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Abstract— Plankton are a diverse group of organisms that live 
in large bodies of water. They are a major source of food for 
fishes and other larger aquatic organisms. The distribution of 
plankton plays an important role in the marine ecosystem. The 
study of plankton distribution relies heavily on classification of 
plankton images taken by underwater imaging systems. Since 
plankton are very different in both sizes and shapes, plankton 
image classification poses a significant challenge. In this paper we 
proposed hybrid classification algorithms based on convolutional 
neural networks (CNN). In particular, we provide an in depth 
comparison of the experimental results of CNN with Support 
Vector Machine and CNN with Random Forest. Unlike 
traditional image classification techniques these hybrid CNN 
based approaches do not rely on features engineering and can be 
efficiently scaled up to include new classes. Our experimental 
results on the SIPPER dataset show improvement in 
classification accuracy over the state of the art approaches. 
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I.  INTRODUCTION 
Plankton are a highly diverse collection of organisms that 

exist in water columns. They are the main source of food for 
fish and other larger organisms in their environment. Plankton 
are known to play a very critical role for the survival of various 
other life forms in oceans. Plankton has two main types: 
phytoplankton and zooplankton. Phytoplankton are plant type 
while the zooplankton are animal type. Phytoplankton are also 
known to be a major contributor in the carbon fixation cycle. 
Plankton population of either type is very sensitive to changes 
in their environment. For example, their population may 
change rapidly in response to changes in the level of pollution. 
Therefore, the change of plankton population in the marine 
ecosystem is often used as an indication of environmental 
issues. The study of plankton distribution in terms of both 
numbers and types can improve our understanding of the 
marine ecosystem and facilitate the research on many 
environmental issues. 

In the early days, scientists were limited to the use of 
traditional techniques to investigate the distribution of 
plankton, such as Niskin bottles, towed nets, or pumps to 
collect samples. The analysis and classification were done 
manually by an expert. This process was very laborious and 
time consuming. The invention and advances in underwater 
imaging systems provided an alternative approach and 

dramatically improved the study of plankton distribution. 
Several systems were developed for plankton sample collection 
using underwater imaging systems. The three major imaging 
systems are Video Plankton Recorder (VPR) [1], under water 
holographic camera system (HOLOMAR) [2], and Shadowed 
Image Particle Profiling and Evaluation Recorder (SIPPER) 
[3]. These systems enabled scientists to continuously collect 
huge amount of plankton samples. However, for many years, 
the analysis and classification of the sample plankton images 
remained a manual process. More recently, with rapid advances 
in computer vision techniques, there were a number of 
algorithms developed to automatically recognize and classify 
plankton images. 

One of the early works on plankton image classification can 
be traced back to Tang et al. [4] where they used samples 
collected from VPR devices. Their approach used Fourier 
descriptors with gray-scale morphological granulometries and 
invariant moment features. In 2005, Lue et al. [5] developed a 
system that achieved 90% accuracy on plankton images 
obtained by SIPPER system. Their technique utilized active 
learning with Support Vector Machines (SVM). In the 
following year, a new technique named normalized multilevel 
dominant eigenvector estimation was presented by Tang et al. 
[6]. Their approach used shape descriptor and achieved 91% 
accuracy. In 2009, Zhao et al. [7] proposed a system based on 
multiple classifiers and random sampling. They improved the 
classification accuracy to around 93%. More recently Li et al. 
[8] developed a technique called PNDA to reach the accuracy 
level of 95%. 

All the aforementioned algorithms rely on features 
engineering. The reliability of accuracies depends on the design 
and extraction of features in the existing data. This poses a 
challenge in the integration of a new class to the existing 
system. Each new class may require intensive work to find new 
features that can represent those new classes. Depending on the 
quality of feature design, maintaining the accuracy may not 
always be possible. In this paper we propose hybrid 
classification algorithms based on convolutional neural 
networks (CNN). In particular, we provide an in depth 
comparison of the experimental results of CNN with Support 
Vector Machine and CNN with Random Forest. These hybrid 
CNN based approaches do not rely on features engineering and 
can be efficiently scaled up to include new classes. Our 
experimental results on the SIPPER dataset show improvement 
in classification accuracy over state of the art approaches. 



