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1 Introduction

Over the past decade biometric authentication has become a very active area of
research due to the increasing demands in automated personal identification. More
recently several new notable techniques and methods with applications to face
recognition (Shih and Liu, 2011; Liu and Yang, 2009; Liu, 2007; Yang et al., 2010),
eye detection (Shuo and Liu, 2010) and iris (Verma et al., 2011) biometrics have
been proposed. Among many biometric techniques, iris recognition is one of the
most promising approaches due to its high reliability for person identification (Ma
et al., 2004).

The iris is a thin circular diaphragm, which lies between the lens and cornea
of the human eye. Fig. 1 shows the iris region between the sclera and the pupil.
The formation of the unique patterns of the iris is random and not related to any
genetic factors (Wildes, 1997), and the iris patterns remain stable throughout the
adult life. Thus, the patterns within the iris are unique to each person and two eyes
of an individual have independent iris patterns. Some research shows that when
compared with other biometric features such as face and fingerprint, iris patterns
are more stable and reliable (Du et al., 2004).

In this paper, we propose a new iris recognition method based on a robust
iris segmentation approach for improving iris recognition performance. We make
major improvements in the iris segmentation phase. In particular, (i) we implement
the power-law transformations for more accurate detection of the pupil region.
Additionally, (ii) with our technique we are able to considerably reduce the
candidate limbic boundary search space, this leads to a significant increase in
the accuracy and speed of the segmentation. The segmentation performance is
further enhanced with the application of thresholding. Furthermore, (iii) for higher
accuracy and speed, we selectively detect the limbic circle having a center within
close range of the pupil center. Additionally, (iv) our eyelid detection approach
is shown to improve performance. The effectiveness of the proposed method is
evaluated on a grand challenge, large scale database: the Iris Challenge Evaluation
(ICE) (Phillips, 2006) dataset.



Iris recognition based on robust iris segmentation 3

Figure 1 Front view of the human eye. The various parts labeled are important to
iris segmentation and recognition.

Our method is able to correctly segment the pupil for 99.8% of the images in
the dataset. Iris region detection is 98.5% for the right eye and 98.8% for the left
eye. The rank-one recognition rate for our method is 3.5% and 2.7% higher than
that of the irisBEE method (Phillips et al., 2008) for the right eye and the left eye
respectively. Furthermore, we improve upon the ND IRIS (Liu et al., 2005) by a
significant 1.9% on the rank-one recognition rate for the left eye. The verification
rate is about 10% higher than the irisBEE method (Phillips et al., 2008) for each
eye at a much lower equal error rate; this emphasizes the higher accuracy of our
method.

The rest of the paper is structured as follows: In Section 2, we briefly overview
several representative works on image acquisition, segmentation, feature encoding
and matching. Section 3 describes the dataset used in our experiments along with
the implementation details of our improved recognition method. We evaluate the
performance of our method and present a detailed analysis of the experimental
results in Section 4 and conclusions are drawn in Section 5.

2 Related work

A general approach to iris recognition consists mainly of four stages: (1) image
acquisition, (2) iris segmentation, (3) texture analysis, and (4) matching of texture
patterns. Here we summarize several notable contributions to the aforementioned
stages.

One of the earlier systems proposed by Flom and Safir (1987) detected the
pupil region by finding large connected regions of pixels with intensity values below
a given threshold. Iris descriptors were extracted using the difference operator,
edge detection algorithms, and the Hough transform. Wildes (1997) system used
low light level camera along with diffuse source and polarization for image
acquisition. Iris region was segmented by computing the binary edge map followed
by the Hough transform. For matching, it applied the Laplacian of Gaussian filter
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Figure 2 An overview of our iris recognition method.

at multiple scales to produce a template and computes the normalized correlation
as a similarity measure.

