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Abstract—Four novel color Local Binary Pattern (LBP) 

descriptors are presented in this paper for scene image and image 

texture classification with applications to image search and 

retrieval. Specifically, the first color LBP descriptor, the oRGB-

LBP descriptor, is derived by concatenating the LBP features of 

the component images in an opponent color space — the oRGB 

color space.  The other three color LBP descriptors are obtained 

by the integration of the oRGB-LBP descriptor with some 

additional image features: the Color LBP Fusion (CLF) 

descriptor is constructed by integrating the RGB-LBP, the 

YCbCr-LBP, the HSV-LBP, the rgb-LBP, as well as the oRGB-

LBP descriptor; the Color Grayscale LBP Fusion (CGLF) 

descriptor is derived by integrating the grayscale-LBP descriptor 

and the CLF descriptor; and the CGLF+PHOG descriptor is 

obtained by integrating the Pyramid of Histograms of 

Orientation Gradients (PHOG) and the CGLF descriptor.  

Feature extraction applies the Enhanced Fisher Model (EFM) 

and image classification is based on the nearest neighbor 

classification rule (EFM-NN). The proposed image descriptors 

and the feature extraction and classification methods are 

evaluated using three grand challenge databases: the MIT scene 

database, the KTH-TIPS2-b database, and the KTH-TIPS 

materials database. The experimental results show that (i) the 

proposed oRGB-LBP descriptor improves image classification 

performance upon other color LBP descriptors, and (ii) the CLF, 

the CGLF, and the CGLF+PHOG descriptors further improve 

upon the oRGB-LBP descriptor for scene image and image 

texture classification. 

 
Index Terms—The oRGB-LBP descriptor, the Color LBP 

Fusion (CLF) descriptor, the Color Grayscale LBP Fusion 

(CGLF) descriptor, the CGLF+PHOG descriptor, Enhanced 

Fisher Model (EFM), image search. 

 

I. INTRODUCTION 

OLOR features have been shown to achieve higher success 

rate than grayscale features in image search and retrieval 

due to the fact that color features contain significantly larger 

amount of discriminative information [1]-[4]. Color based 

image search can be very useful in the identification of object 

and natural scene categories [4]. Color features can be derived 

from various color spaces and they exhibit different properties. 

Two necessary properties for color feature detectors are that 

they need to be stable under changing viewing conditions, 

such as changes in illumination, shading, highlights, and they  
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should have a high discriminative power. Global color features 

such as the color histogram and local invariant features 

provide varying degrees of success against image variations 

such as rotation, viewpoint and lighting changes, clutter and 

occlusions [5], [6]. 

In recent years, the recognition and classification of textures 

using the Local Binary Pattern (LBP) features has been shown 

to be promising [7]-[11]. Color features when combined with 

the intensity based texture descriptors are able to outperform 

many alternatives. In this paper, we employ a variable mask 

size to generate a multi-scale LBP feature vector that is more 

robust to changes of scale and orientation. Further, we extend 

the multi-scale LBP descriptor to different color spaces 

including the recently proposed oRGB color space [12] and 

propose a new multi-scale oRGB-LBP feature representation, 

and then integrate it with other color LBP features to produce 

the novel multi-scale Color LBP Fusion (CLF) and the multi-

scale Color Grayscale LBP Fusion (CGLF) descriptors. The 

CGLF is further combined with PHOG to obtain the novel 

CGLF+PHOG descriptor. Feature extraction applies the 

Enhanced Fisher Model (EFM) [13], [14] and image 

classification is based on the nearest neighbor classification 

rule (EFM-NN). The effectiveness of the proposed descriptors 

and classification method will be evaluated using three grand 

challenge datasets: the MIT scene database, the KTH-TIPS2-b 

and the KTH-TIPS materials databases. 

The rest of the paper is structured as follows: In Section II 

we briefly overview several representative methods on color 

image representation, search and retrieval. Section III 

describes the new color descriptors and presents an overview 

of five color spaces. In Section IV we present the details of the 

EFM feature extraction technique. Section V describes the 

datasets used in our experiments along with a detailed 

evaluation of color descriptors and classification methodology. 

Finally, conclusions are drawn in Section VI. 