The rest of this paper is organized as follows. In section II, 
we give a brief description of the SIPPER image dataset used 
in our experiments. We discuss the implementation details of 
convolutional neural networks in section III. We present the 
experimental setup and results in section IV. We conclude the 
paper and suggest future work in section V. 

II. PLANLKTON IMAGE DATASET 
The plankton image dataset that we used for this research is 

obtained from the SIPPER system. The image resolution 
produced by SIPPER is 3-bit grayscale [9]. The dataset is 
provided by the University of South Florida (Tampa, FL, 
USA). All the samples were collected from Gulf of Mexico 
during the time period between 2010 and 2014. The entire 
image collection consists of more than 750 thousand images. 
They are classified into 81 types of plankton by the researchers 
of marine science at USF. We choose from this dataset a total 
of seven types of plankton for our experiments. The reason for 
our choice is to allow us to compare our classification results 
with those obtained in [5-8]. Those are the same class types 
used in the previous studies with exactly the same distribution 
per class. Table I gives details of the seven types and their 
distributions. 

Analysis of the data revealed two major challenges. The 
first challenge was low quality of images due to their low 
resolution and high noise. The second challenge was due to the 
similarity between different classes and high variations within 
the same class. Image occlusion and deformation posed 
additional challenges within this dataset. Fig. 1 shows a set of 
four randomly selected images for each of the seven plankton 
classes.  

To overcome aforementioned challenges we propose hybrid 
system that employs deep learning algorithms, and which are 
end to end feature learning and classification techniques. Since 
the problem we are dealing with is visual in nature we chose 
convolutional neural networks (CNN). Amongst the group of 
deep learning algorithms CNN is empirically proven to be the 
best solution for this type of classification problems. 

III. CONVOLUTIONAL NEURAL NETWORK 
The first step in visual image recognition requires 

construction of a classification model that can classify images 
to an acceptable level of accuracy. The model consists of 
invariant distinguishing features from an image to achieve 
higher levels of accuracy. The main challenge lies in being able 
to identify such features. One very popular method for 
identifying features is features engineering. This method 
studies the differences between the different classes and the 
similarity within the same class to design specific features. It 
requires intensive analysis to find good quality features and 
cannot be efficiently scaled up for each newly discovered class. 
An alternate method is to allow the model to dynamically learn 
those features and thereby provide a more reliable and scalable 
system. Several approaches have been invented to allow the 
model to learn features. One of them is to simulate animals’ 
vision mechanism. This approach is known as convolutional 
neural networks (CNN) and is proven to be one of the best 
systems this far. 

Convolutional neural networks (CNN) was introduced by 
Hubel et al. [10] during their work on cats’ visual cortex. The 
first software that simulated this process could be traced back 
to Fukushima in his work titled Neocognitron [11]. In 1998, 
LeCun et al [12] applied the algorithm to recognition of 

TABLE I.  PLANKTON TYPES AND THEIR DISTRIBUTION 

Class 

No. 
Class Name # Samples 

Average 

Height 

Average 

Width 

0 Acantharia 131 46 70 

1 Calanoid 172 319 346 

2 Chaetognath 450 273 160 

3 Doliolid 485 45 68 

4 Larvacean 529 43 61 

5 Radiolaria 563 69 110 

6 Trichodesmium 789 97 107 

Total Samples 3,119 138 142 
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Fig. 1. Random samples from seven classes of the SIPPER dataset. 



handwritten characters. In the past, for a number of years, the 
use of CNN had stayed limited due to its high computational 
cost. Recently, the availability of high performance 
computational hardware with GPGPU made CNN more 
feasible. The remarkable success of CNN in ImageNet 
competition [13] furthered its popularity. 

The construction of a model based on convolutional neural 
networks consists of two main parts. The first part is the 
convolutional layers, which work as feature extractor. The 
features are automatically learnt by the system in the 
convolutional layers. Each convolutional layer consists of three 
main components, namely filter layer, non-linearity, and 
feature pooling [12-14]. The purpose of using several layers of 
CNN is to allow the system to learn feature hierarchies. First, 
the low level features such as pixel intensities are learnt at 
initial layers. Next, mid-level features such as edges are learnt 
in middle layers. And finally, the high level features for 
instance objects are learnt at final set of layers. The second part 
is the classifier that is typically a fully connected neural 
network. Figure 2 illustrates hybrid CNN architecture with 
support vector machine and random forest. 