Masek (2003) performed segmentation of iris by canny edge detection and
circular Hough transform. Encoding was performed by 1D Log-Gabor wavelets and
matching was based on hamming distance. Liu et al. (2005) proposed the ND IRIS
method based on Masek’s implementation, hamming distance was used to compare
two iris templates. The method proposed by Daugman (2006, 2007) performed
segmentation of the iris region with the integro-differential operator followed by
its normalization. The normalized iris image was convolved with the 2D Gabor
filters to extract the texture information, which was quantized into a compact 256
byte binary iriscode. The iriscodes were compared using the normalized Hamming
distance.

The issue of noise detection and handling for non-cooperative iris recognition
was explored by Proenca (2006); Proenca and Luis (2007). Bayesian approach to
matching of warped iris patterns was discussed by Thornton et al. (2007). More
updated methods in image understanding for iris biometrics were reviewed by
Bowyer et al. (2008). Vatsa et al. (2008) proposed a curve evolution approach
to segment a non-ideal iris image using the modified Mumford-Shah functional.
Beacon guided search for fast iris matching was discussed by Hao et al. (2008)
and use of short-length iris codes from the most descriptive regions of the iris for
fast matching was proposed by Gentile et al. (2009). He et al. (2009) proposed an
Adaboost-cascade iris detector for fast iris segmentation. Spline based edge fitting
scheme was used for non-circular iris boundary detection. Eyelashes and shadows
were detected via a learned prediction model. Baker et al. (2010) explored the issue
of degraded iris biometrics performance with non-cosmetic contact lenses. Proenca
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Figure 3 Example images of the (a) right eye and (b) left eye from the ICE dataset,
under varying illumination levels, pupil dilation, angle and occlusion.

(2010) proposed a segmentation method to handle the degraded images acquired in
less constrained conditions for real-time applications. Puhan et al. (2011) propose
a fast iris segmentation technique based on the Fourier spectral density for noisy
frontal view eye images captured with minimum cooperation from the subjects.

3 Robust iris recognition method and its major components

We propose and implement a robust iris recognition method and show the
improvement in iris recognition performance using the Iris Challenge Evaluation
(ICE) (Phillips, 2006) dataset. First we give details of the ICE dataset in Section
3.1. Next we discuss the major components of our iris recognition method. These
include iris segmentation, iris encoding, and iris matching. See Fig. 2 for an
overview of the iris recognition method.

We focus our efforts mainly on improving the iris segmentation stage of
the system. This allows us to compare the performance of the segmentation
stage with that implemented by the irisBEE method (Phillips et al., 2008).
The segmentation step performs the localization of the iris region by detecting
the pupil and the limbic boundary along with the eyelid detection. The iris
encoding and iris matching stage are similar to that implemented by the irisBEE
method (Phillips et al., 2008) in the Biometric Experimentation Environment
(BEE) system. In comparison to the irisBEE method (Phillips et al., 2008) our
proposed method leads to a significant increase in the accuracy of the iris region
segmentation along with a much higher overall recognition performance at a
lower error rate. Furthermore, our method outperforms the rank-one recognition
performance achieved by the ND IRIS (Liu et al., 2005) method.

3.1 The Iris Challenge Evaluation (ICE) dataset

The ICE dataset (Phillips, 2006) consists of 1425 right eye images of 124 different
subjects and 1528 left eye images of 120 different subjects. Eye images belong to
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Figure 4 An overview of the three main stages in iris segmentation: the pupil
detection, the limbic boundary detection, and the eyelid detection.

132 total subjects with 112 overlapping subjects between the left eye and the right
eye images. The iris images are intensity images with a resolution of 640 x 480 in
the TIFF format. The average diameter of an iris is 228 pixels. The images vary in
quality due to the percentage of the iris region occlusion, the degree of blur in the
image, off angle image, and images with subject wearing the contact lens. Fig. 3(a)
shows some example images of the right eye and Fig. 3(b) shows some images from
the left eye from the ICE dataset. Notice the varying degree of illumination levels,
pupil dilation, angle and occlusion.

