
Chapter 10
LBP and Color Descriptors for Image
Classification

Sugata Banerji, Abhishek Verma, and Chengjun Liu

Abstract. Four novel color Local Binary Pattern (LBP) descriptors are presented in
this chapter for scene image and image texture classification with applications to im-
age search and retrieval. Specifically, the first color LBP descriptor, the oRGB-LBP
descriptor, is derived by concatenating the LBP features of the component images
in an opponent color space — the oRGB color space. The other three color LBP
descriptors are obtained by the integration of the oRGB-LBP descriptor with some
additional image features: the Color LBP Fusion (CLF) descriptor is constructed by
integrating the RGB-LBP, the YCbCr-LBP, the HSV-LBP, the rgb-LBP, as well as
the oRGB-LBP descriptor; the Color Grayscale LBP Fusion (CGLF) descriptor is
derived by integrating the grayscale-LBP descriptor and the CLF descriptor; and the
CGLF+PHOG descriptor is obtained by integrating the Pyramid of Histograms of
Orientation Gradients (PHOG) and the CGLF descriptor. Feature extraction applies
the Enhanced Fisher Model (EFM) and image classification is based on the near-
est neighbor classification rule (EFM-NN). The proposed image descriptors and the
feature extraction and classification methods are evaluated using three databases:
the MIT scene database, the KTH-TIPS2-b database, and the KTH-TIPS materials
database. The experimental results show that (i) the proposed oRGB-LBP descriptor
improves image classification performance upon other color LBP descriptors, and
(ii) the CLF, the CGLF, and the CGLF+PHOG descriptors further improve upon the
oRGB-LBP descriptor for scene image and image texture classification.

10.1 Introduction

Color features have been shown to achieve higher success rate than grayscale
features in image search and retrieval due to the fact that color features contain
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significantly larger amount of discriminative information [32, 48, 41, 45]. Color
based image search can be very useful in the identification of object and natural
scene categories [45, 46, 2]. Color features can be derived from various color spaces
and they exhibit different properties. Two necessary properties for color feature de-
tectors are that they need to be stable under changing viewing conditions, such as
changes in illumination, shading, highlights, and they should have a high discrimi-
native power. Global color features such as the color histogram and local invariant
features provide varying degrees of success against image variations such as rota-
tion, viewpoint and lighting changes, clutter and occlusions [7, 43].

In recent years, the recognition and classification of textures using the Local Bi-
nary Pattern (LBP) features has been shown to be promising [36, 37, 50, 9, 10].
Color features when combined with the intensity based texture descriptors are able
to outperform many alternatives. In this chapter, a variable mask size is employed
to generate a multi-scale LBP feature vector that is more robust to changes in scale
and orientation. Furthermore, the multi-scale LBP descriptor is extended to different
color spaces including the recently proposed oRGB color space [6] and a new multi-
scale oRGB-LBP feature representation is proposed. The new oRGB-LBP descrip-
tor is then integrated with other color LBP features to produce the novel multi-scale
Color LBP Fusion (CLF) and the multi-scale Color Grayscale LBP Fusion (CGLF)
descriptors. The CGLF is further combined with the Pyramid of Histograms of Ori-
entation Gradients (PHOG) to obtain the novel CGLF+PHOG descriptor. Feature
extraction applies the Enhanced Fisher Model (EFM) [28, 30] and image classi-
fication is based on the nearest neighbor classification rule (EFM-NN) [13]. The
effectiveness of the proposed descriptors and the EFM-NN classification method
is shown using three datasets: the MIT scene database, the KTH-TIPS2-b and the
KTH-TIPS materials databases.

