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Abstract—Diabetic retinopathy (DR) is a common eye disease
that could lead to irreversible vision loss but hard to be noticed
by carriers in early stages. Instead of isolating DR signs for DR
recognition, this paper examines discriminant texture features
obtained by color multi-scale uniform local binary pattern (LBPs)
descriptors on five common color spaces and two proposed
hybrid color spaces. The extracted features are evaluated by
the enhanced Fisher linear discriminant, EFM. Experiments are
done on a large dataset of 35,126 training images and 53,576
testing images that have been taken by different devices with
high variance in dimensions, quality and luminance. The best
performance is above 71.45% by HSI-LBPs, a*SI-LBPs, and bSI-
LBPs descriptors.

Index Terms—diabetic retinopathy recognition, DR, texture,
uniform LBPs, EFM, FLD, PCA, color space

I. INTRODUCTION

According to US Center for Disease Control and Prevention,
diabetic retinopathy (DR) is the most common eye disease
which affects one in three Americans with diabetic and further
leads to blurred vision and blindness. DR is caused due to
high blood glucose level which damages small blood vessels
in retina. In consequence, blood, extra fluid, cholesterol, and
other fats leak in the retina and make the macula swollen
and thicken. Damaged capillaries may finally close and stop
providing nutrients and oxygen to retina. To supply sufficient
blood to the area, the retina grows new abnormal fragile
blood vessels called intraretinal microvascular abnormalities
(IrMAs); however, the new vessels are usually accompanied
with scar tissue which may wrinkle or detach the retina and
distort vision. In late stages, increased pressure in eye may
damage the optic nerve [1].

Unfortunately, DR carriers do not notice vision changes
in the early stages. DR usually affects both eyes and causes
irreversible vision loss in many cases as DR progresses while
detecting early DR stages and timely treatment can reduce the
risk of severe vision loss by over 90%. Currently, detecting DR
is a time-consuming manual procedure which requires ophthal-
mologists to evaluate digital fundus photography, review, and
follow up in many days and causes delayed treatment [2], [3].

A typical fundus image appears with an optic disc, blood
vessels, and a macula. Macula is the center area of the retina
which contains color-sensitive rods and the central point of
sharpest vision. Figure 1 illustrates a fundus image with
labeled signs of diabetic retinopathy. Microaneurysms (MAs)

Fig. 1. DR signs and main structure in a retina image

are tiny bulges in blood vessels and appear as deep-red dots in
the fundus. Haemorrahages are small spots of blood discharge.
Hard exudates are leakage of lipid and protein in the retina.
Hard exudates typically emerge as bright, reflective, white
or cream lesions. Hard exudates and microaneuryms around
macula might block vision and additionally damage the macula
and leads to permanent vision loss [3], [4].

By examining patient retina images, an ophthalmologist can
identify two types of retinopathy: nonproliferative diabetic
retinopathy (NPDR) and proliferative diabetic retinopathy
(PDR). NPDR is further classified into three stages based on
the presence of DR signs. Mild NPDR is formed when some
microaneurysm appears with possible appearance of exudates
and venous loops. Moderate NPDR is developed with multi-
plex microaneuryms, haemorrhages, and hard exudates. Severe
NPDR stage is characterized by 4-2-1 rule. The 4-2-1 rule is
defined by the existence of hemorrhages and microaneurysms
in four quadrants, venous beading in two quadrants, and IrMAs
in one quadrant. Finally, PDR is the advanced stage where new
fragile blood vessels leak hemorrhages and hard exudates into
the vitreous, the gel in the center of the eye, deliver scar tissue
and wrinkle to the retina, build up pressure in the retina, and
lead to vision loss due to the damage of macula and optic
nerve [3], [5].



This paper is a focus on robust discriminant texture features
on color spaces for a large-scale dataset. The rest of the
paper is organized as follows. Section II reviews background
of current feature extraction and classification techniques on
DR. Section III describes the retina image dataset in this
research. Section IV proposes the methodology to extract color
texture features and classification techniques to identify DR
stages. Experimental results and discussion present in section
V. Section VI concludes the research with future direction.