3.2 Iris segmentation

Here we give the details of our iris segmentation method. In particular, we
discuss the effect of the power-law transformations on an eye image along with
its advantages. Next we provide details of efficient determination of the pupil
region, followed by a discussion on the effective method to determine the limbic
boundary and the iris region segmentation. Finally, we give details of the improved
eyelid detection phase. See Fig. 4 for an overview of the three main stages in iris
segmentation: the pupil detection, the limbic boundary detection, and the eyelid
detection.

3.2.1 Performing the power-law transformations on an eye image

The power-law transformation when applied to a grayscale image changes its
dynamic range. The pixel intensity values in the input image act as the basis,
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Figure 5 Plot showing the result of the power-law transformations on the image
intensity values at various values of ρ.

which is raised to a (fixed) power. The operator is defined by the following formula
(Gonzalez and Woods, 2001):

R(ρ) = c∗I
1
ρ (1)

where I is the intensity value of a pixel in the input image, c is the scaling factor,
and 1/ρ is the power.

For ρ < 1, this operation increases the bandwidth of the high intensity values at
the cost of the low pixel values. For ρ > 1, this process enhances the low intensity
values while decreasing the bandwidth of the high intensity values, i.e., boosts the
contrast in the dark regions. For ρ = 1, the above transformation linearly scales
the intensity values.

In Fig. 5 the plot shows the result of the power-law transformations on the
image intensity values at various values of ρ. The output pixel intensity value is
scaled back to [0, 255]. This operation when applied on the input pixel intensity
with ρ = 1 and c = 1 does not have any effect on the output intensity. This can
be seen in the plot for R(ρ) at ρ = 1. At ρ = 1.9 and 2.5 the lower intensity values
gain more than the higher intensity values. At ρ = 0.5 the intensity values get
pulled down and the lower values tend to get mapped into a narrower range.

We assess the impact of the power-law transformations on an eye image in
terms of the pixel intensity frequency in Fig. 6. The original eye image is shown
in Fig. 6(a), transformed images with ρ values as 0.5, 1.9 and 2.5 can be seen
in Fig. 6(b), (c) and (d) respectively. The corresponding pixel intensity frequency
plot for the four images is presented in Fig. 6(e). For ρ > 1 many more pixels get
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Figure 6 Results of the power-law transformations on (a) input eye image, at
ρ = 0.5, 1.9 and 2.5 shown in (b), (c) and (d) respectively. (e) Plot of the
frequency of intensity of the input image at various ρ values. Plot at ρ = 1.0
corresponds to the input image in (a).

mapped into a narrower brighter intensity range as seen in Fig. 6(e). Also, this
effect can be observed from the eye images in Fig. 6(c) and (d) where the contrast
between the pupil and the iris becomes more significant.

3.2.2 Efficient determination of the pupil region

Our new iris segmentation method first applies the power-law transformation on an
eye image and then detects the pupil boundary. We first detect the pupil boundary
and then detect the outer iris boundary. The reason for this approach lies in the
observation that the contrast between the iris and the pupil is usually larger than
that between the iris and the sclera. The contrast is further enhanced from the
application of the power-law transformation; this makes it easier to detect the
pupil region and thereby increases the accuracy of the pupil segmentation. Our
method results in the accurate detection of the pupil boundary for 99.8% of the



Iris recognition based on robust iris segmentation 9

Figure 7 Efficient determination of: (a) the pupil region radius, (b) the iris region
radius and search space, and (c) the limbic boundary center.

images in the dataset; this includes all the right eye and the left eye images. The
appropriate ρ value for the power-law transformation is selected after analyzing
the contrast between the iris and the pupil on a validation set chosen from the
ICE dataset.

In Fig. 4 and Fig. 7(a) we present the details of the pupil detection. In order to
get rid of the noise, as a first step we apply the Gaussian filter to smooth the input
image. The Gaussian smoothing filter is defined by the following formula (Forsyth
and Ponce, 2003):

G(x, y) =
1

2πσ2
e−

x
2+y

2

2σ2 (2)

where x is the distance from the origin in the horizontal axis, y is the distance
from the origin in the vertical axis, and σ is the standard deviation of the Gaussian
distribution. In the next stage, we apply the power-law transformation followed by
the canny edge detector to detect edges in the image. Thresholding is performed
to get rid of the weak edges.

