
Novel CNN Architecture with Residual Learning and Deep

Supervision for Large-Scale Scene Image Categorization

Hussein A. Al-Barazanchi, Hussam Qassim, and Abhishek Verma

Department of Computer Science

California State University

Fullerton, California 92834

Email: {hussein_albarazanchi, hualkassam}(at)csu.fullerton.edu, averma(at)fullerton.edu

Abstract— One of the most investigated methods to increase the

accuracy of convolutional neural networks (CNN) is by

increasing its depth. However, increasing the depth also increases

the number of parameters, which makes convergence of back-

propagation very slow and prone to overfitting. Convolutional

networks with deep supervision (CNDS) add auxiliary branch to

addresses the problem of slower convergence and overfitting.

However, CNDS does not resolve the issue of degradation, which

can be addressed by residual learning. In order to effectively

train deep neural networks, in this paper, we propose Residual-

CNDS network, which adds residual learning to CNDS. Residual

connections are parameter free and add only negligible amount

of computation, thereby it has very little impact over complexity

of the network. Results of our experiments on very large-scale

MIT Places 205 scene dataset support our hypothesis that adding

the residual connections to the CNDS will enhance the accuracy

of the network. Our experiments show that the proposed network

improves upon other recently introduced state of the art

networks both in terms of top-1 and top-5 classification accuracy.

Keywords— Convolutional Neural Networks; Convolutional

Networks with Deep Supervision; Residual Learning; Residual-

CNDS; scene classification.

I. INTRODUCTION

ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [1] is the current test bed for computer vision
algorithms. Convolutional neural networks (CNNs) have
achieved breakthroughs in this competition [2] and also in
other image classification tasks [3, 4]. CNN layers learn the
images’ low, mid, and high level features and classifies [5] in
an end to end framework. The quality of features’ levels can be
boosted by the number of layers used in the network. In the
ILSVRC contest, it was revealed that the convolutional neural
network’s accuracy could be improved by increasing the
network depth, i.e., number of layers [6, 7]. This shows that the
depth of the network is of critical importance. Top results
obtained in [6-9] all use very deep convolutional neural
networks models on the ImageNet dataset [10]. The benefits of
very deep models can be extended from regular image
classification tasks to other significant recognition challenges
such as object detection and segmentation [11-15]. On the
other hand, increasing the depth of the network by adding more
layers increases the number of parameters, which makes the

convergence of back-propagation very slow and also prone to
overfitting. Furthermore, increasing the depth makes the
gradients vulnerable to the issue of vanishing/exploding of
gradients [16, 17].

Using the pre-trained weights of shallower networks to
initialize the weight of deeper networks was proposed by
Simonyan and Zisserman [6]. The proposed solution is to solve
the problem of slower convergence and overfitting.
Nevertheless, using this technique to train multiple networks of
incremental depth is computationally expensive and may result
in difficulty of tuning the parameters. Another technique to
overcome this challenge is proposed by Szegedy et al. [7].
Where they used subsidiary branches attached to the middle
layers. These subsidiary branches are auxiliary classifiers. The
goal of Szegedy et al. [7] of using these classifiers is to
increase the gradients to propagate back through layers of the
deep neural network structure. Also, the branches are used to
motivate feature maps in the shallower layers to anticipate the
labels used at the final layer. However, they did not specify a
method that can determine the location of where to add these
branches or how to add them. Lee et al. [18] follow similar idea
by proposing to add the subsidiary branches after each
intermediate layer. The losses from these branches are
summed with the loss of the final layer. This technique showed
an enhancement in the rate of convergence. However, they did
not explore the deeply supervised networks (DSN) [18] with
very deep networks.

Wang et al. [19] suggested convolutional neural networks
with deep supervision (CNDS). They addressed the issue of
where to add the auxiliary branches. They explored the issue of
vanishing gradients in deep networks to determine which
intermediate layer needs to have an auxiliary branch. Adding
auxiliary branch addresses the problem of slower convergence
and overfitting. Even though the network is now able to start
converging; another challenge surfaces, which is the
degradation problem. As the depth of the network increases,
the degradation problem increases in deeper networks.
Degradation issue starts to saturate the accuracy of the network
and forces it to quickly break down. Surprisingly, overfitting is
not the reason behind the degradation problem. Degradation
leads to higher training error as reported in [20, 21] when
extending the network depth by adding more layers. Moreover,

978-1-5090-1496-5/16/$31.00 ©2016 IEEE

the degradation that happens to the accuracy during the training
phase shows that different neural network models are not
equivalently easy to optimize. Residual learning [22] is a
recently developed technique that solves the issue of
degradation. In our paper, we address issues of overfitting and
degradation together by combining the CNDS network with
residual learning. We add residual connections [22] into the
basic CNDS [19] eight layers structure. Experimental results
on our proposed Residual-CNDS network design shows the
benefits of combining both structures as it enhances the
accuracy upon CNDS network.

