
 

 

Abstract: This paper first presents a new oRGB-SIFT 

descriptor, and then integrates it with other color SIFT features 

to produce the novel Color SIFT Fusion (CSF), the Color 

Grayscale SIFT Fusion (CGSF), and the CGSF+PHOG 

descriptors for image classification with special applications to 

biometrics. Classification is implemented using the Enhanced 

Fisher Model (EFM) classification technique. The effectiveness 

of the proposed descriptors and classification method are 

evaluated using 257 image categories from two large scale, 

grand challenge datasets: the Caltech 256 database and the 

UPOL Iris database. The experimental results show that (i) the 

proposed oRGB-SIFT descriptor improves recognition 

performance upon other color SIFT descriptors; and (ii) the 

CSF, the CGSF, and the CGSF+PHOG descriptors perform 

better than the other color SIFT descriptors. 
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1. INTRODUCTION  

Color features contain significant discriminative 

information for biometric image classification and 

retrieval [1]-[3]. Another set of application where color 

based image classification can be very useful is in the 

identification of object and natural scene categories. The 

choice of a color space is important for many computer 

vision algorithms. Different color spaces display different 

color properties. Two important criteria for color feature 

detectors are that they should be stable under varying 

viewing conditions, such as changes in illumination, 

shading, highlights, and they should have high 

discriminative power. Color features such as the color 

histogram, color texture and local invariant features 

provide varying degrees of success against image 

variations such as viewpoint and lighting changes, clutter 

and occlusions [4]-[6]. 

Recently, there has been much emphasis on the 

detection and recognition of locally affine invariant 

regions [7]-[9]. Successful methods are based on 

representing a salient region of an image by way of an 

elliptical affine region, which describes local orientation 

and scale. After normalizing the local region to its 

canonical form, image descriptors are able to capture the 

invariant region appearance. Interest point detection 

methods and region descriptors can robustly detect 

regions, which are invariant to translation, rotation and 

scaling [7]-[9]. Affine region detectors when combined 

with the intensity Scale-Invariant Feature Transform 

(SIFT) descriptor [8] has been shown to outperform many  
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alternatives [7]. 

In this paper, we extend the SIFT descriptor to 

different color spaces, including the recently proposed 

oRGB color space [10] and propose a new oRGB-SIFT 

feature representation, and then integrate it with other 

color SIFT features to produce the Color SIFT Fusion 

(CSF), the Color Grayscale SIFT Fusion (CGSF), and the 

CGSF combined with the Pyramid of Histograms of 

Orientation Gradients (PHOG) to obtain the 

CGSF+PHOG descriptors for image category 

classification with special applications to biometrics. 

Classification is implemented using the Enhanced Fisher 

Model (EFM) method [11], [12]. The effectiveness of the 

proposed descriptors and classification method will be 

evaluated using 257 image categories from two large 

scale, grand challenge datasets: the Caltech 256 database 

and the UPOL Iris database. 

 

2. RELATED WORK 

This section briefly surveys the recent work on 

biometric image retrieval and object and scene 

recognition. In recent years, use of color as a means to 

biometric image recognition [1], [3], [13] and object and 

scene classification has gained popularity. Color features 

can capture discriminative information by means of the 

color invariants, color histogram, color texture, etc. One 

of the earlier works is the color indexing system designed 

by Swain and Ballard, which uses the color histogram for 

image inquiry from a large image database [14]. More 

recent work on color based image classification appears 

in [1], [2], [15] that propose several new color spaces and 

methods for face classification and in [16] the HSV color 

space is used for the scene category recognition. 

Evaluation of local color invariant descriptors is 

performed in [4]. Fusion of color models, color region 

detection and color edge detection have been investigated 

for representation of color images [6]. Key contributions 

in color, texture, and shape abstraction have been 

discussed in Datta et al. [5]. 

Efficient retrieval requires a robust feature extraction 

method that has the ability to learn meaningful low-

dimensional patterns in spaces of very high 

dimensionality [9], [17], [18]. Low-dimensional 

representations are also important when one considers the 

intrinsic computational aspect. PCA has been widely used 

to perform dimensionality reduction for image indexing 

and retrieval [11], [19]. Recently, Support Vector 

Machine (SVM) classifier for multiple category 

recognition has gained popularity [16], [20] though it 

suffers from the drawback of being computationally too 
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expensive on large scale image classification tasks. The 

EFM classifier has achieved good success for the task of 

image based recognition [12], [21], [22]. 