Finally, we apply the circular Hough transform on the edge image to detect
the pupil boundary. In order to make the pupil search more accurate and fast, we
search for a candidate pupil having radius within a narrow range. This range is
computed from a validation set chosen from the ICE dataset. See in Fig. 7(a) the
image on the left for the range of the radius and on the right the edge image space
to be searched for candidate pupil circles. The circular Hough transform can be
described as a transformation of a point in the x, y-plane to the circle parameter
space. The parametric representation of the circle is given as:

x = a + r cos(θ)
y = b + r sin(θ)

(3)
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Figure 8 Detection of iris region occlusion from the upper and lower eyelid.

where a and b are the center of the circle in the x and y direction respectively and
where r is the radius and θ is the angle between 0 and 2π.

3.2.3 Efficient determination of the limbic boundary and the iris region

We observe that when detecting the limbic boundary the Hough transform often
makes incorrect detections. Our research reveals that such incorrect detections
are due to the presence of a large number of weak edges. Therefore, we apply a
thresholding technique on the edge image produced by the Canny edge detector to
get rid of the insignificant edge points. This has shown to improve the percentage
of the correctly segmented iris region by close to 3% for both the right eye and the
left eye images. See Fig. 4 and Fig. 7(b) for details.

In order to further improve the accuracy of the Hough transform for detecting
the limbic boundary, we search for the circle within a specific region around the
detected pupil boundary. Furthermore, we search for a candidate limbic boundary
having radius within a narrow range. The range for the radius is estimated on
the validation set chosen from the ICE dataset. The reduced search space and the
narrow radius range thus considerably increase the speed of the circle detection.
See in Fig. 7(b) the image on the left for the range of the radius and on the right
the reduced edge image space that is searched for candidate limbic circles.

Additionally, we apply another efficient technique to detect the limbic
boundary. The Hough transform implemented by the irisBEE method (Phillips
et al., 2008) searches the maximum in the parameter space to detect the circle.
We implement a technique based on the Hough transform that increases the
accuracy of the correct limbic boundary detection by 1.3% for the right eye
and by 1.4% for the left eye images. Specifically, when the distance between the
center of the detected circle and the center of the detected pupil is more than
a predefined threshold value, then the detected circle is rejected. Out of all the
non-rejected circles we select the one that corresponds to the maximum in the
parameter space of the Hough transform and has center coordinates within a
predefined threshold value from the pupil center. As a result, our heuristic method
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Figure 9 (a) Segmented iris region and (b) its normalized iris region.

considerably increases the accuracy of the Hough transform. In Fig. 7(c) the center
of the pupil is pointed in yellow, the incorrect limbic boundary circle with center
in green is rejected as it is farther away from the pupil center when compared to
the acceptable limbic detection with center displayed in white.

Here we present the results of time complexity analysis for the segmentation
stage. We compute the mean average implementation time of the segmentation
stage for an image. First we compute the average processing time for an image
from all 2953 images and then perform ten runs to obtain the mean average
implementation time for an image. The experiment is performed on a 3.00 GHz
Pentium 4 CPU with 3.2 GB RAM running on Linux. By reducing the search space
for Hough transform our algorithm takes 748 milliseconds to process an image
against 853 milliseconds without this optimization. Hence, our efficient limbic
boundary detection technique decreases the processing time by approximately
12%.

3.2.4 Improved eyelid detection

One of the earlier system proposed by Wildes (1997) detects the eyelids by
applying edge detection filter and Hough transform to obtain edge points and
then fits parameterized parabolic arcs to localize the upper and lower eyelids. We
implement the eyelid detection by modeling the eyelid as two straight lines using
linear Hough transform. Additionaly, we perform power-law transformation on an
eye image in order to enhance the contrast between the eyelid and the iris/pupil
region. Hence, we are able to more accurately detect the occlusion from eyelids.