The rest of this paper is organized as follows. In section II,
we give a brief background of the CNDS network and residual
learning. We discuss the details of our proposed Residual-
CNDS method in section III. In section IV, we present the
details of very large-scale MIT Places 205 scene dataset used
in our experiments. Section V presents our experimental
approach. The discussion of the results is given in section VI.
We conclude the paper and suggest future work in section VII.

II. BACKGROUND

The idea behind using very deep neural networks first
gained prominence in ILSVRC 2014 contest [1] in context of
computer vision tasks. As a result, the research on how to
effectively train such networks has more recently shown signs
of advancement. In this section we explore the architecture of
CNDS network and how their authors used vanishing gradients
to locate the best position to add the auxiliary branch. Next,
we discuss the residual learning technique in section B. The
discussion on CNDS and residual learning covers the essential
background and serves as a good basis for our proposed
Residual-CNDS method, which is explained later in this paper.

A. CNDS Network

Adding auxiliary classifiers that connect to layers in the
middle was introduced by Szegedy et al. [7]. These extra
classifiers help the generalization of the network by allowing

extra supervision in the training phase. However, the procedure
discussed in Szegedy et al. [7] does not provide any rules as to
where the auxiliary classifiers should be connected and what
might be their depth. Thorough analysis of where to insert
auxiliary classifier branches is provided in Lee et al. [18]. In
their network named deeply-supervised nets (DSN), they insert
SVM classifier at the output of every hidden layer. They use
this technique only during the training phase. Their
optimization is on the sum of the output layer’s loss and the
losses of auxiliary classifiers.

Wang et al. [19] addressed the issue of where to insert the
auxiliary branches in their convolutional neural networks with
deep supervision (CNDS). CNDS network [19] has some major
differences from the Lee et al. [18] network. The first
difference is Lee et al. [18] inserts auxiliary classifier after each
hidden layer, whereas Wang et al. [19] use gradient-based
heuristic rule to decide where they should connect the
supervision branches. The second difference is Wang et al. [19]
model uses a small neural network as an auxiliary classifier.
This small network consists of convolutional layer, several
fully connected layers, and a final softmax layer where it is
very similar to [7]. Whereas Lee et al. [16] used SVM
classifiers that are connected to the outputs of each hidden
layer.

Fig 1. The architecture of convolutional networks with deep supervision (CNDS) [19].

 Fig. 2. Residual connection [22].

Wang et al. [19] built their decision of where to put the
auxiliary supervision classifiers (branches) based on vanishing
of gradients. First, they designed the network without any
branches. The weights were initialized from Gaussian
distribution with zero mean, std=0.01, and bias=0. After that,
they execute several backpropagation epochs in the range of
10-50 and they monitored the average gradient values of
middle layers by plotting them. Then they added the auxiliary
classifier branch where the average gradient value degrades,
i.e., falls below the threshold of 10-7. In their design, in the
fourth convolutional layer the mean gradient falls below the
specified threshold. As a result, they added the auxiliary branch
after the fourth layer. Fig. 1 shows Wang et al. [19] network
design. In order for us to make the comparison easier with our
proposed design, in Fig. 1, we follow the naming convention of
convolutional layers similar to [6]. The fourth layer is named
conv3_2 in Fig. 1.

B. Residual Learning

Not all convolutional neural networks are easy to optimize
because of the degradation problem. Increasing the depth of the
network supposedly increases the resulting accuracy. However,
experimental results show a different story; deeper networks
produce error higher than their counterpart shallower networks.
He et al. [22], solved the issue of degradation by proposing
residual learning. They let each of the few stacked layers to fit
the residual mapping, where degradation prevents the layers to
fit the desired underlying mapping. They change the
underlying mapping to be as in equation 2 instead of as in
equation 1. They hypothesize that it is more difficult to
optimize the original mapping than to optimize the residual
mapping.