II. RELATED WORK

With the clinical fact that MAs are the earliest signs of
diabetic retinopathy [6], most DR papers focus on extract-
ing clinical features by localizing and segmenting lesions,
blood vessels, optic disks, and macula one by one. Basic
point operators are applied to balance and enhance local
contrast, and linear filters and neighborhood operators such as
morphological operators, median filters, and Gaussian filters
are convoluted on images in pre-processing as indicated in
surveys [3], [7]. Watershed transformation is applied in [8]
to overcome over-segmentation caused by thresholds. Other
techniques such as active contour models and recursive region-
growing technique (RRGT) are used in the domain researches
to isolate blood vessels and other interested regions [7].

In addition to segmentation, statistical texture extraction
is another approach in DR recognition. Statistical texture
approach is based on the relationship between pixel intensities.
In statistical approach, entropy, contrast, and correlation can
be simply calculated via gray level co-occurrence matrix.
Contrast texture is extracted together with isolated areas of
MAs and HAs in [9] to classify DR. In recent years, local
binary pattern (LBP) texture is started being used for DR
detection on small retina datasets with less than 100 images in
[10], [11]. In other domains such as face and scene recognition,
texture descriptor such as local binary pattern texture has been
proven to contribute significant performance [12].

When sampling on a large set of images which are taken
by different devices under various conditions of light and
intensity, it is crucial for a robust vision system to adapt a
discriminant color space. HSI is applied for Messidor and
DB-rect DR datasets in [1] to extract MAs and exudates,
and selected by [13] to locate fovea. Green component in
RGB is focused to extract blood vessel structure in [9], [14].
All channels of RGB are separately examined in [5] with
morphology operations to extract the total area and perimeters
of blood vessels, HAs, and MAs. Ram and Jayanthi [15]
consider multiple color spaces such as RGB, L*u*v*, HSV
and HSI to extract lesion pixel values.

In general, the aforementioned researches focus on segmen-
tation of blood vessels and DR signs for feature extraction on
small datasets whose sizes are ranging from several hundreds
to several thousands of images. In classification stage, support
vector machine (SVM) and artificial neural network (ANN)
are two popular techniques in DR problems [1], [5], [7], [9]–
[11], [14]. An SVM classifier transforms the original training
data to a higher dimension space where it can find a linear

Fig. 2. Statistics of DR training dataset

optimal separating hyperplane. Meanwhile, multi-layer NN
is built on a set of connected input and output nodes and
weighted connections between nodes. The network is trained
in iterations to determine the proper connection weights, and
its back propagation algorithm searches for a set of weights by
gradient descent method [16]. Acharya et al. [14] applies SVM
on a dataset of 331 retina images to identify five DR stages
with an overall accuracy of 86%. Back propagation neural
network is applied in [5] with one hidden layer to identify
four DR stages with an accuracy of 84% on a dataset of 124
images.

III. RETINOPATHY IMAGE DATASET

In this paper, experiments are done on the retinopathy image
dataset provided by EyePACS, a free platform for retinopathy
screening, through Kaggle website. The dataset originally
consists of 35,126 training images and 53,576 testing images.
These images are taken by different models and types of
camera under different conditions and stored in various, high
resolutions. Each image has been examined on the presence
of DR by a clinician to be labeled with a DR stage from
0 to 4, corresponding to no DR, mild, moderate, severe, and
proliferative DR as being described in the introduction section.
Within the train dataset, there are 74% images of stage 0
(no DR), 7% of stage 1 (mild), 15% of stage 2 (moderate),
2% of stage 3 (severe) and 2% of stage 4 (proliferate DR)
approximately. Images in the test datasets are split to 5 stages
in the similar ratios as in the train dataset.

The challenges of this dataset are its large variance in
resolution, intensity, and quality as shown in Figure 2. By
examining the train dataset, image heights vary from 289 to
3456 pixels, while their widths vary from 400 to 5184 pixels
with the range of ratios between height and width is from 0.66
to 1.00. The average of image intensity spreads from 1 to 192
around the mean of 63. Low intensity images are stored in
8KB while other images can allocate up to 2MB files.