 

3. NEW COLOR DESCRIPTORS 
We first review in this section five color spaces in 

which our new color descriptors are defined, and then 

discuss five conventional SIFT descriptors: the RGB-

SIFT, the rgb-SIFT, the HSV-SIFT, the YCbCr-SIFT, and 

the grayscale-SIFT descriptors. We finally present four 

new color SIFT descriptors: the oRGB-SIFT, the Color 

SIFT Fusion (CSF), the Color Grayscale SIFT Fusion 

(CGSF), and the CGSF combined with the Pyramid of 

Histograms of Orientation Gradients (CGSF+PHOG) 

descriptors for image classification with applications to 

biometrics. 

A color image contains three component images, and 

each pixel of a color image is specified in a color space, 

which serves as a color coordinate system. The commonly 

used color space is the RGB color space. Other color 

spaces are usually calculated from the RGB color space 

by means of either linear or nonlinear transformations. 

To reduce the sensitivity of the RGB images to 

luminance, surface orientation, and other photographic 

conditions, the rgb color space is defined by normalizing 

the R, G, and B components. The HSV color space is 

motivated by human vision system because human 

describes color by means of hue, saturation, and 

brightness. Hue and saturation define chrominance, while 

intensity or value specifies luminance [23]. The YCbCr 

color space is developed for digital video standard and 

television transmissions. In YCbCr, the RGB components 

are separated into luminance, chrominance blue, and 

chrominance red. 

The oRGB color space [10] has three channels L, C1 

and C2. The primaries of this model are based on the three 

fundamental psychological opponent axes: white-black, 

red-green, and yellow-blue. The color information is 

contained in C1 and C2. The value of C1 lies within [-1, 1] 

and the value of C2 lies within [-0.8660, 0.8660]. The L 

channel contains the luminance information and its values 

range between [0, 1]. 

 














































B
G
R

C
C
L

0000.08660.08660.0
0000.15000.05000.0

1140.05870.02990.0

2

1        (1) 

 

The SIFT descriptor proposed by Lowe transforms an 

image into a large collection of feature vectors, each of 

which is invariant to image translation, scaling, and 

rotation, partially invariant to the illumination changes, 

and robust to local geometric distortion [8]. The key 

locations used to specify the SIFT descriptor are defined 

as maxima and minima of the result of the difference of 

Gaussian function applied in the scale-space to a series of 

smoothed and resampled images. SIFT descriptors robust 

to local affine distortions are then obtained by considering 

pixels around a radius of the key location. 

The grayscale-SIFT descriptor is defined as the SIFT 

descriptor applied to the grayscale image. A color SIFT 

descriptor in a given color space is derived by 

individually computing the SIFT descriptor on each of the 

three component images in the specific color space. This 

produces a 384 dimensional descriptor that is formed 

from concatenating the 128 dimensional vectors from the 

three channels. As a result, the four color SIFT 

descriptors are defined: the RGB-SIFT, the YCbCr-SIFT, 

the HSV-SIFT, and the rgb-SIFT descriptors. 

The Pyramid of Histograms of Orientation Gradients 

(PHOG) descriptor [24] is able to represent an image by 

its local shape and the spatial layout of the shape. The 

local shape is captured by the distribution over edge 

orientations within a region, and the spatial layout by 

tiling the image into regions at multiple resolutions. The 

distance between two PHOG image descriptors then 

reflects the extent to which the images contain similar 

shapes and correspond in their spatial layout. 

The four new color SIFT descriptors are defined in the 

oRGB color space and the fusion in different color 

spaces. In particular, the oRGB-SIFT descriptor is 

constructed by concatenating the SIFT descriptors of the 

three component images in the oRGB color space. The 

Color SIFT Fusion (CSF) descriptor is formed by fusing 

the RGB-SIFT, the YCbCr-SIFT, the HSV-SIFT, the 

oRGB-SIFT, and the rgb-SIFT descriptors. The Color 

Grayscale SIFT Fusion (CGSF) descriptor is obtained by 

fusing further the CSF descriptor and the grayscale-SIFT 

descriptor. The CGSF is combined with the PHOG to 

obtain the CGSF+PHOG. 