 F(x) = H(x) (1)

 F(x) = H(x) – x (2)

 F(x) = H(x) + x (3)

In feedforward neural networks, shortcut connections can
be represented as equation 3 [22]. A shortcut connection is the
operation of skipping one or more layers in the network [23-
25]. Fig. 2 shows how the shortcut connection can be
implemented in CNN. As shown in Fig. 2, He et al. [22] used
the shortcut connections to implement identity mapping [22].
The output that results from these shortcut connections is
summed with the output resulting from the stacked layers as
illustrated in Fig. 2, which is represented by equation 3. The
benefits of identity shortcut connections are that they are
parameter free and add only negligible amount of computation
for the summation operation. This is in contrast to “highway
networks” [21], where shortcut connections are introduced with
gating functions [26] and these gates have parameters. The
other benefit of identity shortcut connections in [22] is that
they can be optimized by stochastic gradient descent (SGD)
algorithm in an end to end manner. Also, they are easy to
implement using available deep learning libraries such as [27-
30].

III. PROPOSED RESIDUAL-CNDS NETWORK ARCHITECTURE

The Residual-CNDS network is composed of eight
convolutional layers in the main branch. The kernel size of the
first layer is 7*7 with a stride of two. While the kernel size for
the rest of layers are 3*3 with a stride of one. Based on the
rule in Wang et al. [19], the auxiliary supervision classifier is
added after the convolutional layer that suffers from the issue
of vanishing gradients, which is conv-3-2 in Fig. 3. Feature
maps generated from lower convolutional layers are noisy and
it is necessary to reduce this noise before feeding it to the
classifiers. To reduce the noise, Wang et al. [19] reduced the
dimensionality of the feature maps and passed them in non-
linear functions before inserting them into the classifiers. Based
on that, the auxiliary branch begins with pooling layer (average

Fig. 3. Proposed CNN architecture with residual learning and deep supervision (Residual-CNDS). Dashed rectangle shows the deep supervision branch and

residual connections are labeled as 1, 2, and 3.

pooling layer) of size five with a stride of two. After that, there
is a convolutional layer of kernel size one and stride one. Next
in sequence there are two fully connected layers each of size
1,024 and followed by 0.5 dropout ratio. The main branch
contains two fully connected layers of size 4,096, which is
followed by 0.5 dropout ratio. The main branch and the
auxiliary branch have their own output layer, which is based on
softmax layer to compute the probability of classes.

 W_main = (W1, …, W11) (4)

 W_branch = (Ws5, …, Ws8) (5)

Naming of weights in main branch is as shown in equation
4 [19]. These weights correspond to the eight convolutional
layers and three fully connected layers. On the other hand, the
auxiliary branch weights are as shown in equation 5 [19],
where the weights correspond to first convolutional layer and
three fully connected layers. Firstly, if we consider the feature
map produced from output layer in main branch to be X11 then
computing the probability using the softmax function for the
labels k =1, ..., K is given by equation 6 [19]. Secondly, if
features produced from output layer in the auxiliary branch is
S8 then computing the response is given by equation 7 [19].

 pk =
𝑒𝑥𝑝(𝑋11(𝑘))

∑ 𝑒𝑥𝑝(𝑋11(𝑘))𝑘
 (6)

 psk =
𝑒𝑥𝑝(𝑆8(𝑘))

∑ 𝑒𝑥𝑝(𝑆8(𝑘))𝑘
 (7)

Computing the loss for the main branch using the
probabilities generated from the softmax function is shown in
equation 8 [19]. Computing the loss for the auxiliary branch is
shown in equation 9 [19]. Computing the loss for the auxiliary
branch includes the weights from the auxiliary branch and the
weights from earlier convolutional layers in the main branch.

𝐿0 (W_main) = - ∑ 𝑦𝑘 𝑙𝑛 𝑝𝑘𝐾
𝑘=1 (8)

𝐿s (W_main, W_branch) = - ∑ 𝑦𝑘 𝑙𝑛 𝑝𝑠𝑘𝐾
𝑘=1 (9)

The loss from the two branches: main and auxiliary, is
combined using the formula shown in equation 10 [19]. This
equation computes weighted sum where the main branch is
given more weight than the auxiliary branch. The term αt is
used to control the importance of the auxiliary branch as a
regularization parameter. αt decays with successive epochs as
shown in equation 11 [19], where N is the total number of
epochs.