Fig. 3. Methodology Overview

IV. ALGORITHM DESCRIPTION

In this work, we examine DR classification performance
by extracting uniform LBP features at multiple scale on
commonly used color spaces such as RGB, HSI, L*a*b*, rgb,
and I1I2I3, and two hybrid color spaces a*SI and bSI. The
proposed method consists of three major parts: image prepro-
cessing, feature extraction on a color space, and classification
via an enhanced Fisher model (EFM) built upon principal
component analysis (PCA) and Fisher’s linear discriminant
method (FLD).

A. Image Preprocessing

As being mentioned in dataset description section that input
images are in a large range of dimension, the main goal
of image is converting any input image of any size to a
fixed square image, whose dimension is also the diameter of
the circular eye shape. For a given image, a circumscribing
rectangle of the eye is determined by scanning pixels along
the horizontal and vertical mid-lines of the image from the
image boundary toward its center until obtaining an intensity
difference above a small threshold. The image is then cropped
around the center of the determined circumscribing rectangle
to extract a square image whose dimension is the shorter side
of the boundary rectangle. Next, the square image is scaled

by bicubic interpolation method to a 512x512 image before
being clipped around its center by a radius r=256 to guarantee
that retina content is captured in a full inscribed circle of the
final output square image.

In preprocessing part, training images in DR stages 1-4 are
also increased by flipping and rotation to balance training
image quantities for all DR stages and avoid over-train on
stage 0. Let pi be the distribution of stage i in the training
dataset, where i = 0..4 and

∑4
i=0 pi = 1. To balance with

the dominant image population in non-DR stage (0), images
in stage i are flipped to double their class size to 2 ∗ pi
and then rotated sequentially around their centers by an angle
αj = j ∗ b 3600

dp0/(2∗pi)ec, where j = 1..dp0/(2 ∗ pi)e − 1.

B. Feature Extraction

1) Color Spaces: Colors are wavelengths of light that are
reflected by object surfaces and perceived by human eyes. A
color space is a mathematical model to organize colors in
a way that relates to the perceived colors. Each color space
possesses specific characteristics with different discriminating
power and suitable for selective visual tasks. The fundamental
RGB color space is built on three primary color components
close to red, green, and blue wavelengths and used in repro-
duction systems [17]. In gray scale, intensity is obtained by a
weighted sum of red, green, and blue components:

I = 0.299R+ 0.587G+ 0.114B (1)

The I1I2I3 color space is obtained by the decorrelation
of RGB color components through Karhumen Loéve [18].
The color space was found in 1980 in the experiments of
region segmentation. The color components are ordered by
their segmentation effectiveness and formed by the following
transformation:

I1 =
R+G+B

3

I2 =
R−B

2

I3 = −G+B

2

(2)

The rgb color space is a chromaticity space defined by
normalizing RGB components to reduce the sensitivity of lu-
minance [19]. The color space is represented by the proportion
of red, green, and blue in the original RGB color space:

r =
R

R+G+B

g =
G

R+G+B

b =
B

R+G+B

(3)

With the original aim of representing colors in reproduction
system, RGB is device dependent and not intuitive to human
vision. Thus, perceptual color spaces are created by relating
components in RGB color space to colors characteristics
such as hue, brightness, and saturation to facilitate human



interpretation of their components [17]. HSI is a perceptual
color space whose components approximate the perceived hue,
saturation, and intensity in order. HSI components are obtained
by the following equations:

H =

{
α, if b < g

2π − α, otherwise

S = 1−min(r, g, b)

I =
R+G+B

3

(4)

where

α = cos−1
{

0.5 ∗ [(r − g) + (r − b)]
[(r − g)2 + (r − b)(g − b)]1/2

}
and r, g, and b are normalized RGB components obtained by
equation 3.