Furthermore, we split the iris region horizontally and vertically resulting in four
windows. See Fig. 8 for the result of eyelid detection. In order to detect the upper
eyelid we search within the top half of the iris region. Furthermore, to detect the
top left of the eyelid region, we consider only the left three quarters of the top
half of the iris region. The top right of the eyelid region is detected within the
right three quarters of the top half of the iris region. Thus, there is an overlap of a
portion of the iris region between two splits. Similarly, we detect the bottom eyelid
in the lower two windows. After detecting the eyelid in each of these four windows
we connect the results together. Our approach has shown to improve performance
when compared to the method in (Liu et al., 2005) where the splits do not overlap.
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Table 1 Correctness of Segmentation (in percentage %) for the Pupil and Iris Region
at Various Values of ρ

ρ Right Eye Left Eye
Pupil Region Iris Region Pupil Region Iris Region

0.7 96.3 95.5 96.8 96.0
1.0 98.3 97.4 98.6 97.7
1.3 98.9 98.0 99.2 98.1
1.6 99.2 98.2 99.5 98.4
1.9 99.7 98.5 99.9 98.8

2.2 99.6 98.4 99.9 98.8
2.5 99.6 98.4 99.8 98.7

3.3 Feature encoding and matching

The feature encoding stage encodes the iris image texture patterns into iriscodes
using filters. We normalize the iris region to a constant dimension before encoding.
Denoising of the noise regions in the normalized pattern is implemented by means
of averaging. This results in a bitwise template, which contains iris information
and a noise mask for corrupt areas within the iris pattern. Fig. 9 shows the result
of the normalization of the iris region.

Encoding is implemented by convolving the normalized iris pattern with the
1D Log-Gabor wavelets (Masek, 2003). The frequency response of a Log-Gabor
filter is given as:

G(f) = exp

(

−(log(f/f0))
2

2(log(σ/f0))
2

)

(4)

where f0 represents the centre frequency, and σ gives the bandwidth of the filter.
Details of the Log-Gabor filter are given by Field (1987).

We use the Hamming distance to measure the similarity of the two iris
templates. The Hamming distance defines the similarity between two iriscodes, and
the two iriscodes are a match when their Hamming distance is close to each other.
In comparing the bit patterns X and Y , the Hamming distance (HD) is defined as
the sum of disagreeing bits (sum of the XOR between X and Y ) over N , which is
the total number of bits in the bit pattern. Below is the formula:

HD=
1

N

N
∑

j=1

Xj ⊕ Yj (5)

Noise bits in the two templates are discarded. The iris template is shifted bit-wise
from -15 degrees to +15 degrees with an increment of 1.5 degrees each time, and
the Hamming distance is computed for two shift positions. The lowest Hamming
distance is the best match between the two templates. As suggested by Daugman
(2002) such shifting is necessary to take care of the misalignment in the normalized
iris patterns caused by the rotational differences during imaging.
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Figure 10 Comparison of the pupil segmentation performance of our improved
method with the irisBEE method (Phillips et al., 2008). (a) Input eye images,
(b) images after the power-law transformation, (c) examples of correct
segmentation of the pupil and iris region by our method, and (d) examples of
incorrect segmentation by the irisBEE method (Phillips et al., 2008).

4 Experimental results

Here we present the details of the experimental evaluation of our proposed method
on the ICE dataset. In order for us to make a through comparative assessment
of the performance of our method with other methods, we conduct three sets of
experiments for the right eye and the left eye. First we assess the correctness of
iris segmentation, next we assess the rank-one recognition performance and finally
we assess the verification performance for the right eye and the left eye according
to the experimental setup proposed by the ICE system. The rank-one recognition
criterion and the verification criterion evaluate the performance of our method for
recognition from two different viewpoints; we provide more details later in this
Section. For all our experiments we scale the input image to 0.4 of its original
size, this significantly cuts down the processing time without compromising the
correctness of the results.

