar to [6]. The fourth layer is named 
conv3_2 in Fig. 1. 

B. Residual Learning 

Not all convolutional neural networks are easy to optimize 
because of the degradation problem. Increasing the depth of the 
network supposedly increases the resulting accuracy. However, 
experimental results show a different story; deeper networks 
produce error higher than their counterpart shallower networks. 
He et al. [22], solved the issue of degradation by proposing 
residual learning. They let each of the few stacked layers to fit 
the residual mapping, where degradation prevents the layers to 
fit the desired underlying mapping. They change the 
underlying mapping to be as in equation 2 instead of as in 
equation 1. They hypothesize that it is more difficult to 
optimize the original mapping than to optimize the residual 
mapping.  

    F(x) = H(x) (1) 

 F(x) = H(x) – x (2) 

 F(x) = H(x) + x (3) 

In feedforward neural networks, shortcut connections can 
be represented as equation 3 [22]. A shortcut connection is the 
operation of skipping one or more layers in the network [23-
25]. Fig. 2 shows how the shortcut connection can be 
implemented in CNN. As shown in Fig. 2, He et al. [22] used 
the shortcut connections to implement identity mapping [22]. 
The output that results from these shortcut connections is 
summed with the output resulting from the stacked layers as 
illustrated in Fig. 2, which is represented by equation 3. The 
benefits of identity shortcut connections are that they are 
parameter free and add only negligible amount of computation 
for the summation operation. This is in contrast to “highway 
networks” [21], where shortcut connections are introduced with 
gating functions [26] and these gates have parameters. The 
other benefit of identity shortcut connections in [22] is that 
they can be optimized by stochastic gradient descent (SGD) 
algorithm in an end to end manner. Also, they are easy to 
implement using available deep learning libraries such as [27-
30]. 

III. PROPOSED RESIDUAL-CNDS NETWORK ARCHITECTURE 

The Residual-CNDS network is composed of eight 
convolutional layers in the main branch. The kernel size of the 
first layer is 7*7 with a stride of two. While the kernel size for 
the rest of layers are 3*3 with a stride of one.  Based on the 
rule in Wang et al. [19], the auxiliary supervision classifier is 
added after the convolutional layer that suffers from the issue 
of vanishing gradients, which is conv-3-2 in Fig. 3. Feature 
maps generated from lower convolutional layers are noisy and 
it is necessary to reduce this noise before feeding it to the 
classifiers. To reduce the noise, Wang et al. [19] reduced the 
dimensionality of the feature maps and passed them in non-
linear functions before inserting them into the classifiers. Based 
on that, the auxiliary branch begins with pooling layer (average 

 

Fig. 3. Proposed CNN architecture with residual learning and deep supervision (Residual-CNDS). Dashed rectangle shows the deep supervision branch and 

residual connections are labeled as 1, 2, and 3. 



pooling layer) of size five with a stride of two. After that, there 
is a convolutional layer of kernel size one and stride one. Next 
in sequence there are two fully connected layers each of size 
1,024 and followed by 0.5 dropout ratio. The main branch 
contains two fully connected layers of size 4,096, which is 
followed by 0.5 dropout ratio. The main branch and the 
auxiliary branch have their own output layer, which is based on 
softmax layer to compute the probability of classes.  

                  W_main = (W1, …, W11) (4) 

                W_branch = (Ws5, …, Ws8) (5) 

Naming of weights in main branch is as shown in equation 
4 [19]. These weights correspond to the eight convolutional 
layers and three fully connected layers. On the other hand, the 
auxiliary branch weights are as shown in equation 5 [19], 
where the weights correspond to first convolutional layer and 
three fully connected layers. Firstly, if we consider the feature 
map produced from output layer in main branch to be X11 then 
computing the probability using the softmax function for the 
labels k =1, ..., K is given by equation 6 [19]. Secondly, if 
features produced from output layer in the auxiliary branch is 
S8 then computing the response is given by equation 7 [19].  

 pk = 
𝑒𝑥𝑝(𝑋11(𝑘))

∑ 𝑒𝑥𝑝(𝑋11(𝑘))𝑘
 (6) 

 psk = 
𝑒𝑥𝑝(𝑆8(𝑘))

∑ 𝑒𝑥𝑝(𝑆8(𝑘))𝑘
 (7) 

Computing the loss for the main branch using the 
probabilities generated from the softmax function is shown in 
equation 8 [19]. Computing the loss for the auxiliary branch is 
shown in equation 9 [19]. Computing the loss for the auxiliary 
branch includes the weights from the auxiliary branch and the 
weights from earlier convolutional layers in the main branch. 