 

4. THE EFM CLASSIFICATION 

Image classification using the new descriptors 

introduced in the preceding section is implemented using 

 
 

Fig.1 – Multiple feature fusion methodology using the EFM. 

 

 

 
 

Fig.2 – Example images from the following categories: (a) Faces 

category in the Caltech 256 dataset; (b) People category in the 

Caltech 256 dataset; (c) Iris category in the UPOL dataset, and (d) 

several more example images from the Caltech 256 dataset. 



 

the Enhanced Fisher Model (EFM) classification method 

[11], [12]. Let X  R
N
 be a random vector whose 

covariance matrix is ΣX: 
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where ε(.) is the expectation operator and t denotes the 

transpose operation. The eigenvectors of the covariance 

matrix ΣX can be derived by PCA: 
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where ]...[ 321 N  is an orthogonal eigenvector 

matrix and },...,,{ N21 diag  a diagonal eigenvalue 

matrix with diagonal elements in decreasing order. An 

important application of PCA is dimensionality reduction: 
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where ]...[ 321 KP  , and K < N. X  R
K
 thus is 

composed of the most significant principal components. 

PCA, which is derived based on an optimal representation 

criterion, usually does not lead to good image 

classification performance. To improve upon PCA, the 

Fisher Linear Discriminant (FLD) analysis [25] is 

introduced to extract the most discriminating features. 

The FLD method optimizes a criterion defined on the 

within-class and between-class scatter matrices, Sw and Sb 

[25]: 
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where P(ωi) is a priori probability, ωi represent the 

classes, and Mi and M are the means of the classes and the 

grand mean, respectively.  The criterion the FLD method 

optimizes is J1 = tr(Sw
-1

 Sb), which is maximized when Ψ 

contains the eigenvectors of the matrix Sw
-1

 Sb [25]: 
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where Ψ, Δ are the eigenvector and eigenvalue matrices 

of Sw
-1

 Sb, respectively. The FLD discriminating features 

are defined by projecting the pattern vector Y onto the 

eigenvectors of Ψ: 
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Z thus is more effective than the feature vector Y derived 

by PCA for image classification. 

The FLD method, however, often leads to overfitting 

when implemented in an inappropriate PCA space. To 

improve the generalization performance of the FLD 

method, a proper balance between two criteria should be 

maintained: the energy criterion for adequate image 

representation and the magnitude criterion for eliminating 

the small-valued trailing eigenvalues of the within-class 

scatter matrix [11]. A new method, the Enhanced Fisher 

Model (EFM), is capable of improving the generalization 

performance of the FLD method [11]. Specifically, the 

EFM method improves the generalization capability of 

the FLD method by decomposing the FLD procedure into 

a simultaneous diagonalization of the within-class and 

between-class scatter matrices [11]. The simultaneous 

diagonalization is stepwise equivalent to two operations 

as pointed out by Fukunaga [25]: whitening the within-

class scatter matrix and applying PCA to the between-

class scatter matrix using the transformed data. The 

stepwise operation shows that during whitening the 

eigenvalues of the within-class scatter matrix appear in 

the denominator. Since the small (trailing) eigenvalues 

tend to capture noise [11], they cause the whitening step 

to fit for misleading variations, which leads to poor 

generalization performance. To achieve enhanced 

performance, the EFM method preserves a proper balance 

between the need that the selected eigenvalues account 

for most of the spectral energy of the raw data (for 

representational adequacy), and the requirement that the 

eigenvalues of the within-class scatter matrix (in the 

reduced CA space) are not too small (for better 

generalization performance) [11].  

Image classification is implemented using the EFM 

classification technique, and Fig. 1 shows the fusion 

methodology of multiple descriptors. 

 
 

Fig.3 – The mean average classification performance of the ten 

descriptors. 

 

 

 
 

Fig.4 – Classification results using the EFM method across the ten 

descriptors with varying number of features on the Biometric dataset. 