10.2 Related Work

The use of color as a means to image retrieval [32, 25, 41] and object and scene
search [45] has gained popularity recently. Color features can capture discrimina-
tive information by means of the color invariants, color histogram, color texture,
etc. The early methods for object and scene classification were mainly based on
the global descriptors such as the color and texture histograms [35, 39, 40]. One
representative method is the color indexing system designed by Swain and Ballard,
which uses the color histogram for image inquiry from a large image database [44].
These early methods are sensitive to viewpoint and lighting changes, clutter and oc-
clusions. For this reason, global methods were gradually replaced by the part-based
methods, which became one of the popular techniques in the object recognition
community. Part-based models combine appearance descriptors from local features
along with their spatial relationship. Harris interest point detector, for example, was
used for local feature extraction, but such features are only invariant to translation
[1, 47]. Afterwards, local features with greater invariance were developed, which
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were found to be robust against scale changes [12] and affine deformations [20].
Learning and inference for spatial relations poses a challenging problem in terms of
its complexity and computational cost. Whereas, the orderless bag-of-words meth-
ods [12, 21, 18] are simpler and computationally efficient, though they are not able
to represent the geometric structure of the object or to distinguish between fore-
ground and background features. For these reasons, the bag-of-words methods are
not robust to clutter. One way to overcome this drawback is to design kernels that
can yield high discriminative power in presence of noise and clutter [16].

More recent work on color based image classification appears in [32, 48, 45,
26] that propose several new color spaces and methods for face, object and scene
classification. The HSV color space is used for scene category recognition in [5], and
the evaluation of local color invariant descriptors is performed in [7]. Fusion of color
models, color region detection and color edge detection has been investigated for
representation of color images [43]. Some important contributions of color, texture,
and shape abstraction for image retrieval have been discussed in Datta et al. [11].

Many recent techniques for the description of images have considered local
features, and one representative local image descriptor is the Scale-Invariant Fea-
ture Transform (SIFT) [33]. The SIFT descriptor, which encodes the distribution
of Gaussian gradients within an image region, can efficiently represent the spatial
intensity pattern and is robust to small deformations and localization errors. Cur-
rently, several modifications to the SIFT features have been proposed, such as the
Gradient Location and Orientation Histogram (GLOH) [34], and the Speeded-Up
Robust Features (SURF) [3]. These region-based descriptors have achieved a high
degree of invariance to the overall illumination conditions for planar surfaces. Al-
though designed to retrieve identical object patches, SIFT-like features turn out to
be quite successful in the bag-of-words approaches for general scene and object
classification [5].

Lately, several methods based on LBP features have been proposed for image
representation and classification [50, 10]. In a 3× 3 neighborhood of an image, the
basic LBP operator assigns a binary label 0 or 1 to each surrounding pixel by thresh-
olding at the gray value of the central pixel and replacing its value with a decimal
number converted from the 8-bit binary number. Extraction of the LBP features is
computationally efficient and with the use of multi-scale filters their invariance to
scaling and rotation can be achieved [50]. Fusion of different LBP features has been
shown to achieve a good image retrieval success rate [2, 10, 49]. Local image de-
scriptors have also been shown to perform well for texture based image retrieval
[2, 9, 49].

The Pyramid of Histograms of Orientation Gradients (PHOG) descriptor [4] is
able to represent an image by its local shape and the spatial layout of the shape. The
local shape is captured by the distribution over edge orientations within a region,
and the spatial layout by tiling the image into regions at multiple resolutions. The
distance between two PHOG image descriptors then reflects the extent to which the
images contain similar shapes and correspond in their spatial layout. Figure 10.1
shows how the PHOG descriptor is formed by the concatenation of the gradient
histograms over different resolutions from a scene image.
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Fig. 10.1 The Pyramid Histograms of Orientation Gradients (PHOG) descriptor.

Efficient image retrieval requires a robust feature extraction method that has the
ability to learn meaningful low-dimensional patterns in spaces of very high dimen-
sionality [22, 27, 31]. Low-dimensional representation is also important when one
considers the intrinsic computational aspect. Principal Component Analysis (PCA)
has been widely used to perform dimensionality reduction for image indexing and
retrieval [28, 24]. The EFM feature extraction method has achieved good success
for the task of image based representation and retrieval [30, 29, 23]. Efficient image
retrieval also requires an image classification method. Recently, the Support Vector
Machine (SVM) classifier has been applied for multiple category recognition [49].
However, the SVM classifier suffers from the drawback of being computationally
expensive on large scale image classification tasks. An alternative method is to ap-
ply the EFM feature extraction method and the Nearest Neighbor classification rule
(EFM-NN) for image classification, namely the EFM-NN classifier.