 (a) (b) (c)

 Fig. 4. Details of the residual connections in the proposed Residual-CNDS network.

Auditorium Coffee Shop Hotel Room Kitchen Mountain Palace Swimming Pool

 Fig. 5. Example images from MIT Places 205 scene dataset [31].

𝐿s (W_main, W_branch) = 𝐿0 (W_main)+αt 𝐿s (W_main, W_branch) (10)

 αt = αt * (1 – t/N) (11)

The shortcut connections from residual learning [22] are
used in our model as shown in equation 12 [22].

 y = F(x, {Wi}) + x (12)

After analyzing the CNDS network, we decided to add the
residual learning connections [23] only to the main branch. The
places where we can add the residual connections are those
positions that have consecutive convolutional layers without
pooling layers in between. So, for this reason we cannot add
residual connections to the auxiliary branch because it has only
one convolutional layer. Fig. 3 shows the resulting architecture
after the addition of residual connections to the main branch.
Conv., Pool, and FC stand for convolutional, pooling, and fully
connected layers respectively. The first residual connection
connects the input to the Conv3-1 with the output from Conv3-
2 where the element-wise addition connects the output of Pool-
2 with output of Conv3-2. The number of kernels in Conv-2 is
128 while the number of kernels in Conv3-2 is 256. To make
the kernels’ output equal, we perform element-wise addition.
We add a convolution layer of 256 kernels between Pool-2 and
the element-wise addition layers. This is shown in Figure 4(a);
Res3_Branch represents the convolutional layer that is added.

The second residual connection is added after Pool-3 layer
and the shortcut connection passes over two convolutional
layers. Thus, the residual connection is between the output of

Pool-3 and the output of convolutional layer Conv4-2. The
number of kernels of Conv3-2 is 256 while the number of
kernels of Conv4-2 is 512. Therefore, we add convolutional
layer of 512 kernels between Pool-3 and before the element-
wise addition layer to make the number of kernels of Pool-3
and Conv4-2 as equal. Fig. 4(b) shows this addition. The
auxiliary branch is inserted after the merging operation
between the output of Pool-3 and Conv4-2. Finally, the third
and the last residual link connects the output of Pool-4 with the
last convolutional layer, i.e., Conv5-2. We did not need to add
a convolutional layer between Pool-4 and the element-wise
addition because the number of kernels of Conv4-2 and Conv5-
2 is equal, which is 512 kernels for both of those.

IV. IMAGE DATASET DESCRIPTION

We conduct our experiments on MIT Places 205 [31]
dataset. Since, the results using CNDS network are reported on
this dataset in [31], it allows us to compare our results using
Residual-CNDS with the CNDS network. MIT Places [31] is a
very large-scale dataset created by MIT Computer Science and
Artificial Intelligence Laboratory, which is bigger than scene
challenge competition of ILSVRC [1] and the SUN dataset
[32]. The MIT Places is also called Places 205 because it
contains 205 scene categories. Places 205 is scene-centric
database, which is provided to help the academic experiments
and education objectives in the area of computer vision. This
dataset contains 2.4 million training images. The number of
images for the 205 classes is in the range of 5,000-15,000 per
category. The validation set contains 100 images per category

Fig. 6. Training and validation loss. Top 1 and 5 validation accuracy on MIT Places 205 dataset using proposed Residual-CNDS Network.

and the total number of images for the validation set is 20,500.
The test set contains 200 images per category and the total
number is 41,000 images for testing. Fig. 5 shows four random
samples for a few categories from MIT Places dataset.

V. EXPERIMENTAL ENVIRONMENT AND APPROACH

In this work, we trained our model, which contains eight
convolutional layers in the main branch with three residual
connections and one convolutional layer in the auxiliary branch
from scratch, i.e., we did not use pre-trained weights. We use
Caffe [28], which is an open source deep learning software
framework developed by the Berkley Vision and Learning
Center. Caffe plugs in into the NVIDIA DIGITS platform [33],
which is a Deep Learning GPU Training System. NVIDIA
DIGITS [33] is an open source project that enables the users to
design and test their neural networks for image category
classification and object detection with real-time visualization.
The hardware configuration of our system is four NVIDIA
GeForce GTX TITAN X GPUs. The system has two Intel
Xeon processors with a total of 48/24 logical/physical cores
and 256 GB of main memory.