A. CNN Components 
As mentioned above, each convolutional neural network 

layer consists of convolution, nonlinearity, and pooling. 
Convolution is used to convolve the input features [15]. A 
group of filters processes local sections of the input [16]. Those 
small filters are replicated and applied to the entire input. Three 
parameters are used to describe the convolution [14] [17]. They 
are the number of filters, the kernel size, and the stride. Each 
convolutional layer has a specific number of filters and in 

general increasing this number means increasing the learning 
capacity of the system. The kernel size is fixed for each filter in 
a specific convolutional layer. Also, the kernel size has to be 
within the limits of the size of the input. Finally, stride 
specifies the number of pixels in x and y dimension, which is 
skipped by the filter while it is replicated. 

The second part of a CNN is a fully connected neural 
network. Equation (1) and (2) represent the typical activation 
functions of neurons, namely the tanh() and sigmoid() 
functions [12][14]. These two functions are saturating 
nonlinearities and they are proven to be slower to converge in 
training with gradient descent [13]. The use of non-saturating 
functions for activation such as the one shown in (3) is much 
faster than tanh() and sigmoid(). This function is called 
Rectified Linear Unit (ReLU) [18]. ReLU is a simple nonlinear 
function that thresholds the input [19] in such a way that 
guarantees the output will always be positive [15]. We utilized 
ReLU as the only activation function across all layers. 

 

 tanh(x) = (e2x - 1) / (e2x + 1) (1) 
 sig(x) = 1 / (1 + e-x) (2) 
           f(x) = max(0, x) where x = ∑i XiWi (3) 

 
The pooling layer is a dimensionality reduction approach. 

The input to this layer is the non-linearity layer’s output. Its 
output is a reduced version of the input [20] [21]. The goal of 
pooling is to make the system immune to transformations in the 
input. It minimizes the neural network’s sensitivity to the pixel 
locations [22]. The pooling layer gives a compact 
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Fig. 2. Hybrid CNN architecture with SVM and Random Forest. 



representation that is more robust to noise. Two common ways 
to build the pooling layer are average-pooling and max-
pooling. Pooling is applied to the input either in overlapped or 
separate mode [20]. Size of the output depends on the pooling 
dimension and mode. 

Overfitting is one of the challenges of training a neural 
network. Several techniques have been suggested to overcome 
overfitting. More recently, dropout is one of the successful 
techniques developed by Srivastava et al. [23]. This approach 
works by turning off randomly chosen neurons in each layer 
during the learning stage. The turned off neurons are not used 
in the forward and backward computation. The turning off is 
performed during the training of the neural network. During 
validation and testing, all neurons are used to compute the 
output. The use of dropout layer was shown to accomplish high 
gains in several benchmark tests [24]. Another widely used 
approach to minimize overfitting is data augmentation [13]. 
This technique expands the training data set by using different 
transformations with regards to preserving labels [25] [26]. 
Common transformations include rotating the images using 
different angles, image translation by few pixels, and cropping 
the image from random points. 

B. Learning Algorithm 
We train our model using stochastic gradient descent with 

momentum. The learning rate is set to 0.1, the momentum is set 
to 0.9, and batch size is fixed at 128. 

IV. EXPERIMENTAL SETUP AND RESULTS 
The plankton image dataset we chose has seven classes 

with different distributions for each class. Acantharia has the 
minimum number of 131 images. Trichodesmium has the 
maximum number of 789 images. The types and distributions 
are shown in Table I. There are a total of 3,119 images in the 
dataset. We divided the images randomly over training, 
validation, and testing sets. The size of the testing set is 312 
images, which is 10% of the total images. The training and 
validation are 2,524 and 283 images respectively. Each of the 
aforementioned set is chosen proportional to the distribution in 
each plankton class. 