4.1 Assessing the correctness of segmentation

The first set of experiments are designed to assess the correctness of segmentation
for the pupil region, the limbic boundary and the iris region on the right eye
and the left eye. Considering the nature of the ICE dataset, we now define the
correctness of segmentation based on the assumption that the pupil and iris can
be modeled as a circle. The pupil region is said to be correctly segmented when
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Table 2 Comparison with the Results (in percentage %) from the irisBEE Method
(Phillips et al., 2008) of the Correctness of Segmentation for the Pupil Region,
Limbic Boundary and Iris Region

Regions Our Method irisBEE Method
Right Eye Left Eye Right Eye Left Eye

Pupil Region 99.7 99.9 95.4 95.7
Limbic Boundary 98.7 99.0 93.4 93.6
Iris Region 98.5 98.8 90.2 90.5

the circle fully encloses the pupil region and does not include any area other
than the dark pupil. Incorrect pupil segmentation may cover parts of the iris
region and or only enclose the pupil region partially. Refer to Section 3.2.2 for
the discussion on the method and Fig. 10(c) and (d) for the results. The limbic
boundary is said to be correctly segmented when the circle fully bounds the iris
region from outside and does not include any area outside of the iris region other
than the pupil or the eyelids that may sometimes occlude the iris. Incorrect limbic
boundary segmentation may cover parts of the sclera region and or only enclose
the iris region partially. Refer to Section 3.2.3 for the discussion on the method and
Fig. 11(a) and (b) for the results. The iris region is said to be correctly segmented
when for any given eye image both the pupil and the limbic boundary are correctly
detected.

In Table 1 we give the results of the correctness of the pupil and iris region
segmentation. The power-law transformations are performed for pupil detection
on the right and left eye image at various values of ρ. At ρ = 1 and c = 1 the
power-law transformation leaves the intensity values of the pixels in the input
image unchanged. For values of ρ > 1, the power-law transformation enhances
the contrast in the dark regions and thereby makes the pupil boundary easier to
detect. This is confirmed by the percentage of correct pupil detection as ρ goes
higher. Also, for ρ < 1, the contrast between the pupil and the surrounding region
decreases making it harder to detect the pupil. We obtain best pupil detection
results at ρ = 1.9 with close to 100% correct pupil detection for the left eye
and 99.7% for the right eye. For the ρ values higher than 1.9, we do not notice
any significant change in the segmentation performance. The best result for the
iris region detection is 98.5% for the right eye and 98.8% for the left eye. The
iris region detection is at its highest when the pupil region detection is at its
maximum; this is largely due to the fact that for our method the correct detection
of iris region is to an extent dependent on the correct pupil region detection.
Finally, the iris region detection rate at ρ = 1.9 is 1.1% higher for both the right
and the left eye when compared with the rate at ρ = 1.

Fig. 10(c) shows examples of correct segmentation of the pupil based on our
improved pupil region detection method. Input images are shown in Fig. 10(a)
and the result of the power-law transformation can be seen from Fig. 10(b). We
compare our results to the incorrect segmentation results of the irisBEE method
(Phillips et al., 2008) in Fig. 10(d). In Fig. 11(a) we present the results of our
improved limbic boundary segmentation method and make a comparison with the
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Figure 11 Comparison of the limbic boundary segmentation performance of our
improved method with the irisBEE method (Phillips et al., 2008). (a)
Examples of correct segmentation by our method and (b) examples of
incorrect segmentation by the irisBEE method (Phillips et al., 2008).

Table 3 Rank-one Recognition Performance (in percentage %) at Various Values of ρ

ρ Right Eye Left Eye
0.7 95.4 95.9
1.0 97.6 98.1
1.3 98.3 98.5
1.6 98.7 98.8
1.9 99.0 99.0

2.2 98.9 99.0
2.5 98.9 98.9

incorrect limbic boundary detections of the irisBEE method (Phillips et al., 2008)
shown in Fig. 11(b).