All images in the training, validation, and testing set are
resized to 256*256. The only pre-processing we implemented
is subtracting the mean pixel for each color channel of RGB
color space. We set the batch size for training to be 256 and for
validation to be 128. We set the number of epochs to be 50 and
the initial learning rate as 0.01. The learning rate is decreased
five times during the training process after every 10th epoch.
We set the decay of the learning rate to half of the previous
value. Images are cropped to 227*227 from random points
before feeding them to the first convolutional layer. All layers’
weights are initialized from Gaussian distribution with 0.01 as
standard deviation. The only image augmentation that we used
is image reflection for the training data.

 We trained our Residual-CNDS network on the Places 205
with 2.4 million training images from 205 scene classes, with
5,000-15,000 images per class. We validated our model with
100 images per class. The training process using the
aforementioned setup took two days and 14 hours. Fig. 6 shows
the loss and the accuracy of our model. We report top-1 and
top-5 accuracy on the validation and test dataset. We selected
the epoch with highest validation accuracy to be used with the
test set. In our case epoch 46 gave the highest validation
accuracy. Also, the auxiliary branch is removed during testing
and it is only used during the training phase. For testing, we
used the average of 10-crops technique, which is shown to
improve performance upon other testing techniques [2]. For
the test set, the class labels are not available. Hence, we
submitted our predictions to the MIT Places server to obtain
the test results, which are discussed in section VI.

VI. RESULTS AND DISCUSSION

In this paper, we have worked on merging two powerful
ideas, which are convolutional neural networks with deep
supervision [19] and residual learning [22] to train deep neural
networks. Purpose of adding residual connections to the CNDS
network was to investigate if these shortcut connections could
enhance the performance of the original network. Residual

TABLE I

COMPARISON OF THE TOP 1 & 5 VALIDATION AND TEST

CLASSIFICATION ACCURACY (%) WITH OTHER PEER REVIEWED

PUBLISHED METHODS ON THE MIT PLACES 205 DATASET

Method
Top-1

Validation/Test

Top-5

Validation/Test

AlexNet [31] - / 50.0 - / 81.1

GoogLeNet [31] - / 55.5 - / 85.7

CNDS [19] 54.7 / 55.7 84.1 / 85.8

Proposed Method:

Residual-CNDS
54.8 / 56.3 84.5 / 86.0

 Note: Data not available is marked as ‘-‘

TABLE II

TOP 1 CLASSIFICATION ACCURACY FOR 50 BEST CATEGORIES ON THE MIT PLACES 205 DATASET USING PROPOSED RESIDUAL-CNDS

 Class % Class % Class % Class % Class %

outdoor 96 pulpit 88 nursery 83 alley 79 outdoor 76

runway 95 raft 88 igloo 82 rock_arch 79 amphitheater 75

cockpit 94 phone_booth 87 coral_reef 82 aquarium 78 corridor 75

wind_farm 94 ballroom 86 bookstore 81 closet 78 gas_station 75

bus_interior 92 music_studio 86 bowling_alley 81 crosswalk 78 auditorium 73

fire_escape 92 playground 86 campsite 81 dam 78 cemetery 73

iceberg 91 shower 86 laundromat 81 water_tower 78 engine_room 73

lighthouse 91 bamboo_forest 85 rice_paddy 81 airport_terminal 77 sea_cliff 73

football 91 racecourse 85 fire_station 80 hotel_room 77 shoe_shop 73

boxing_ring 89 badlands 83 pagoda 80 martial_arts_gym 77 supermarket 73

connections are parameter free and add only negligible amount
of computation for the summation operation and thereby have a
very little impact over complexity of the network. Experiments
on the MIT Places 205 dataset support our hypothesis that
adding the residual connections to the CNDS will enhance the
accuracy of the network.

Table I shows that top-1 results on the proposed Residual-
CNDS network surpass the CNDS [18] by 0.1% and 0.6% on
validation and test set respectively. Furthermore, our top-5
results surpass the CNDS [18] by 0.4% and 0.2% on validation
and test set respectively. Additionally, our model improves
upon GoogLeNet [7] and AlexNet [2] that was tested by the
MIT team [31] on Places 205. Aforementioned gains are
valuable when considering the big challenge that this dataset
poses. Table II, shows the top-1 accuracy for 50 best categories
using Residual-CNDS. Mean average accuracy for 50 best
categories comes to 82.3%.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed Residual-CNDS network, which
adds residual learning to CNDS network. Our experiments
using very large-scale image dataset show that the proposed
network improves upon other recently proposed state of the art
networks both in terms of top-1 and top-5 accuracy. For future
work, we plan to investigate the effect of residual connections
on other popular networks such as VGG16 and AlexNet.