Convolutional neural networks require the input to be of a 
fixed dimension. Images in the plankton dataset are very 
different in terms of their dimension. As shown in Table I, the 
minimum height is 43 pixels while the maximum height is 319 
pixels and the average is 138 pixels. Also, the minimum and 
maximum width is 61 and 346 pixels, respectively. The 
average width is 142 pixels. There are two ways to resize the 
data to a specific dimension so they could be fed to the CNN. 
One way is to resize with regards to the aspect ratio while the 
other option does not consider the aspect ratio. We decided to 
resize each image without regards to the aspect ratio. The new 
dimensions were set to 32 by 32 for height and width for the 
sake of computational efficiency. 

Figure 2 shows general architecture of the hybrid system 
we used for our experiments. A resized image is given as an 
input to the convolutional layer. For the convolutional layers 
we used typical configuration, i.e., each convolutional layer is 
followed by a max pooling layer as a subsampling layer. To 

keep the computational complexity low, we considered a 
maximum of 3 convolutional layers. Those layers learn the 
invariant features of the input. During this stage, we limit the 
number of hyper parameters to the number of filters and 
reception field. Output from the max pooling layer for the third 
convolutional layer is flattened so that it could be used as input 
to the fully connected neural network. The neural network has 
three fully connected layers. We set the number of neurons in 
the three hidden layers to 512, 256, and 128, respectively. A 
dropout percentage of 50% is used after each fully connected 
layer to decrease the issue of overfitting. We limit the 
activation function in both convolutional and fully connected 
layers to ReLU, the primary reason for this choice is to take 
advantage of the high speed of convergence of this activation 
function [13]. The output of the third hidden layer is fed into 
the output layer. The size of the output layer is set to seven, 
which is the number of plankton classes. Softmax activation 
function is used for the output layer to obtain the probability 
values for each class. The loss function is multiclass cross 
entropy. 

The hybrid system we propose combines CNN with other 
classification algorithms. The first phase is to train CNN with 
training data until it converges and gives the best results. After 
that, the features generated from the hidden layers are used as 
an input to train the other classification algorithms. Essentially, 
CNN is employed as a feature extractor for the classification 
algorithm. Since there are three hidden layers, we evaluate the 
classification performance from features taken from each layer, 
which are sent as an input to a separate classifier. We use two 
classifiers: SVM and Random Forest. We obtain results from 
CNN algorithm along with additional six results from using 
SVM with hidden layers 1-3, and Random Forest with hidden 
layers 1-3. 

We conduct two sets of experiments. In the first set we do 
not use augmentation while in the second set we augment the 
data. The purpose is to measure the effects of data 
augmentation on CNN and on the features generated from the 
hidden layers. 

A. Without Augmentation 
 For this set of experiments we have two hyper 

TABLE II. CLASSIFICAITON ACCURACY WITHOUT AUGMENTATION USING 10-
FOLD CROSS VALIDATION 

No. Filter 

& 

Reception 

Field 

3-Layers 

CNN 

(%) 

Random Forest (%) SVM (%) 

HL-1 HL-2 HL-3 HL-1 HL-2 HL-3 

16, 3 91.52 92.85 92.92 92.98 92.56 92.50 92.56 

16, 5 90.51 91.83 91.83 91.86 90.96 91.12 91.25 

32, 3 93.28 94.74 95.32 94.90 94.87 95.03 95.22 

32, 5 93.01 93.91 93.91 93.49 93.72 93.94 93.81 

HL – hidden layer 



parameters to tune, namely the number of filters in the 
convolutional layers and the size of the reception field. We set 
the number of filters to either 16 or 32, while the reception 
field is either three or five. For the results to be statistically 
stable we perform 10-fold cross validation for each setup of 
hyper parameters. We average the resulting accuracies. Table II 
gives the average accuracies. 

As shown in Table II, the accuracy improves with the use 
of higher number of filters. Also, accuracy is highly related to 
the size of the reception field. In both cases of 16 or 32 filters 
the accuracy comes out to be higher when using a smaller 
reception field of 3. The highest accuracy by using CNN is 
93.28%, which is better than the results obtained in [5-7]. The 
second highest accuracy of 95.22% is obtained by using SVM 
with the features from hidden layer 3. This result is better than 
state of the art obtained in [8]. When CNN was combined with 
Random Forest we obtain the highest with the features from 
hidden layer 2. The above results show that the use of CNN 
combined with other classifiers gives better results than the 
results obtained by using CNN alone. 