 

II. RELATED WORK 

In this section we briefly survey representative work on 

color image search and retrieval. In recent years, use of color 

as a means to face recognition [1], [3], [15] and object and 

scene retrieval [4] has gained popularity. Color features can 

capture discriminative information by means of the color 

invariants, color histogram, color texture, etc. One of the 

earlier works in this field is the color indexing system 

designed by Swain and Ballard, which uses the color 
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histogram for image inquiry from a large image database [16]. 

More recent work on color based image search appears in [1], 

[2], [4], [17] that propose several new color spaces and 

methods for face, object and scene category recognition. 

Evaluation of local color invariant descriptors is performed in 

[5]. Fusion of color models, color region detection and color 

edge detection have been investigated for representation of 

color images [6]. Key contributions in color, texture, and 

shape abstraction have been discussed in Datta et al. [18]. 

Lately, several methods based on LBP features have been 

proposed for image representation and classification [9], [11]. 

Extraction of LBP features is computationally efficient and 

with the use of multi-scale filters; invariance to scaling and 

rotation can be achieved [9]. Fusion of different features has 

been shown to achieve a good retrieval success rate [11], [19]. 

Local image descriptors have also been shown to perform well 

for texture based image retrieval [10], [19]. 

Efficient retrieval requires a robust feature extraction 

method that has the ability to learn meaningful low-

dimensional patterns in spaces of very high dimensionality 

[20]-[22]. Low-dimensional representations are also important 

when one considers the intrinsic computational aspect. PCA 

has been widely used to perform dimensionality reduction for 

image indexing and retrieval [13], [23]. Recently, Support 

Vector Machine (SVM) classifier for multiple category 

recognition has gained popularity [19] though it suffers from 

the drawback of being computationally too expensive on large 

scale image classification tasks. The EFM feature extraction 

method has achieved good success for the task of image based 

representation and retrieval [14], [24], [25]. 

 

III. NEW COLOR LBP DESCRIPTORS 

We first review in this section five color spaces in which 

our four novel color descriptors are defined, and then discuss 

the conventional LBP descriptor which is the intensity-based 

(grayscale) LBP descriptor. Next we present the new oRGB-

LBP descriptor and two novel combined color multi-scale 

LBP descriptors: the Color LBP Fusion (CLF), and the Color 

Grayscale LBP Fusion (CGLF). Finally, we present the new 

CGLF+PHOG descriptor obtained from combining the CGLF 

with the Pyramid of Histograms of Orientation Gradients. 

A color image contains three component images, and each 

pixel of a color image is specified in a color space, which 

serves as a color coordinate system. The commonly used color 

space is the RGB color space. Other color spaces are usually 

calculated from the RGB color space by means of either linear 

or nonlinear transformations. 

To reduce the sensitivity of the RGB images to luminance, 

surface orientation, and other photographic conditions, the rgb 

color space is defined by normalizing the R, G, and B 

components. The HSV color space is motivated by human 

vision system because humans describe color by means of 

hue, saturation, and brightness. Hue and saturation define 

chrominance, while intensity or value specifies luminance 

[26]. The YCbCr color space is developed for digital video 

 
 
Fig. 2.  An overview of multiple features fusion methodology, the EFM 

feature extraction method, and the classification stages. 

 
 

 

 

 
 

Fig. 3.  Example images from (a) the MIT scene dataset and (b) the KTH-

TIPS2-b materials dataset. 

 
 

Fig. 1.  The multi-scale LBP operators. 
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standard and television transmissions. In YCbCr, the RGB 

components are separated into luminance, chrominance blue, 

and chrominance red. 

The oRGB color space [12] has three channels L, C1 and C2. 

The primaries of this model are based on the three 

fundamental psychological opponent axes: white-black, red-

green, and yellow-blue. The color information is contained in 

C1 and C2. The value of C1 lies within [-1, 1] and the value of 

C2 lies within [-0.8660, 0.8660]. The L channel contains the 

luminance information and its values range between [0, 1]. 
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The LBP descriptor proposed by Ojala et al. [7], [8] assigns 

an intensity value to each pixel of an image based on the 

intensity values of the eight neighboring pixels. Choosing 

multiple neighborhoods of different distances from the target 

pixel and orientations for each pixel has been shown to 

achieve partial invariance to scaling and rotation [9]. Using 

the multi-scale LBP operator shown in Fig. 1, we generate 

three LBP images from the three neighborhoods. The 

normalized histograms from the LBP images are used as 

feature vectors and they are independent of the image size. 