REFERENCES

[1] J. Deng et al., “Imagenet large scale visual recognition competition 2012
(ilsvrc2012),” 2012.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Neural Information
Processing Systems, Lake Tahoe, NV, 2012, pp. 1097-1105.

[3] Y. LeCun et al., “Backpropagation applied to handwritten zip code
recognition,” Neural Computation, vol. 1, no. 4, pp. 541-551, 1989.

[4] P. Sermanet et al. “Overfeat: Integrated recognition, localization and
detection using convolutional networks,” Int. Conf. on Learning
Representations, Banff, Canada, 2014.

[5] M. D. Zeiler and R. Fergus, “Visualizing and understanding
convolutional neural networks,” European Conf. on Computer Vision,
Zurich, Switzerland, 2014.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition”. Int. Conf. on Learning Representations,
San Diego, CA, 2015.

[7] C. Szegedy et al., “Going deeper with convolutions,” Conf. on Computer
Vision and Pattern Recognition, Boston, MA, 2015.

[8] K. He et al., “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification,” Int. Conf. on Computer Vision,
Santiago, Chile, 2015.

[9] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deepnetwork training by reducing internal covariate shift,” Int. Conf. on
Machine Learning, Lille, France, 2015.

[10] O. Russakovsky et al., “Imagenet large scale visual recognition
challenge,” arXiv preprint arXiv:1409.0575, 2014.

[11] R. Girshick et al., “Rich feature hierarchies for accurate object detection
and semantic segmentation,” Conf. on Computer Vision and Pattern
Recognition, Columbus, OH, 2014.

[12] K. He et al., “Spatial pyramid pooling in deep convolutional networks
for visual recognition,” European Conf. on Computer Vision, Zurich,
Switzerland, 2014.

[13] R. Girshick, “Fast R-CNN,” Int. Conf. on Computer Vision, Santiago,
Chile, 2015.

[14] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” Neural
Information Processing Systems, Montreal, Canada, 2015.

[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” Conf. on Computer Vision and Pattern
Recognition, Boston, MA, 2015.

[16] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Trans. on Neural
Networks, vol. 5, no. 2, pp. 157–166, 1994.

[17] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks, ” Int. Conf. on Artificial Intelligence and
Statistics, Sardinia, Italy, 2010.

[18] C.-Y. Lee et al., “Deeply supervised nets,” arXiv preprint
arXiv:1409.5185, 2014.

[19] L. Wang et al., “Training deeper convolutional networks with deep
supervision,” arXiv preprint arXiv:1505.02496, 2015.

[20] K. He and J. Sun, “Convolutional neural networks at constrained time
cost,” Conf. on Computer Vision and Pattern Recognition, Boston, MA,
2015.

[21] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks.”
arXiv:1505.00387, 2015.

[22] K. He et al., “Deep residual learning for image recognition,” arXiv
preprint arXiv:1512.03385, 2015.

[23] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford
university press, 1995.

[24] B. D. Ripley, Pattern Recognition and Neural Networks. Cambridge
university press, 1996.

[25] W. Venables and B. Ripley, Modern Applied Statistics with S-Plus.
Springer-Verlag New York, 2002.

[26] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” J. of
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[27] M. Abadi et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467,
2016.

[28] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding, ” arXiv preprint arXiv:1408.5093, 2014.

[29] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A MATLAB-
like environment for machine learning,” Conf. on Neural Information
Processing Systems: BigLearn Workshop, Granada, Spain, 2011.

[30] F. Chollet. “Keras”. GitHub repository, https:
//github.com/fchollet/keras, 2015.

[31] B. Zhou et al., “Learning Deep Features for Scene Recognition using
Places Database,” Conf. on Neural Information Processing Systems,
Montreal, Canada, 2014.

[32] J. Xiao et al., “SUN Database: Large-scale Scene Recognition from
Abbey to Zoo,” Conf. on Computer Vision and Pattern Recognition, San
Francisco, CA, 2010.

[33] NVIDIA DIGITS Software. (2015). Retrieved April 23, 2016, from
https: //developer.nvidia.com/digits.