 

5. EXPERIMENTS 

We apply the following two publicly accessible 

datasets to evaluate our proposed descriptors and 

classification method: the Caltech 256 object categories 

[26] and the UPOL iris dataset [27]. The Caltech 256 

dataset [26] holds 30,607 images divided into 256 

categories and a clutter class. The images have high intra-

class variability and high object location variability. Each 

category contains at least 80 images, a maximum of 827 

images and the mean number of images per category is 

119. The images have been collected from Google and 

PicSearch, they represent a diverse set of lighting 

conditions, poses, back-grounds, and image sizes. The 

various categories represent a wide variety of natural and 

artificial objects in various settings. The images are in 

color, in JPEG format with only a small number of 

grayscale images. The average size of each image is 351 x 

351 pixels. See Fig. 2(a) and (b) for some sample images 

from the Faces and People categories and Fig. 2(d) for 

some images from the object categories. The UPOL iris 

dataset [27] contains 128 unique eyes (or classes) 

belonging to 64 subjects with each class containing 3 

sample images. The images of the left and right eyes of a 

person belong to different classes. The irises were 

scanned by a TOPCON TRC50IA optical device 

connected with a SONY DXC-950P 3CCD camera. The 

iris images are in 24-bit PNG format (color) and the size 

of each image is 576 x 768 pixels. See Fig. 2(c) for some 

sample images from this dataset. 

In order for us to make a thorough comparative 

assessment of our descriptors and methods; from the 

above two databases we generate the Biometric Dataset 

with 257 categories that includes the Iris category from 

the UPOL dataset and all categories from the Caltech 256 

dataset. The classification task is to assign each test image 

to one of a number of categories. The performance is 

measured using a confusion matrix, and the overall 

performance rates are measured by the average value of 

the diagonal entries of the confusion matrix. The dataset 

is split randomly into two separate sets of images for 

training and testing. We randomly select from each class 

60 images for training and 20 images for testing. There is 

no overlap in the images selected for training and testing. 

The classification scheme on the dataset compares the 

overall and category wise performance of ten different 

descriptors: the oRGB-SIFT, the YCbCr-SIFT, the RGB-

SIFT, the HSV-SIFT, the rgb-SIFT, the grayscale-SIFT, 

the PHOG, the CSF, the CGSF, and the CGSF+PHOG 

descriptors. Classification is implemented using the 

Enhanced Fisher Model (EFM) method. 

The first set of experiments assesses the overall 

classification performance of the ten descriptors on the 

Biometric Dataset with 257 categories. Note that for each 

category we implement five-fold cross validation for each 

descriptor using the EFM classification technique to 

derive the average classification performance. As a result, 

Table 1. Category Wise Descriptor Performance (%) Split-out with the EFM Classifier on the 

Biometric Dataset. Note that the categories are sorted on the CGSF+PHOG results. 

Category 
CGSF+ 

PHOG 
CGSF CSF 

oRGB 

SIFT 

YCbCr 

SIFT 

RGB 

SIFT 

HSV 

SIFT 

rgb 

SIFT 

Gray 

SIFT 
PHOG 

iris 

faces 

people 

100 

97 

17 

100 

97 

14 

100 

97 

13 

100 

92 

10 

100 

60 

8 

100 

92 

10 

100 

97 

9 

98 

85 

7 

97 

73 

7 

95 

95 

11 

car side 

leopards 

motorbikes 

sunflower 

trilobite 

lawn mower 

american flag 

zebra 

chess board 

tower pisa 

swiss army knife 

airplanes 

saturn 

cereal box 

french horn 

ketch 

pci card 

hibiscus 

100 

100 

98 

97 

95 

93 

90 

90 

88 

88 

87 

85 

85 

83 

83 

83 

83 

82 

100 

98 

92 

97 

80 

80 

88 

87 

92 

92 

82 

70 

83 

88 

85 

62 

80 

85 

100 

100 

90 

93 

67 

77 

85 

67 

88 

85 

77 

63 

72 

72 

78 

57 

78 

80 

93 

70 

82 

88 

62 

78 

60 

75 

90 

82 

60 

60 

83 

73 

72 

28 

68 

65 

67 

70 

77 

68 

62 

77 

60 

85 

80 

87 

60 

62 

80 

52 

67 

30 

50 

72 

100 

93 

70 

95 

60 

70 

70 

27 

78 

77 

75 

38 

67 

52 

68 

32 

58 

72 

100 

97 

70 

92 

58 

65 

65 

27 

78 

78 

75 

28 

70 

57 

67 

32 

57 

73 

100 

98 

50 

73 

60 

38 

77 

22 

73 

57 

70 

28 

32 

47 

73 

28 

52 

67 

100 

98 

73 

90 

50 

78 

40 

30 

83 

77 

68 

48 

52 

47 

70 

37 

58 

62 

95 

97 

97 

53 

83 

77 

5 

38 

13 

77 

8 

82 

53 

17 

32 

65 

10 

48 

 

 

 
Fig.5 – Image recognition using the EFM classifier: (a) examples of 

the correctly classified images from the three biometric image 

categories; (b) images unrecognized using the grayscale-SIFT 

descriptor but recognized using the oRGB-SIFT descriptor; (c) 

images unrecognized using the oRGB-SIFT descriptor but 

recognized using the CSF descriptor; (d) images unrecognized 

using the CSF but recognized using the CGSF+PHOG. 