10.3 Color Spaces and the New Color LBP Descriptors

We review in this section five color spaces and then define four new color LBP
descriptors: the new oRGB-LBP descriptor, the Color LBP Fusion (CLF) descrip-
tor, the Color Grayscale LBP Fusion (CGLF) descriptor, and the CGLF+PHOG de-
scriptor. In comparison, the conventional LBP descriptor forms the intensity-based
(grayscale) LBP descriptor.
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A color image contains three component images, and each pixel of a color im-
age is specified in a color space, which serves as a color coordinate system. The
commonly used color space is the RGB color space. Other color spaces are usu-
ally calculated from the RGB color space by means of either linear or nonlinear
transformations. To reduce the sensitivity of the RGB images to luminance, surface
orientation, and other photographic conditions, the rgb color space is defined by
normalizing the R, G, and B components:

r = R/(R+G+B)
g = G/(R+G+B)
b = B/(R+G+B)

(10.1)

Due to the normalization r and g are scale-invariant and thereby invariant to light
intensity changes, shadows and shading [14].

The HSV color space is motivated by the human vision system because humans
describe color by means of hue, saturation, and brightness. Hue and saturation de-
fine chrominance, while intensity or value specifies luminance [15]. The HSV color
space is defined as follows [42]:

Let

⎧⎨
⎩

MAX = max(R,G,B)
MIN = min(R,G,B)
δ = MAX−MIN

V = MAX

S =

{ δ
MAX if MAX �= 0
0 if MAX = 0

H =

⎧⎪⎪⎨
⎪⎪⎩

60(G−B
δ ) if MAX = R

60(B−R
δ + 2) if MAX = G

60(R−G
δ + 4) if MAX = B

not de f ined if MAX = 0

(10.2)

The YCbCr color space is developed for digital video standard and television trans-
missions. In YCbCr, the RGB components are separated into luminance, chromi-
nance blue, and chrominance red:⎡

⎣Y
Cb
Cr

⎤
⎦=

⎡
⎣ 16

128
128

⎤
⎦+

⎡
⎣ 65.4810 128.5530 24.9660
−37.7745 −74.1592 111.9337
111.9581 −93.7509 −18.2072

⎤
⎦
⎡
⎣R

G
B

⎤
⎦ (10.3)

where the R,G,B values are scaled to [0,1].
The oRGB color space [6] has three channels L, C1 and C2. The primaries

of this model are based on the three fundamental psychological opponent axes:
white-black, red-green, and yellow-blue. The color information is contained in
C1 and C2. The values of C1 are within [−1,1] and the values of C2 are within
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Fig. 10.2 Visualizing eight different colors in various color spaces. The upper left figure
is the image with eight colors numbered from 1 to 8. The remaining five figures display the
eight colors in the RGB space, the HSV space, the rgb space, the oRGB space, and the YCbCr
space, respectively.

[−0.8660,0.8660]. The L channel contains the luminance information and its val-
ues are within [0,1]:⎡

⎣L
C1
C2

⎤
⎦=

⎡
⎣ 0.2990 0.5870 0.1140

0.5000 0.5000 −1.0000
0.8660 −0.8660 0.0000

⎤
⎦
⎡
⎣R

G
B

⎤
⎦ (10.4)

Figure 10.2 shows eight different colors in various color spaces. Figure 10.3 shows
the color component images in the five color spaces: RGB, HSV, rgb, oRGB, and
YCbCr.