CIE XYZ color system was defined by the Commission
International de L’Eclairage (CIE) in 1931. While RGB uses
visible physical colors, XYZ is built upon imaginary primary
colors [X Y Z] to form a device-independent color space with
better descriptive properties [17]. A color space defined in
this system, referred to as Yxy, can represent all visible color
by only positive normalized mixture of its primaries and the
luminance value Y:

x =
X

X + Y + Z

y =
Y

X + Y + Z
z = 1− x− y

(5)

L*a*b* can be directly derived from XYZ with the intention
to mimic the logarithmic response of the human vision system.
The L* channel represents luminance in the range from 0
to 100, while a* and b* channels represent chrominance
opponents. The red and green opponent colors are represented
along a* dimension. The yellow and blue opponent colors are
represented along the b* dimension. L*a*b* is widely used in
many industries which requires accurate color specifications
such as paint, dyes, and printing inks [20]. L*a*b* components
can be derived from XYZ as the following:

L∗ = 116f(
Y

Yn
)− 16

a∗ = 500[
X

Xn
− Y

Yn
]

b∗ = 200[
Y

Yn
− Z

Zn
]

(6)

where

f(t) =

{
t(1/3) if t > ( 6

29 )3

1
3 ( 29

6 )2t+ 4
29 otherwise

and Xn, Yn, and Yn are the CIE XYZ component values of
the reference white point.

Table I. Sample images in different color spaces

Color
Space

sample images in different stages

no DR (0)
mild
NPDR
(1)

moderate
NPDR
(2)

severe
NPDR
(3)

PDR (4)

RGB

rgb

I1I2I3

L*a*b*

HSI

a*SI

bSI

a) Proposed Hybrid Color Spaces: In addition to the
existing color spaces, experiments are similarly conducted on
two hybrid colors that are derived from HSI: a*SI and bSI.
The only difference between the hybrid colors and the original
color space HSI is the first channel. The first channel of a*SI
is the a* channel of L*a*b*, and the first channel of bSI is
the normalized blue channel of rgb.

For a sample retina image of each DR stages, the trans-
formed image corresponding to the discussed color spaces in
this section are displayed in Table I.

2) LBP Features: The local binary pattern (LBP) texture
descriptor was proposed and improved by Ojala et al. [21],
[22]. LBP has been proven as a robust feature descriptor for
texture classification [19], [23]. LBP is particularly applied in
biometrics, face detection and recognition, and scene recogni-
tion [19], [23].

The basic LBP focuses on each 3x3 neighborhood to form
an ordered 8-bit LBP code by comparing the surrounding
pixels’ gray value with its center. The local binary pattern
around a pixel P by eight neighbor Px is encoded as follows:

LBP =

8∑
x=1

s(x)2x−1

s(x) =

{
1 if Px > P

0 otherwise

(7)



As the operator focuses on the signed differences of gray
values and disregards the value difference, it is invariant to
changes in mean luminance. For scale invariance improve-
ment, LBP operator is extended to consider a circularly
symmetric neighbor set of P pixels on a circle of radius R
surrounding the center pixel, denoted as LBPP,R. The top
middle neighbor is the most significant bit in LBP code, and
other neighbors are ordered clockwise. For each neighbor point
whose coordinators are not exactly in the center of pixels, its
gray value is estimated by interpolation rather than the nearest
pixel’s value.

The extension in [22] defines a so-called uniform pattern,
denoted as LPBriu2

P,R , which contains at most two spatial
transitions in its circular chained binary pattern, ”1-0” and
”0-1”. LPBriu2

P,R does not only improve rotation invariance
but also significantly reduces LBP dimension by preserving a
single bin for all nonuniform patterns.

In the real diabetic retinopathy recognition problem, images
are taken by different devices under different conditions of
light and quality. In addition, besides the main structure of
a retina in the images, DR signs are fine-grain and their
granularity diversifies. Recall that microaneurysms (MAs) are
tiny red dots, hemorrhages and hard exudates can be at any
size in any unknown shape, and fragile blood are developed
in undetermined directions. Thus, uniform local binary pattern
detection should be applied on different scales to capture
discriminant features that are invariant to rotation, global
intensity, and scales.

In our experiments, each 512x512 retina image is divided
into four regions. Texture features are extracted on 4 scales
by LPBriu2

8,2 , LPBriu2
16,4 , LPBriu2

24,6 , and LPBriu2
32,10 descriptors

on each 256x256 region at each color channel for a given
color space. The extracted LBP features are standardized on
each scale. The final 1056-dimension feature vector for a color
retina image is formed by standardizing the concatenation of
120 features from LPBriu2

8,2 , 216 features from LPBriu2
16,4 , 312

features from LPBriu2
24,6 , and 408 features from LPBriu2

32,10.