The fused histograms of multi-scale LBP images give a 

feature vector that is partially invariant to image translation, 

scaling, and rotation. 

The grayscale-LBP descriptor is defined as the LBP 

descriptor applied to the grayscale image. A color LBP 

descriptor in a given color space is derived by individually 

computing the LBP descriptor on each of the three component 

images in the specific color space. This produces a 2304 

dimensional descriptor that is formed from concatenating the 

768 dimensional vectors from the three channels. As a result, 

the four color LBP descriptors are defined: the RGB-LBP, the 

YCbCr-LBP, the HSV-LBP, and the rgb-LBP descriptors. 

The Pyramid of Histograms of Orientation Gradients 

(PHOG) descriptor [27] is able to represent an image by its 

local shape and the spatial layout of the shape. The local shape 

is captured by the distribution over edge orientations within a 

region, and the spatial layout by tiling the image into regions 

at multiple resolutions. The distance between two PHOG 

image descriptors then reflects the extent to which the images 

contain similar shapes and correspond in their spatial layout 

[27]. 

The four new color LBP descriptors are defined in the 

oRGB color space and the fusion in different color spaces. In 

particular, the oRGB-LBP descriptor is constructed by 

concatenating the LBP descriptors of the three component 

images in the oRGB color space. The Color LBP Fusion 

(CLF) descriptor is formed by fusing the RGB-LBP, the 

YCbCr-LBP, the HSV-LBP, the oRGB-LBP, and the rgb-LBP 

descriptors. The Color Grayscale LBP Fusion (CGLF) 

descriptor is obtained by fusing further the CLF descriptor and 

the grayscale-LBP descriptor. The CGLF is combined with the 

PHOG to obtain the CGLF+PHOG descriptor. 

 

IV. THE EFM FEATURE EXTRACTION METHOD AND NEAREST 

NEIGHBOR CLASSIFICATION 

Image classification using the new descriptor introduced in 

the preceding section is implemented using the Enhanced 

Fisher Model (EFM) feature extraction method [13], [14] and 

the nearest neighbor classification rule (EFM-NN). 

Let X  R
N
 be a random vector whose covariance matrix is 

ΣX: 
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TABLE I 

CATEGORY WISE DESCRIPTOR PERFORMANCE (%) SPLIT-OUT WITH THE EFM-NN CLASSIFIER 

ON THE MIT SCENE DATASET. NOTE THAT THE CATEGORIES ARE SORTED ON THE CGLF+PHOG RESULTS 

Category 
CGLF+ 

PHOG 
CGLF CLF 

oRGB 

LBP 

YCbCr 

LBP 

RGB 

LBP 

HSV 

LBP 

rgb 

LBP 

Gray 

LBP 
PHOG 

Highway 

Forest 

Coast 
Street 

Mountain 

Tall Building 
Inside City 

Open Country 

97 

96 

91 

90 

90 

90 

86 

76 

90 

97 

88 

90 

85 

86 

87 

71 

93 

97 

87 
86 

84 

86 

87 

71 

90 

97 

85 
83 

80 

86 
86 

68 

87 

97 

88 
83 

81 

83 
83 

66 

90 

95 

83 
82 

80 

84 
81 

65 

90 

94 

81 
84 

80 

82 
80 

66 

90 

94 

82 
82 

76 

80 
79 

68 

93 

94 

86 
81 

77 

79 
83 

61 

90 

94 

84 
86 

75 

70 
79 

56 

Mean 89.5 86.6 86.4 84.2 83.5 82.6 82.2 81.2 81.7 79.1 

 
 

 

 
Fig. 4.  The mean average classification performance of the ten descriptors 

using the EFM-NN classifier on the MIT scene dataset: the oRGB-LBP, the 

YCbCr-LBP, the RGB-LBP, the HSV-LBP, the rgb-LBP, the grayscale-LBP, 
the PHOG, the CLF, the CGLF, and the CGLF+PHOG descriptors. 
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where ε(.) is the expectation operator and t denotes the 

transpose operation. The eigenvectors of the covariance matrix 

ΣX can be derived by PCA: 

 
t

X   (3) 

 

where ]...[ 321 N  is an orthogonal eigenvector matrix 

and },...,,{ N21 diag  a diagonal eigenvalue matrix with 

diagonal elements in decreasing order. An important 

application of PCA is dimensionality reduction: 

 

XPY t  (4) 

 

where ]...[ 321 KP  , and K < N. X  R
K
 thus is composed 

of the most significant principal components. PCA, which is 

derived based on an optimal representation criterion, usually 

does not lead to good image classification performance. To 

improve upon PCA, the Fisher Linear Discriminant (FLD) 

analysis [28] is introduced to extract the most discriminating 

features. 