The LBP descriptor [36, 37] assigns an intensity value to each pixel of an im-
age based on the intensity values of its eight neighboring pixels. Choosing multiple
neighborhoods of different distances from the target pixel and orientations for each
pixel has been shown to achieve partial invariance to scaling and rotation [50]. Using
the multi-scale LBP operator shown in Figure 10.4, three LBP images are generated
from the three neighborhoods. The normalized histograms from the LBP images are
used as feature vectors and they are independent of the image size. The fused his-
tograms of multi-scale LBP images give a feature vector that is partially invariant to
image translation, scaling, and rotation.

The grayscale-LBP descriptor is defined as the LBP descriptor applied to the
grayscale image. A color LBP descriptor in a given color space is derived by indi-
vidually computing the LBP descriptor on each of the three component images in
the specific color space. This produces a 2304 dimensional descriptor that is formed
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Fig. 10.3 Color component images in the five color spaces: RGB, HSV, rgb, oRGB, and
YCbCr. The color image is from the Caltech 256 dataset, whose grayscale image is displayed
as well.

from concatenating the 768 dimensional vectors from the three channels. As a re-
sult, four color LBP descriptors are defined as follows: the RGB-LBP descriptor,
the YCbCr-LBP descriptor, the HSV-LBP descriptor, and the rgb-LBP descriptor.

Four new color LBP descriptors are defined in the oRGB color space and by
the fusion of descriptors in different color spaces, respectively. In particular, the
oRGB-LBP descriptor is constructed by concatenating the LBP descriptors of the
three component images in the oRGB color space. The Color LBP Fusion (CLF)
descriptor is formed by fusing the RGB-LBP, the YCbCr-LBP, the HSV-LBP, the
oRGB-LBP, and the rgb-LBP descriptors. The Color Grayscale LBP Fusion (CGLF)
descriptor is obtained by fusing the CLF descriptor and the grayscale-LBP descrip-
tor. And finally the CGLF+PHOG descriptor is formed by combining the CGLF
with the PHOG.

10.4 The EFM-NN Classifier

Image classification using the new color LBP descriptors introduced in the preced-
ing section is implemented using the Enhanced Fisher Model (EFM) feature ex-
traction method [30, 28] and the Nearest Neighbor classification rule (EFM-NN),
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Fig. 10.4 The different neighborhoods of the multi-scale LBP operators.

i.e., the EFM-NN classifier. Let X ∈ R
N be a random vector whose covariance

matrix is ΣX :
ΣX = E {[X −E (X )][X −E (X )]t} (10.5)

where E (·) is the expectation operator and t denotes the transpose operation. The
eigenvectors of the covariance matrix ΣX can be derived by means of PCA:

ΣX = ΦΛΦt (10.6)

where Φ = [φ1φ2 . . .φN ] is an orthogonal eigenvector matrix and Λ = diag{λ1,λ2,
. . . ,λN} a diagonal eigenvalue matrix with the diagonal elements in decreasing or-
der. An important application of PCA is dimensionality reduction:

Y = PtX (10.7)

where P = [φ1φ2 . . .φK ], and K < N. Y ∈ R
K thus is composed of the most signif-

icant principal components. PCA, which is derived based on an optimal represen-
tation criterion, usually does not lead to good image classification performance. To
improve upon PCA, the Fisher Linear Discriminant (FLD) analysis [13] is intro-
duced to extract the most discriminating features.

The FLD method optimizes a criterion defined on the within-class and between-
class scatter matrices, Sw and Sb [13]:

Sw =
L

∑
i=1

P(ωi)E {(Y −Mi)(Y −Mi)
t |ωi} (10.8)

Sb =
L

∑
i=1

P(ωi)(Mi−M)(Mi−M)t (10.9)

where P(ωi) is a priori probability, ωi represent the classes, and Mi and M are the
means of the classes and the grand mean, respectively. The criterion the FLD method
optimizes is J1 = tr(S−1

w Sb), which is maximized when Ψ contains the eigenvectors
of the matrix S−1

w Sb [13]:

S−1
w SbΨ =ΨΔ (10.10)
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where Ψ ,Δ are the eigenvector and eigenvalue matrices of S−1
w Sb, respectively. The

FLD discriminating features are defined by projecting the pattern vector Y onto the
eigenvectors in Ψ :

Z =Ψ tY (10.11)

Z thus is more effective than the feature vector Y derived by PCA for image
classification.