 

each descriptor yields 257 average classification rates 

corresponding to the 257 image categories. The mean 

value of these 257 average classification rates is defined 

as the mean average classification performance for the 

descriptor. Fig. 3 shows the mean average classification 

performance of various descriptors. 

The best recognition rate that we obtain is 42.3% from 

the CGSF+PHOG, which is a very respectable value for a 

dataset of this size and complexity. The oRGB-SIFT 

achieves the classification rate of 24.7%. It outperforms 

the other color SIFT descriptors. It is noted that fusion of 

the color SIFT descriptors (CSF) improves upon the 

grayscale-SIFT by a huge 11.3% margin. The grayscale-

SIFT descriptor improves the fusion (CGSF) result by a 

good 5.3% margin upon the CSF descriptor. 

The second set of experiments evaluates the 

classification performance using the EFM method 

respectively by varying the number of features over the 

descriptors. 

From Fig. 4 it can be seen that the success rate for the 

CGSF+PHOG stays consistently above that of the CGSF 

and CSF on varying number of features. These two 

descriptors show an increasing trend till 200 features and 

start to dip slightly thereafter. The YCbCr-SIFT and 

oRGB-SIFT show a similar increasing trend and decline 

only toward the later half and continue to perform better 

than the rest of the descriptors. The grayscale-SIFT 

maintains its higher performance over the rgb-SIFT. 

The third set of experiments assesses the ten 

descriptors using the EFM classifier on individual image 

categories. Here we perform a detailed analysis of the 

performance of the descriptors with the EFM classifier 

over all the 257 image categories. First we present the 

classification results on the three biometric categories. 

Table 1 shows that the Iris category has a 100% 

recognition rate across all the descriptors with the 

exception of PHOG. For the Faces category the three 

fused descriptors reach a 97% success rate. The People 

category achieves a success rate of 17% with the 

CGSF+PHOG indicating the effect of very high intra-

class variabilities due to the challenging background, 

variable postures, variable appearance, occlusion, 

multiple humans in the same image, and different 

illumination conditions. Fusion of the individual color 

SIFT descriptors (CSF) improves the classification 

performance, which indicates that various color 

descriptors are not redundant for recognition of the 

People category. The average success rate for the 

CGSF+PHOG over the top 20 categories is 90.35% with 

ten categories at or above the 90% mark. Three categories 

have a 100% recognition rate. Individual color SIFT 

features improve over the grayscale-SIFT for most of the 

categories, in particular for the Trilobite, American flag, 

Tower Pisa, Saturn, and Hibiscus categories. The CSF 

almost always improves over the grayscale-SIFT. The 

CGSF either is at par or improves over the CSF on all 

categories with the exception of Leopards category. Most 

categories perform at their best when we combine the 

PHOG with the CGSF. 

The final set of experiments further assesses the 

performance of the descriptors based on the correctly 

recognized images. See Fig. 5(a) for some examples of 

the correctly classified images from the Iris, Faces, and 

People categories. Notice the high intra-class variabilities 

for the Faces and People classes. Fig. 5(b) shows some 

example images from the Faces class that are not 

recognized by the EFM classifier using the grayscale-

SIFT descriptor but are correctly recognized using the 

oRGB-SIFT descriptor. This reaffirms the importance of 

color and the distinctiveness of the oRGB-SIFT descriptor 

for image category recognition. Fig. 5(c) shows images 

unrecognized using the oRGB-SIFT but recognized using 

the CSF and Fig. 5(d) shows images unrecognized using 

the CSF but recognized using the CGSF+PHOG. 