Fig. 3 gives filter visualization for the convolutional layers. 
All images in the figure are for one particular randomly 
selected image. It shows learnt features by the network. For the 
sake of visual comprehension we limit the figure to show 
results from 16 filters. 

B. With Augmentation 
For this set of experiments, we apply data augmentation to 

the training set. We limit the augmentation transformation to 
rotation. We divide the angles between 0 and 360 by 22.5 and 
the angle is chosen randomly. We double the training set by 
adding the augmented version. Similar to the first set of 
experiments, we had two hyper parameters to tune, i.e., the 
number of filters and the size of the reception field. We 
validate results by performing 10-fold cross validation for each 
setup of hyper parameters. Table III gives the average 
accuracies. 

We observe that the accuracy improves with the use of 
more filters and smaller reception field. The highest accuracy 
we obtain by using CNN is 95.59%, which is better than the 
best accuracy we get with the non-augmented set of 
experiments. The second highest accuracy of 96.44% is 
obtained by using Random Forest with the features from 
hidden layer 2. The highest accuracy of 96.70% comes from 
training SVM with the features from hidden layer 1.  
 

C. Comparative Analysis of Results 
In this research we classified SIPPER plankton images 

using CNN. Also, we tested the performance of CNN by 
combining it with other classifiers, namely SVM and Random 
Forest. The results we got are comparable with previous 
studies that use hybrid CNN. Another problem we tried to 
address is which hidden layer provided the best results to be 
used with SVM or Random Forest. For the Random Forest, 
the results clearly show that the second hidden layer was the 
best feature layer. While for SVM the results need further 
study.  
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Fig. 3. Filter visualization for convolutional layers. 

TABLE IV. COMPARISION OF CLASSIFICATION 
PERFORMANCE WITH OTHER METHODS ON THE SIPPER 

DATASET 

Method Accuracy (%) 
Normalized Multilevel Dominant 

Eigenvector Estimation [5] 
91.70 

Bagging Based [6] 93.04 

Random Subspace [7] 93.27 

Pairwise Nonparametric Discriminant 
Analysis [8] 95.00 

†3-layers CNN 93.28 

†3-layers CNN with SVM 95.22 

†3-layers CNN with Random Forest 95.32 

*3-layers CNN 95.59 

*3-layers CNN with Random Forest 96.44 

*3-layers CNN with SVM 96.70 
†without data augmentation 

*with data augmentation 

TABLE III. CLASSIFICATION  ACCURACY WITH AUGMENTATION USING 10- 
FOLD CROSS VALIDATION 

No. Filter 

& 

Reception 

Field 

3-

Layers 

CNN 

Random Forest (%) SVM (%) 

HL-1 HL-2 HL-3 HL-1 HL-2 HL-3 

16, 3 93.95 94.84 94.68 94.68 94.62 94.65 94.68 

16, 5 92.07 93.04 92.88 92.66 92.82 92.92 93.04 

32, 3 95.59 96.51 96.44 96.38 96.70 96.60 96.57 

32, 5 93.98 94.74 94.71 94.84 94.90 94.94 94.78 

HL – hidden layer 



A comparison between our experimental results with other 
state of the art approaches using plankton dataset is presented 
in Table IV. These results point to the superiority of hybrid 
CNN over other methods. 

 

V. CONCLUSIONS AND FUTURE WORK 
Efficient analysis and classification of huge amounts of 

plankton data requires robust algorithms. In this paper, we 
conducted an in depth comparison of the performance results 
of CNN with support vector machine and random forest. We 
performed experiments over three layers, with and without 
data augmentation. Results of our experiments using the 
SIPPER dataset show improvement in classification accuracy 
in comparison to the previous approaches from other research 
groups. Furthermore, we found that the combination of CNN 
and SVM, with data augmentation gives best result amongst 
all approaches that we considered. One major advantage of the 
various approaches that we evaluated is scalability for 
classification of new classes without the need for features 
engineering. 

In the future we plan to extend our work by including 
several other classifiers in combination with CNN. Another 
area of potential research is the multi-column CNN feature 
fusion methodology. Additionally, we plan to perform 
comparative assessment on multiple large scale color image 
datasets. 
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