The FLD method, however, often leads to overfitting when implemented in an
inappropriate PCA space. To improve the generalization performance of the FLD
method, a proper balance between two criteria should be maintained: the energy
criterion for adequate image representation and the magnitude criterion for elimi-
nating the small-valued trailing eigenvalues of the within-class scatter matrix [28].
A new method, the Enhanced Fisher Model (EFM), is capable of improving the
generalization performance of the FLD method [28]. Specifically, the EFM method
improves the generalization capability of the FLD method by decomposing the FLD
procedure into a simultaneous diagonalization of the within-class and between-class
scatter matrices [28]. The simultaneous diagonalization is stepwise equivalent to
two operations [13]: whitening the within-class scatter matrix and diagonalizing
the between-class scatter matrix using the transformed data. The stepwise operation
shows that during whitening the eigenvalues of the within-class scatter matrix ap-
pear in the denominator. Since the small (trailing) eigenvalues tend to capture noise
[28], they cause the whitening step to fit for misleading variations, which leads
to poor generalization performance. To achieve enhanced performance, the EFM
method preserves a proper balance between the need that the selected eigenvalues
account for most of the spectral energy of the raw data (for representational ade-
quacy), and the requirement that the eigenvalues of the within-class scatter matrix
are not too small (for better generalization performance) [28].

After feature extraction, image classification is implemented using the nearest
neighbor classification rule. Figure 10.5 shows the multiple features fusion method-
ology that applies multiple color spaces (oRGB, YCbCr, RGB, HSV, rgb), multi-
scale LBP, various color LBP descriptors (oRGB-LBP, CLF, CGLF, CGLF+PHOG),
PCA for dimensionality reduction, EFM for feature extraction, and the EFM-NN
classifier for image classification.

10.5 Experiments

10.5.1 Datasets and Experimental Methodology

The following three publicly accessible datasets are used to evaluate the proposed
color LBP descriptors and the EFM-NN classification method: the MIT Scene
dataset [38], the KTH-TIPS (Textures under varying Illumination, Pose and Scale)
[17] and KTH-TIPS2-b datasets [8]. The MIT scene dataset [38] has 2,688 im-
ages classified as eight categories: 360 coast, 328 forest, 374 mountain, 410 open
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Fig. 10.5 Multiple feature fusion methodology that applies multiple color spaces (oRGB,
YCbCr, RGB, HSV, rgb), multi-scale LBP, various color LBP descriptors (oRGB-LBP, CLF,
CGLF, CGLF+PHOG), PCA for dimensionality reduction, EFM for feature extraction, and
the EFM-NN classifier for image classification.

country, 260 highway, 308 inside of cities, 356 tall buildings, and 292 streets. All
of the images are in color, in JPEG format, and the average size of each image is
256x256 pixels. There is a large variation in light, pose and angles, along with a high
intra-class variation. The sources of the images vary (from commercial databases,
websites, and digital cameras) [38]. See Figure 10.6(a) for some sample images
from this dataset. The KTH-TIPS dataset [17, 8, 19] consists of 10 classes of tex-
tures with 81 images per class. All the images are in color, PNG format and the
maximum image size is 200x200 pixels. All ten textures have been photographed at
nine scales and nine illumination conditions for each scale. Some of the classes have
a very similar visual appearance, like cotton and linen, and brown bread and sponge
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Fig. 10.6 Example images from (a) the MIT scene dataset and (b) the KTH-TIPS2-b mate-
rials dataset.

which makes this dataset moderately challenging. The KTH-TIPS2-b dataset [8] is
a more challenging extension of the KTH-TIPS dataset with 11 classes of materials
and 4 samples for each material. Each of these samples has 108 images with 432
images per class and a total of 4752 images. Some of the images in the classes like
wool and cotton are from differently colored samples leading to very high intra-class
variation between samples, while some samples from different classes like cork and
cracker have the same color and general appearance lowering the inter-class varia-
tion. See Figure 10.6(b) for some sample images from this dataset.