See Fig. 6(a) for some examples of the images 

unrecognized by the EFM using the grayscale-SIFT but 

Table 2. Classification Rate (%) Comparison on the Caltech 256 and the Biometric Datasets 

Method 
Number of training images per class 

15 30 45 60 

*SPM [26] 

*KC [28] 

*KSPM [29] 

*LSPM [29] 

*ScSPM [29] 

- 

- 

23.34 

13.20 

27.73 

- 

- 

+ 0.42 

+ 0.62 

+ 0.51 

34.10 

27.17 

29.51 

15.45 

34.02 

+ 0.20 

+ 0.46 

+ 0.52 

+ 0.37 

+ 0.35 

- 

- 

- 

16.37 

37.46 

- 

- 

- 

+ 0.47 

+ 0.55 

- 

- 

- 

16.57 

40.14 

- 

- 

- 

+ 1.01 

+ 0.91 

Our Method 

*CGSF+PHOG (PCA) 

*CGSF+PHOG (EFM) 

†CGSF+PHOG (PCA) 

†CGSF+PHOG (EFM) 

 

27.07 

29.97 

27.46 

30.39 

 

+ 0.40 

+ 0.52 

+ 0.29 

+ 0.46 

 

33.75 

36.49 

34.10 

36.87 

 

+ 0.30 

+ 0.51 

+ 0.35 

+ 0.55 

 

37.33 

39.74 

37.60 

40.04 

 

+ 0.48 

+ 0.41 

+ 0.44 

+ 0.43 

 

39.90 

42.06 

40.13 

42.28 

 

+ 0.07 

+ 0.45 

+ 0.11 

+ 0.41 

* Results on the Caltech 256 dataset; † Results on the Biometric 257 categories dataset. 
 

 

 

Fig.6 – Image recognition using the EFM classifier: (a) example 

images unrecognized using the grayscale-SIFT descriptor but 

recognized using the oRGB-SIFT descriptor; (b) example images 

unrecognized using the oRGB-SIFT but recognized using the CSF 

descriptor; (c) images unrecognized using the CSF but recognized 

using the CGSF+PHOG. (d) Images unrecognized using the PCA 

but recognized using the EFM on the CGSF+PHOG descriptor. 



 

are correctly recognized by the oRGB-SIFT. Fig. 6(b) 

shows some images that were previously not recognized 

by the oRGB-SIFT but are correctly recognized by the 

CSF. In Fig. 6(c) we show some images unrecognized by 

the CSF but are correctly recognized by the 

CGSF+PHOG descriptor. Lastly in Fig. 6(d) images 

unrecognized by the PCA but recognized by the EFM 

classifier on the CGSF+PHOG descriptor. 

Finally we present the results of our methods on 

varying number of training images per class over the 

Caltech 256 dataset and the Biometric dataset with 257 

categories. We fix the number of test images per class at 

20 for each of the experiments. We combine the Iris 

images from the UPOL dataset to the Caltech 256 to form 

the Biometric dataset. From Table 2 on the Biometric 

dataset it can be seen that on the 15 training images we 

achieve 30.39% success rate. This improves over the 

previous best result on the Caltech 256 by 2.66%. For the 

30 and 45 training images we improve on the previous 

best on the Caltech 256 by 2.85% and 2.58% respectively. 

On the 60 training images we achieve a success rate of 

42.28% and improve over the previous best by 2.14%. 

From Table 2 on the Caltech 256 dataset it can be seen 

that on the 15 training images per class we achieve 

29.97% success rate. This improves over the previous 

best result by 2.24%. For the set of 30 and 45 training 

images we improve on the previous best by 2.39% and 

2.28% respectively. On the 60 training images we achieve 

a success rate of 42.06% and improve over the previous 

best by 1.92%. 

 

6. CONCLUSION 

We have proposed a new oRGB-SIFT feature 

descriptor, and then integrated it with other color SIFT 

features to produce the Color SIFT Fusion (CSF), the 

Color Grayscale SIFT Fusion (CGSF), and the 

CGSF+PHOG descriptors. Results of the experiments 

using 257 image categories from two large scale, grand 

challenge datasets show that our oRGB-SIFT descriptor 

improves recognition performance upon other color SIFT 

descriptors, the CSF, the CGSF, and the CGSF+PHOG 

descriptors perform better than the other color SIFT 

descriptors. The fusion of both Color SIFT descriptors 

(CSF) and Color Grayscale SIFT descriptor (CGSF) show 

significant improvement in the classification 

performance, which indicates that various color-SIFT 

descriptors and grayscale-SIFT descriptor are not 

redundant for image classification. 
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