From Table 2 it can be seen that our method improves upon the irisBEE
method (Phillips et al., 2008) for pupil region segmentation by 4.3% and 4.2% for
the right eye and the left eye respectively. Our limbic boundary detection rates are
higher by 5.3% and 5.4% for the right and left eye respectively. Finally, we improve
upon the irisBEE method (Phillips et al., 2008) by 8.3% for both the right and
the left eye iris region detection.

4.2 Assessment of the rank-one recognition performance

Here we evaluate the effectiveness of our method based on the rank-one recognition
rate. This is a popular evaluation criterion for iris recognition. In order to obtain
the recognition rate, we need to first calculate the Hamming distance between
every pair of a query image and a target image, and then use the nearest-
neighbor classifier for classifying all query images. If the query image and the
target image belong to the same subject, then it is considered as a correct match.
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Table 4 Comparison of the Rank-one Recognition Performance (in percentage %)
with the Other Methods

Methods Right Eye Left Eye

Our Method 99.0 99.0

ND IRIS (Liu et al., 2005) - 97.1
irisBEE method (Phillips et al., 2008) 95.5 96.3

Figure 12 Comparison of the iris verification performance (ROC curve for the right
eye) of the irisBEE method (Phillips et al., 2008) with our proposed method.

The recognition rate is the ratio of the number of correctly classified query images
to the total number of query images. The rank-one recognition rate underlines the
similarity of the samples that are close to one another within a class.

From Table 3 it can be seen that the best recognition rate is 99% for both the
right eye and the left eye at ρ = 1.9, when compared to the rate at ρ = 1, this is
higher by 1.4% for the right eye and by 0.9% for the left eye. We do not notice
any significant change in the recognition performance for ρ > 1.9.

The rank-one recognition rate for our method as shown in Table 4 is 3.5% and
2.7% higher than that of the irisBEE method (Phillips et al., 2008) for the right
eye and the left eye respectively. Furthermore, we improve upon the ND IRIS (Liu
et al., 2005) by a significant 1.9% for the left eye. Note that the authors in (Liu
et al., 2005) do not report the recognition rate on the right eye. Additionally, our
improved eyelid detection method as decribed in Section 3.2.4 contributes to a
performance increase of 1% for both the right and the left eye.
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Figure 13 Comparison of the iris verification performance (ROC curve for the left
eye) of the irisBEE method (Phillips et al., 2008) with our proposed method.

4.3 Assessment of the verification performance and equal error rate (EER)

In our final set of experiments we evaluate the verification performance and
compare our results with the irisBEE method (Phillips et al., 2008). The ICE
protocol recommends using the receiver operating characteristic (ROC) curves,
which plot the iris verification rate, i.e., the true accept rate versus the false accept
rate (FAR), to report the iris recognition performance. The verification rate is the
rate at which a matching algorithm correctly determines that a genuine sample
matches an enrolled sample. The equal error rate (EER) is obtained when the FAR
equals the false reject rate (FRR). Generally, the lower the EER value the higher
will be the accuracy of the biometric system.

The ROC curves are automatically generated by the BEE system when a
similarity matrix is input to the system. In particular, the BEE system generates
two ROC curves, corresponding to the Experiment 1 for the right eye and
Experiment 2 for the left eye images. The iris verification rate at the false accept
rate of 0.1% is generally used as a standard for performance comparison (Yang
et al., 2010).

It should be pointed out that the verification rate in the ICE Experiment 1 and
2 emphasizes the similarity of samples that are relatively distant from one another
within a class because it needs to measure all similarity between samples, whereas
the recognition rate discussed in Section 4.2 emphasizes the similarity of samples
that are close to one another within a class since it applies a nearest-neighbor
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Table 5 Iris Verification Performance (in percentage %) at 0.1% False Accept Rate
and EER at Various Values of ρ (VR is the verification rate and EER is the
equal error rate.)