The classification task is to assign each test image to one of a number of cat-
egories. The performance is measured using a confusion matrix, and the overall
performance rates are measured by the average value of the diagonal entries of the
confusion matrix. For the KTH-TIPS2-b dataset five random sets of 200 training im-
ages per class and 100 testing images per class are used. For the KTH-TIPS dataset
five random sets of 40 training images per class and 41 test images per class are
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Fig. 10.7 The mean average classification performance of the ten descriptors using the EFM-
NN classifier on the MIT scene dataset: the oRGB-LBP, the YCbCr-LBP, the RGB-LBP,
the HSV-LBP, the rgb-LBP, the grayscale-LBP, the PHOG, the CLF, the CGLF, and the
CGLF+PHOG descriptors.

selected (same numbers as used in [10, 49, 19]). For the MIT scene dataset five im-
age sets are randomly selected. Each set consists of 2000 images for training (250
images per class) and the rest 688 images for testing. Within each set there is no
overlap in the images selected for training and testing. The classification scheme
on the datasets compares the overall and category wise performance of ten differ-
ent descriptors: the oRGB-LBP, the YCbCr-LBP, the RGB-LBP, the HSV-LBP, the
rgb-LBP, the grayscale-LBP, the CLF, the CGLF, the PHOG and the CGLF+PHOG
descriptors (the final two evaluated on the scene dataset). Classification is imple-
mented using the EFM-nearest neighbor (EFM-NN) classifier.

10.5.2 Evaluation of Novel Color Descriptors and EFM-Nearest
Neighbor Classifier on the MIT Scene Dataset

The first set of experiments assesses the overall classification performance of the ten
descriptors. Note that for each category five-fold cross validation is implemented for
each descriptor using the EFM-nearest neighbor classifier to derive the average clas-
sification performance. As a result, each descriptor yields 8 average classification
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Table 10.1 Category Wise Descriptor Performance (%) Split-out with the EFM-NN Classi-
fier on the MIT Scene Dataset. Note That the Categories are Sorted on the CGLF+PHOG
Results

Category CGLF+ CGLF CLF oRGB YCbCr RGB HSV rgb Gray PHOG
PHOG LBP LBP LBP LBP LBP LBP

Highway 97 90 93 90 87 90 90 90 93 90
Forest 96 97 97 97 97 95 94 94 94 94
Coast 91 88 87 85 88 83 81 82 86 84
Street 90 90 86 83 83 82 84 82 81 86
Mountain 90 85 84 80 81 80 80 76 77 75
Tall Building 90 86 86 86 83 84 82 80 79 70
Inside City 86 87 87 86 83 81 80 79 83 79
Open Country 76 71 71 68 66 65 66 68 61 56
Mean 89.5 86.6 86.4 84.2 83.5 82.6 82.2 81.2 81.7 79.1

rates corresponding to the 8 image categories. The mean value of these 8 average
classification rates is defined as the mean average classification performance for
the descriptor. Figure 10.7 shows the mean average classification performance of
various descriptors. The best classification rate is 89.5% from the CGLF+PHOG,
which is good performance for a dataset of this size and complexity. The oRGB-
LBP achieves the classification rate of 84.3%. It outperforms the other color LBP
descriptors. It is noted that fusion of the color LBP descriptors (CLF) improves upon
the grayscale-LBP by a significant 4.7% margin. The grayscale-LBP descriptor im-
proves the fusion (CGLF) result slightly upon the CLF descriptor.

The second set of experiments assesses the ten descriptors using the EFM-nearest
neighbor classifier on individual image categories. From Table 10.1 it can be seen
that the top six categories achieve a success rate of over 90%. The Forest category
achieves a success rate of over 90% across all ten descriptors. Individual color LBP
features improve upon the grayscale-LBP on most of the categories. The CLF results
on each of the eight categories show significant improvement upon the grayscale-
LBP and the CGLF slightly improves upon the CLF. Integration of PHOG with the
CGLF to obtain the CGLF+PHOG highly benefits most categories and in particular
there is a significant increase in the classification performance upon the CGLF re-
sults for the Highway, Mountain and Open Country categories where the increment
is in the range of 5% to 7%.