The FLD method optimizes a criterion defined on the 

within-class and between-class scatter matrices, Sw and Sb 

[28]: 
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where P(ωi) is a priori probability, ωi represent the classes, 

and Mi and M are the means of the classes and the grand mean, 

respectively.  The criterion the FLD method optimizes is J1 = 

tr(Sw
-1

 Sb), which is maximized when Ψ contains the 

eigenvectors of the matrix Sw
-1

 Sb [28]: 

 



bw SS 1  (7) 

 

where Ψ, Δ are the eigenvector and eigenvalue matrices of Sw
-1

 

Sb, respectively. The FLD discriminating features are defined 

by projecting the pattern vector Y onto the eigenvectors of Ψ: 

 

YZ t  (8) 

 

Z thus is more effective than the feature vector Y derived by 

PCA for image classification. 

The FLD method, however, often leads to overfitting when 

implemented in an inappropriate PCA space. To improve the 

generalization performance of the FLD method, a proper 

balance between two criteria should be maintained: the energy 

criterion for adequate image representation and the magnitude 

criterion for eliminating the small-valued trailing eigenvalues 

of the within-class scatter matrix [13]. A new method, the 

Enhanced Fisher Model (EFM), is capable of improving the 

generalization performance of the FLD method [13]. 

Specifically, the EFM method improves the generalization 

capability of the FLD method by decomposing the FLD 

procedure into a simultaneous diagonalization of the within-

class and between-class scatter matrices [13]. The 

simultaneous diagonalization is stepwise equivalent to two 

operations as pointed out by Fukunaga [28]: whitening the 

within-class scatter matrix and applying PCA to the between-

class scatter matrix using the transformed data. The stepwise 

operation shows that during whitening the eigenvalues of the 

within-class scatter matrix appear in the denominator. Since 

the small (trailing) eigenvalues tend to capture noise [13], they 

cause the whitening step to fit for misleading variations, which 

leads to poor generalization performance. To achieve 

enhanced performance, the EFM method preserves a proper 

balance between the need that the selected eigenvalues 

account for most of the spectral energy of the raw data (for 

representational adequacy), and the requirement that the 

eigenvalues of the within-class scatter matrix (in the reduced 

PCA space) are not too small (for better generalization 

performance) [13]. 

 
 
Fig. 5.  Image recognition using the EFM-NN classifier on the MIT scene 

dataset: (a) example images unrecognized using the grayscale-LBP descriptor 

but recognized using the oRGB-LBP descriptor; (b) example images 
unrecognized using the oRGB-LBP descriptor but recognized using the CLF 

descriptor; (c) images unrecognized using the CLF but recognized using the 

CGLF descriptor; (d) images unrecognized using the CGLF but recognized 
using the CGLF+PHOG descriptor. 

 

 

 

TABLE II 

COMPARISON OF THE CLASSIFICATION PERFORMANCE (%) 

WITH OTHER METHOD ON THE MIT SCENE DATASET 

# train # test Our Method [29] 

2000 688 

CLF 

CGLF 
CGLF+PHOG 

86.4 

86.6 

89.5 

- 

800 1888 

CLF 

CGLF 
CGLF+PHOG 

79.3 

80.0 

84.3 

 

 
83.7 
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Image classification is implemented using the nearest 

neighbor classification rule. Fig. 2 gives an overview of 

multiple features fusion methodology, the EFM feature 

extraction method, and the classification stages. 