𝐿0 (W_main) = - ∑ 𝑦𝑘 𝑙𝑛 𝑝𝑘𝐾
𝑘=1  (8) 

𝐿s (W_main, W_branch) = - ∑ 𝑦𝑘 𝑙𝑛 𝑝𝑠𝑘𝐾
𝑘=1  (9) 

The loss from the two branches: main and auxiliary, is 
combined using the formula shown in equation 10 [19]. This 
equation computes weighted sum where the main branch is 
given more weight than the auxiliary branch. The term αt is 
used to control the importance of the auxiliary branch as a 
regularization parameter. αt decays with successive epochs as 
shown in equation 11 [19], where N is the total number of 
epochs. 
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 Fig. 4. Details of the residual connections in the proposed Residual-CNDS network. 
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 Fig. 5. Example images from MIT Places 205 scene dataset [31]. 



𝐿s (W_main, W_branch) = 𝐿0 (W_main)+αt 𝐿s (W_main, W_branch)   (10) 

 αt = αt * (1 – t/N) (11) 

The shortcut connections from residual learning [22] are 
used in our model as shown in equation 12 [22]. 

 y = F(x, {Wi}) + x (12) 

After analyzing the CNDS network, we decided to add the 
residual learning connections [23] only to the main branch. The 
places where we can add the residual connections are those 
positions that have consecutive convolutional layers without 
pooling layers in between. So, for this reason we cannot add 
residual connections to the auxiliary branch because it has only 
one convolutional layer. Fig. 3 shows the resulting architecture 
after the addition of residual connections to the main branch. 
Conv., Pool, and FC stand for convolutional, pooling, and fully 
connected layers respectively. The first residual connection 
connects the input to the Conv3-1 with the output from Conv3-
2 where the element-wise addition connects the output of Pool-
2 with output of Conv3-2. The number of kernels in Conv-2 is 
128 while the number of kernels in Conv3-2 is 256. To make 
the kernels’ output equal, we perform element-wise addition. 
We add a convolution layer of 256 kernels between Pool-2 and 
the element-wise addition layers. This is shown in Figure 4(a); 
Res3_Branch represents the convolutional layer that is added.  

The second residual connection is added after Pool-3 layer 
and the shortcut connection passes over two convolutional 
layers. Thus, the residual connection is between the output of 

Pool-3 and the output of convolutional layer Conv4-2. The 
number of kernels of Conv3-2 is 256 while the number of 
kernels of Conv4-2 is 512. Therefore, we add convolutional 
layer of 512 kernels between Pool-3 and before the element-
wise addition layer to make the number of kernels of Pool-3 
and Conv4-2 as equal. Fig. 4(b) shows this addition. The 
auxiliary branch is inserted after the merging operation 
between the output of Pool-3 and Conv4-2. Finally, the third 
and the last residual link connects the output of Pool-4 with the 
last convolutional layer, i.e., Conv5-2. We did not need to add 
a convolutional layer between Pool-4 and the element-wise 
addition because the number of kernels of Conv4-2 and Conv5-
2 is equal, which is 512 kernels for both of those.  

IV. IMAGE DATASET DESCRIPTION 

We conduct our experiments on MIT Places 205 [31] 
dataset. Since, the results using CNDS network are reported on 
this dataset in [31], it allows us to compare our results using 
Residual-CNDS with the CNDS network. MIT Places [31] is a 
very large-scale dataset created by MIT Computer Science and 
Artificial Intelligence Laboratory, which is bigger than scene 
challenge competition of ILSVRC [1] and the SUN dataset 
[32]. The MIT Places is also called Places 205 because it 
contains 205 scene categories. Places 205 is scene-centric 
database, which is provided to help the academic experiments 
and education objectives in the area of computer vision. This 
dataset contains 2.4 million training images. The number of 
images for the 205 classes is in the range of 5,000-15,000 per 
category. The validation set contains 100 images per category 

 
  

Fig. 6. Training and validation loss. Top 1 and 5 validation accuracy on MIT Places 205 dataset using proposed  Residual-CNDS Network. 



and the total number of images for the validation set is 20,500. 
The test set contains 200 images per category and the total 
number is 41,000 images for testing. Fig. 5 shows four random 
samples for a few categories from MIT Places dataset. 

V. EXPERIMENTAL ENVIRONMENT AND APPROACH 

In this work, we trained our model, which contains eight 
convolutional layers in the main branch with three residual 
connections and one convolutional layer in the auxiliary branch 
from scratch, i.e., we did not use pre-trained weights. We use 
Caffe [28], which is an open source deep learning software 
framework developed by the Berkley Vision and Learning 
Center. Caffe plugs in into the NVIDIA DIGITS platform [33], 
which is a Deep Learning GPU Training System. NVIDIA 
DIGITS [33] is an open source project that enables the users to 
design and test their neural networks for image category 
classification and object detection with real-time visualization. 
The hardware configuration of our system is four NVIDIA 
GeForce GTX TITAN X GPUs. The system has two Intel 
Xeon processors with a total of 48/24 logical/physical cores 
and 256 GB of main memory. 