The final set of experiments further assesses the performance of the descriptors
based on the correctly recognized images. See Figure 10.8(a) for some example
images that are not recognized by the EFM-nearest neighbor classifier using the
grayscale-LBP descriptor but are correctly recognized using the oRGB-LBP de-
scriptor. Figure 10.8(b) shows images unrecognized using the oRGB-LBP descriptor
but recognized using the CLF descriptor, Figure 10.8(c) shows images unrecognized
using the CLF but recognized using the CGLF descriptor and Figure 10.8(d) shows
images unrecognized using the CGLF but recognized using the CGLF+PHOG de-
scriptor. Table 10.2 shows that for the 800 training images (100 images per class)
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Fig. 10.8 Image recognition using the EFM-NN classifier on the MIT scene dataset: (a) ex-
ample images unrecognized using the grayscale-LBP descriptor but recognized using the
oRGB-LBP descriptor; (b) example images unrecognized using the oRGB-LBP descriptor
but recognized using the CLF descriptor; (c) images unrecognized using the CLF but recog-
nized using the CGLF descriptor; (d) images unrecognized using the CGLF but recognized
using the CGLF+PHOG descriptor.

Table 10.2 Comparison of the Classification Performance (%) with Other Method on the
MIT Scene Dataset

#train images #test images Our Method Method [38]
CLF 86.4

2000 688 CGLF 86.6
CGLF+PHOG 89.5
CLF 79.3

800 1888 CGLF 80.0
CGLF+PHOG 84.3 83.7
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Fig. 10.9 The mean average classification performance of the eight descriptors using the
EFM-NN classifier on the KTH-TIPS2-b dataset: the oRGB-LBP, the YCbCr-LBP, the RGB-
LBP, the HSV-LBP, the rgb-LBP, the grayscale-LBP, the CLF, and the CGLF descriptors.

and 1688 testing images the CGLF+PHOG descriptor achieves 84.3% success rate,
which improves upon the result reported in [38] by 0.6%.

10.5.3 Evaluation of the Color LBP Descriptors and
EFM-Nearest Neighbor Classifier on the KTH-TIPS2-b
and the KTH-TIPS Datasets

We now assess the new color LBP descriptors on the KTH-TIPS2-b dataset and
compare our results with those from other research groups on the same dataset.
The first set of experiments assesses the overall classification performance of the
eight descriptors on the KTH-TIPS2-b dataset. Note that for each category five-fold
cross validation is implemented for each descriptor using the EFM-NN classifier to
derive the average classification performance. Figure 10.9 shows the mean average
classification performance of various descriptors. The best recognition rate that is
obtained is 99.6% from the CLF and CGLF descriptors. The oRGB-LBP achieves
the classification rate of 98.7%. It outperforms the other color LBP descriptors. It is
noted that fusion of the color LBP descriptors (CLF) improves upon the grayscale-
LBP by a significant 3.7% margin. The grayscale-LBP descriptor does not have any
effect on the fusion (CGLF) result for this dataset.
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Table 10.3 Category Wise Descriptor Performance (%) Split-out with the EFM-NN Classi-
fier on the KTH-TIPS2-b Dataset. Note That the Categories are Sorted on the CGLF Results

Category CGLF CLF oRGB HSV rgb Gray
LBP LBP LBP LBP

Aluminum Foil 100 100 100 100 100 100
Brown Bread 100 100 100 99 99 94
Corduroy 100 100 100 100 100 93
Cork 100 100 100 98 98 98
Cracker 100 100 96 93 93 90
Lettuce Leaf 100 100 100 100 100 97
Linen 100 100 100 99 99 99
Wood 100 100 100 100 100 100
Wool 100 100 99 100 100 96
White Bread 99 99 99 99 99 97
Cotton 98 97 97 96 96 91
Mean 99.6 99.6 98.7 98.3 98.3 95.9