C. EFM Classification

The extracted LBP features on a color space will be clas-
sified by the Enhanced Fisher Model (EFM), which enhances
Fisher Linear Discriminant (FLD) by principal component
analysis (PCA) [12], [19], [25].

Let X be a data matrix which consists of M feature vectors,
Xi, in the space RN , where i = 1..M . The feature vector
Xi may reside on a high dimensionality space. The vector is
probably composed of correlated features and contains noises.
PCA is a common technique to linearly transform data to a
lower dimensionality space and reduce data noise [24]. The
basic idea of PCA is diagonalizing the covariance matrix, ΣX ,
of the original space, RN , to obtain eigenvectors.

ΣX = E{[X − E(X )][X − E(X )]t}
ΣX = ΦΛΦt (8)

where E(X) is the expectation function, t denotes matrix
transpose operation, Φ = [φ1, φ2, . . . φN ] is the orthogonal

Fig. 4. (8,2), (16,4), (24,6), and (32,10) LBP neighborhoods

eigenvector matrix, and Λ = diag{λ1, λ2, . . . , λN} is the
diagonal eigenvalue matrix in the descending order of eigen-
values.

A corresponding feature vector, Yi, in the PCA reduced
space, RK , where K < N , is composed by K most dominant
principal components and is derived by the following equation:

Yi = P tXi (9)

where P = [φ1, φ2, . . . , φK ].
Although PCA is a popular technique in pattern recognition,

it is not optimized for class separability. Instead, the alternative
technique, FLD, has been proposed to model the difference
between classes of data [25], [26].

The Fisher linear discriminant (FLD, a.k.a. linear discrim-
inant analysis LDA) is a popular discriminant criterion that
defines a projection to reduce within-class scatter and enlarge
the between-class scatter [25]. Let ωi, where i = 1..L,
represent the i-th class in a domain, P (ωi) and Mi be its
corresponding priori probability and mean respectively, and
M be the grand mean. The within-class and between-class
scatter matrices, Sw and Sb, are defined as

Sw =

L∑
i=1

P (ωi)E{(Y −Mi)(Y −Mi)
t|ωi}

Sb =

L∑
i=1

P (ωi)(Mi −M)(Mi −M)t

(10)

where Sw, Sb ∈ Rmxm, m < N and m < L.
Let Ψ be a projection matrix. FLD method aims to opti-

mize the ratio |ΨtΣbΨ|/|ΨtΣwΨ|, which represents the class
separability in the domain. The maximized ratio is achieved
when Ψ consists of eigenvectors of the matrix S−1w Sb [25]

S−1w SbΨ = Ψ∆ (11)

where ∆ are the eigenvalues of the matrix S−1w Sb.
The FLD method encounters overfitting drawback when

there are insufficient sample data for generalization. The



Enhanced Fisher model, EFM, overcomes this issue by com-
bining PCA and FLD in the proper balance of the selected
eigen features for an adequate representation of raw data
and the requirement that the eigenvalues of the within-class
scatter matrix in the reduced PCA are sufficient large for
generalization [12].

In EFM classifier, discriminant features, Z, are obtained
by projecting the PCA reduced feature vectors Y , which
are derived in Eq. 9 on the optimal projection matrix Ψ.
Each discriminant feature is assigned to the nearest class
by measuring its cosine distances to all class centers in our
experiments.

Z = ΨtY (12)

δcos(x, y) = − xty

||x||||y||
(13)

In this work, EFM is selected for DR recognition experi-
ments on multiple colors and color channels for its simplic-
ity in terms of computation and parameters and its proven
effectiveness in the domain of face recognition. Because of
the small number of classes in DR recognition experiments,
the maximum FLD feature dimension, m = L − 1 = 4, is
chosen for the best generalization of within and between class
relationship. The balanced PCA criterion for the selected FLD
feature dimension is determined by 5-fold cross-validation on
the train dataset. For validation, the train dataset is equally
divided into five folds. Each fold is sequentially tested by
the EFM classifier trained on the remaining data. The optimal
PCA criterion obtained in validation will be applied to train
the final EFM classifier on the whole train dataset in the each
experiment.