All images in the training, validation, and testing set are 
resized to 256*256. The only pre-processing we implemented 
is subtracting the mean pixel for each color channel of RGB 
color space. We set the batch size for training to be 256 and for 
validation to be 128. We set the number of epochs to be 50 and 
the initial learning rate as 0.01. The learning rate is decreased 
five times during the training process after every 10th epoch. 
We set the decay of the learning rate to half of the previous 
value. Images are cropped to 227*227 from random points 
before feeding them to the first convolutional layer.  All layers’ 
weights are initialized from Gaussian distribution with 0.01 as 
standard deviation. The only image augmentation that we used 
is image reflection for the training data.  

 We trained our Residual-CNDS network on the Places 205 
with 2.4 million training images from 205 scene classes, with 
5,000-15,000 images per class. We validated our model with 
100 images per class. The training process using the 
aforementioned setup took two days and 14 hours. Fig. 6 shows 
the loss and the accuracy of our model.  We report top-1 and 
top-5 accuracy on the validation and test dataset. We selected 
the epoch with highest validation accuracy to be used with the 
test set. In our case epoch 46 gave the highest validation 
accuracy. Also, the auxiliary branch is removed during testing 
and it is only used during the training phase. For testing, we 
used the average of 10-crops technique, which is shown to 
improve performance upon other testing techniques [2].  For 
the test set, the class labels are not available. Hence, we 
submitted our predictions to the MIT Places server to obtain 
the test results, which are discussed in section VI. 

VI. RESULTS AND DISCUSSION 

In this paper, we have worked on merging two powerful 
ideas, which are convolutional neural networks with deep 
supervision [19] and residual learning [22] to train deep neural 
networks. Purpose of adding residual connections to the CNDS 
network was to investigate if these shortcut connections could 
enhance the performance of the original network. Residual 

TABLE I 

COMPARISON OF THE TOP 1 & 5 VALIDATION AND TEST 

CLASSIFICATION ACCURACY (%) WITH OTHER PEER REVIEWED 

PUBLISHED METHODS ON THE MIT PLACES 205 DATASET 

 

Method 
Top-1 

Validation/Test 

Top-5 

Validation/Test 

AlexNet [31] - / 50.0 - / 81.1 

GoogLeNet [31] - / 55.5 - / 85.7 

CNDS [19] 54.7 / 55.7 84.1 / 85.8 

Proposed Method: 

Residual-CNDS 
54.8 / 56.3 84.5 / 86.0 

 Note: Data not available is marked as ‘-‘ 

 

TABLE II 

TOP 1 CLASSIFICATION ACCURACY FOR 50 BEST CATEGORIES ON THE MIT PLACES 205 DATASET USING PROPOSED RESIDUAL-CNDS 
 

  Class % Class % Class % Class % Class % 

outdoor 96 pulpit 88 nursery 83 alley 79 outdoor 76 

runway 95 raft 88 igloo 82 rock_arch 79 amphitheater 75 

cockpit 94 phone_booth 87 coral_reef 82 aquarium 78 corridor 75 

wind_farm 94 ballroom 86 bookstore 81 closet 78 gas_station 75 

bus_interior 92 music_studio 86 bowling_alley 81 crosswalk 78 auditorium 73 

fire_escape 92 playground 86 campsite 81 dam 78 cemetery 73 

iceberg 91 shower 86 laundromat 81 water_tower 78 engine_room 73 

lighthouse 91 bamboo_forest 85 rice_paddy 81 airport_terminal 77 sea_cliff 73 

football 91 racecourse 85 fire_station 80 hotel_room 77 shoe_shop 73 

boxing_ring 89 badlands 83 pagoda 80 martial_arts_gym 77 supermarket 73 

 



connections are parameter free and add only negligible amount 
of computation for the summation operation and thereby have a 
very little impact over complexity of the network. Experiments 
on the MIT Places 205 dataset support our hypothesis that 
adding the residual connections to the CNDS will enhance the 
accuracy of the network. 

Table I shows that top-1 results on the proposed Residual-
CNDS network surpass the CNDS [18] by 0.1% and 0.6% on 
validation and test set respectively. Furthermore, our top-5 
results surpass the CNDS [18] by 0.4% and 0.2% on validation 
and test set respectively. Additionally, our model improves 
upon GoogLeNet [7] and AlexNet [2] that was tested by the 
MIT team [31] on Places 205. Aforementioned gains are 
valuable when considering the big challenge that this dataset 
poses. Table II, shows the top-1 accuracy for 50 best categories 
using Residual-CNDS. Mean average accuracy for 50 best 
categories comes to 82.3%. 

VII. CONCLUSION AND FUTURE WORK 

In this paper we proposed Residual-CNDS network, which 
adds residual learning to CNDS network. Our experiments 
using very large-scale image dataset show that the proposed 
network improves upon other recently proposed state of the art 
networks both in terms of top-1 and top-5 accuracy. For future 
work, we plan to investigate the effect of residual connections 
on other popular networks such as VGG16 and AlexNet. 
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