The second set of experiments assesses the five best descriptors and the grayscale-
LBP using the EFM-NN classifier on individual image categories. From Table 10.3
it can be seen that nine out of eleven categories achieve 100% success rate and all
of the categories achieve a success rate of 98% or more with the CGLF descrip-
tor. Aluminum Foil, Corduroy, Lettuce Leaf and Wood achieve 100% success rate
across the best five descriptors. Individual color LBP features improve upon the
grayscale-LBP on most of the categories. The CLF almost always improves upon
the grayscale-LBP, which indicates that various color descriptors are not redundant.
The CGLF very slightly improves upon the CLF. This, however, does not necessar-
ily indicate that the grayscale information is redundant as almost all the categories
show a success rate of 100% with these two descriptors. It only indicates that CLF
alone contains enough information to correctly classify the texture images for the
KTH-TIPS2-b dataset.

The final set of experiments further assesses the performance of the descriptors
based on the correctly recognized images. See Figure 10.10(a) for some example
images that are not recognized by the EFM-NN classifier using the grayscale-LBP
descriptor but are correctly recognized using the oRGB-LBP descriptor. This reaf-
firms the importance of color and the distinctiveness of the oRGB-LBP descrip-
tor for image category recognition. Figure 10.10(b) shows images unrecognized
using the RGB-LBP descriptor but recognized using the oRGB-LBP descriptor,
Figure 10.10(c) shows images unrecognized using the oRGB-LBP but recognized
using the CLF descriptor, and Figure 10.10(d) shows images unrecognized using
the grayscale-LBP but recognized when combined with the CLF, i.e., the CGLF
descriptor.

The same set of experiments was run on the KTH-TIPS dataset with the afore-
mentioned training and test image sets. The best result on this dataset while using a
single color space was once again from the oRGB-LBP descriptor, which achieves
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Fig. 10.10 Image recognition using the EFM-NN classifier on the KTH-TIPS2-b dataset: (a)
example images unrecognized using the grayscale-LBP descriptor but recognized using the
oRGB-LBP descriptor; (b) example images unrecognized using the RGB-LBP descriptor but
recognized using the oRGB-LBP descriptor; (c) images unrecognized using the oRGB-LBP
but recognized using the CLF descriptor; (d) images unrecognized using the grayscale-LBP
but recognized using the CGLF descriptor.

Table 10.4 Comparison of the Classification Performance (%) with Other Methods on the
KTH-TIPS Dataset

Methods Performance
Our Method:
CGLF 99.6
CLF 99.6
oRGB+LBP 99.1
Crosier and Griffin[10] 98.5
Kondra and Torre[19] 97.7
Zhang et. al.[49] 95.5
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a 99.1% classification rate with an improvement of 3% over the grayscale-LBP.
The CLF and the CGLF descriptors are tied at 99.6%. Table 10.4 shows a compar-
ison of our results with those obtained from other methods in [10, 49, 19]. In the
oRGB color space, this technique outperforms the state of the art on this dataset even
without combining color descriptors. Combined LBP descriptors (CLF and CGLF)
improve upon the result in [10], which was the best result on this dataset.

10.6 Conclusion

Four new color descriptors have been proposed in this chapter: the oRGB-LBP de-
scriptor, the Color LBP Fusion (CLF), the Color Grayscale LBP Fusion (CGLF),
and the CGLF+PHOG descriptors for scene image and image texture classifica-
tion with applications to image search and retrieval. Experimental results using
three datasets show that the oRGB-LBP descriptor improves image classification
performance upon other color LBP descriptors; and the CLF, the CGLF, and the
CGLF+PHOG descriptors perform better than other color LBP descriptors. The fu-
sion of multiple Color LBP descriptors (CLF) and Color Grayscale LBP descriptor
(CGLF) show improvement in image classification performance, which indicates
that the various color LBP descriptors are not redundant for image classification
tasks.
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