V. EXPERIMENT RESULTS

Experiments are initially conducted on gray scale and five
different color spaces. The performance is measured by the
correct classification rate on the test dataset. Experiment
results obviously show that all color spaces surpass gray scale
performance. Among examined color spaces, intuitive color
space L*a*b* and HSI outperforms RGB, rgb, and I1I2I3.
The multiscale LBP descriptor on HSI, denoted as HSI-
LBPs, achieves the best performance, 71.45%, among the five
descriptors, and it exceeds gray scale by 5.47%. The results
support the idea of selecting HSI as the color space to extract
MAs and exudates in [1]. It is apparent to understand that the
rgb color space performs worst (66.30%) due to the complete
absence of luminance. Performance on the proposed hybrid
color spaces, a*SI and bSI, is 71.49%, that is slightly better
than HSI performance as summarized in Figure 5. Figure 6
shows some RGB images that are not correctly classified by
RGB-LBPs and Lab-LBPs descriptor but correctly classified
by HSI-LBPs, aSI-LBPs, and bSI-LBPs descriptors. One can
visually realize that these example images are very different
in terms of light and color.

Fig. 5. Total classification performance on color spaces

Table II. LBP-EFM performance on color channels

Color Space Channel 1 Channel 2 Channel 3
HSI 71.45 65.92 68.79 65.93

L*a*b* 69.73 66.03 63.69 61.18
I123 69.43 65.93 62.21 61.99
RGB 68.77 63.98 65.64 61.73
rgb 66.30 61.59 61.05 60.50
gray 65.98 65.98

For more insights on color LBPs descriptors, experiments
are further carried on individual channels of each aforemen-
tioned color. In rgb color space, b channel performs worst.
The best performance, 61.59%, on the r channel is only 1%
above the worst channel but 5% below the performance of
the color space. It means that different discriminant features
could be arranged on every channel of rgb, thus, there is no
significantly strong channel and rgb significantly outperforms
its individual channels.

In the other four color spaces, improvement of each color
performance over its best channel is not as significant as in rgb.
The performance improvement on these color spaces is from
2.7% to 3.8%. There is a dominant channel that outperforms
the worst channel from 2.9% to 3.9% in each color space. In
RGB, green channel achieves the best performance and this
result could explain why it is the selected channel to extract
blood vessel structure in [9], [14]. The first channel of I1I2I3
performs better than other two channels because it the channel
holding most chrominance and luminance information. In
L*a*b* color space, the luminance channel L* outperforms
chrominance channels.

In HSI and proposed HSI-like hybrid color spaces, the most
discriminant features are identified on the saturation channel.
Although intensity and hue performs at the same rate, a* and
b channels performance is at least 2% less than hue. It could
be implied that there are more discriminant features that are
not found in saturation channel could be identified in channel
I than in channel H. It should be noticed that channel I of HSI
is also the strongest channel of I1I2I3.

VI. CONCLUSION

We have introduced in this paper different color multi-scale
local binary pattern texture descriptors, LBPs, for diabetic
retinopathy recognition on a large dataset. The enhanced
Fisher linear discriminant is applied to identify the promising



Fig. 6. Example DR images correctly classified by using HSI-LBPs, aSI-LBPs, bSI-LBPs descriptors but not by RGB-LBPs or Lab-LBP descriptors: (a) no-DR
example retina image with some luminance noise; (b) example mild DR with some microaneurysm; (c) example moderate DR with multiple microaneurysms
and hard exudates; (d) example severe DR with hemorrhages in 4 quadrants; (e) example proliferate DR retina image with hemorrhages, hard exudates, and
fragile blood vessels around the fovea.

color spaces and color channel candidates to obtain the most
discriminant LBPs features. Results of the experiments show
that HSI-LBPs descriptor and its variances, a*SI-LBPs and
bSI-LBPs descriptors outperform other color LBPs and gray
LBPs descriptors.

For the future plan, the candidate color LBPs descriptors
can be combined with features from other region or gradient
detectors to improve DR performance. Other classification
and ensemble techniques will be explored to achieve better
accuracy.
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