ρ Right Eye Left Eye
VR EER VR EER

0.7 85.1 8.3 84.7 7.7
1.0 91.3 5.2 90.9 4.6
1.3 92.8 4.9 92.2 4.2
1.6 94.2 3.9 93.3 3.1
1.9 95.1 2.8 94.4 2.3

2.2 95.1 2.8 94.4 2.3
2.5 95.0 2.8 94.3 2.3

Table 6 Comparison with other Methods on the Iris Verification Performance (in
percentage %) at 0.1% False Accept Rate and EER (VR is the verification
rate and EER is the equal error rate.)

Methods Right Eye Left Eye
VR EER VR EER

Our Method 95.1 2.8 94.4 2.3

SAGEM-Iridian† above 99.0* - above 99.0* -
irisBEE Method† 85.2 8.5 84.9 7.8

†Phillips et al. (2008). *Result estimated from Fig. 4 in Phillips et al. (2008).

classifier. Therefore, these two criteria evaluate the performance of our method for
recognition from two different viewpoints.

From Table 5 it can be seen that the best verification rate and the lowest EER
is achieved at ρ = 1.9. When compared to the performance at ρ = 1, the VR is
higher by 3.8% at a low EER of 2.8% for the right eye and the VR is higher by
3.5% at the EER of 2.3% for the left eye. We do not notice any significant change
in the verification performance for ρ > 1.9.

We compare in Fig. 12 and Fig. 13 the performance of our method with
that of the irisBEE method (Phillips et al., 2008) in terms of the ROC curves.
Fig. 12 and Fig. 13 show the ROC curves for the right eye experiment and the
left eye experiment respectively. It can be observed that our proposed method
improves the iris recognition performance significantly in comparison with the
irisBEE method (Phillips et al., 2008).

From Table 6 it can be seen that our method improves upon the irisBEE
method (Phillips et al., 2008) notably. For the right eye, our proposed method has
a verification rate of 95.1%, which is about 10% higher than the irisBEE method
(Phillips et al., 2008). The EER is 2.8%, which is much lower than the 8.5% for the
irisBEE method (Phillips et al., 2008). For the left eye, our proposed method has
a VR of 94.4%, which is again higher by 9.5% than the irisBEE method (Phillips
et al., 2008). The EER is 2.3%, which is much lower than the 7.8% from the
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irisBEE method (Phillips et al., 2008); this emphasizes the higher accuracy of our
method.

5 Conclusion

In this paper, we presented a robust iris recognition method with enhanced
performance on the ICE dataset. In particular, we implemented the power-law
transformations for more accurate detection of the pupil region. Additionally,
with our technique we are able to considerably reduce the candidate limbic
boundary search space, this leads to a significant increase in the accuracy and
speed of the segmentation. The segmentation performance is further increased
with the application of the thresholding. Furthermore, for higher accuracy and
speed, we selectively detect the limbic circle having a center within close range
of the pupil center. Additionally, our improved eyelid detection phase has shown
to increase performance. From the experiments, we can conclude that, using
power-law transformations with ρ = 1.9 or above, our proposed method showed
constantly better performance for pupil and iris region segmentation for both left
and right eyes using the ICE dataset (Table 1), consequently comparison studies
showed improved segmentation performance comparing with the irisBEE method
(Phillips et al., 2008) (Table 2) and on the rank-one recognition performance than
other methods (Table 4) with improved VR and EER (Table 6) for both eyes.

Note that the visible wavelength iris images, such as those in the UBIRIS
database (Proenca et al., 2010), display different characteristics from the IR or
near IR iris images in the ICE database. On the one hand, the visible wavelength
iris images possess additional classification cues, such as color. But on the other
hand, they pose challenging issues as well, such as large variations in lighting
conditions. Our future work will leverage our research results in attenuating
illumination variations (Liu, 2006), (Yang and Liu, 2007), applying novel color
models (Liu and Liu, 2008b), (Liu and Liu, 2008a), (Yang and Liu, 2008), (Liu,
2008), as well as effective feature extraction and classification techniques (Liu and
Wechsler, 2001), (Liu and Wechsler, 1998a), (Liu and Wechsler, 1998b) to process
the visible wavelength iris images.
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