 

V. EXPERIMENTS 

A. Datasets and Experimental Methodology 

We apply the following three publicly accessible datasets to 

evaluate our proposed descriptors and classification method: 

the MIT Scene dataset [29], the KTH-TIPS (Textures under 

varying Illumination, Pose and Scale) [11] and KTH-TIPS2-b 

datasets [30]. The MIT scene dataset [29] has 2,688 images 

classified as eight categories: 360 coast, 328 forest, 374 

mountain, 410 open country, 260 highway, 308 inside of 

cities, 356 tall buildings, and 292 streets. All of the images are 

in color, in JPEG format, and the average size of each image is 

256x256 pixels. There is a large variation in light, pose and 

angles, along with a high intra-class variation. The sources of 

the images vary (from commercial databases, websites, and 

digital cameras) [29]. See Fig. 3(a) for some sample images 

from this dataset. The KTH-TIPS dataset [11], [30], [31] 

consists of 10 classes of textures with 81 images per class. All 

the images are in color, PNG format and the maximum image 

size is 200x200 pixels. All ten textures have been 

photographed at nine scales and nine illumination conditions 

for each scale. Some of the classes have a very similar visual 

appearance, like cotton and linen, and brown bread and sponge 

which makes this dataset moderately challenging. The KTH-

TIPS2-b dataset [30] is a more challenging extension of the 

KTH-TIPS dataset with 11 classes of materials and 4 samples 

for each material. Each of these samples has 108 images with 

432 images per class and a total of 4752 images. Some of the 

images in the classes like wool and cotton are from differently 

colored samples leading to very high intra-class variation 

between samples, while some samples from different classes 

like cork and cracker have the same color and general 

appearance lowering the inter-class variation. See Fig. 3(b) for 

some sample images from this dataset. 

The classification task is to assign each test image to one of 

a number of categories. The performance is measured using a 

confusion matrix, and the overall performance rates are 

measured by the average value of the diagonal entries of the 

confusion matrix. For KTH-TIPS2-b dataset we use five 

random sets of 200 training images per class and 100 testing 

images per class. For the KTH-TIPS dataset we select five 

random sets of 40 training images per class and 41 test images 

per class (same numbers as used in [11], [19], [31]). For the 

MIT scene dataset we randomly select five sets and each set 

consists of 2000 images for training (250 images per class) 

and the rest 688 images for testing. Within each set there is no 

overlap in the images selected for training and testing. The 

classification scheme on the datasets compares the overall and 

category wise performance of ten different descriptors: the 

oRGB-LBP, the YCbCr-LBP, the RGB-LBP, the HSV-LBP, 

the rgb-LBP, the grayscale-LBP, the CLF, the CGLF, the 

PHOG and the CGLF+PHOG descriptors (the final two 

evaluated on the scene dataset). Classification is implemented 

using the EFM-nearest neighbor (EFM-NN) classifier. 

B. Evaluation of Novel Color Descriptors and EFM-

Nearest Neighbor Classifier on the MIT Scene Dataset 

The first set of experiments on this dataset assesses the 

overall classification performance of the ten descriptors. Note 

that for each category we implement five-fold cross validation 

for each descriptor using the EFM-nearest neighbor classifier 

to derive the average classification performance. As a result, 

each descriptor yields 8 average classification rates 

corresponding to the 8 image categories. The mean value of 

these 8 average classification rates is defined as the mean 

average classification performance for the descriptor. Fig. 4 

shows the mean average classification performance of various 

descriptors. The best recognition rate that we obtain is 89.5% 

from the CGLF+PHOG, which is a very respectable value for 

a dataset of this size and complexity. The oRGB-LBP 

achieves the classification rate of 84.3%. It outperforms the 

other color LBP descriptors. It is noted that fusion of the color 

LBP descriptors (CLF) improves upon the grayscale-LBP by a 

significant 4.7% margin. The grayscale-LBP descriptor 

 
Fig. 6.  The mean average classification performance of the eight descriptors 
using the EFM-NN classifier on the KTH-TIPS2-b dataset: the oRGB-LBP, 

the YCbCr-LBP, the RGB-LBP, the HSV-LBP, the rgb-LBP, the grayscale-

LBP, the CLF, and the CGLF descriptors. 
 

 

 

 
TABLE III 

CATEGORY WISE DESCRIPTOR PERFORMANCE (%) SPLIT-OUT WITH THE 

EFM-NN CLASSIFIER ON THE KTH-TIPS2-B DATASET. NOTE THAT 

THE CATEGORIES ARE SORTED ON THE CGLF RESULTS 

Category CGLF CLF 
oRGB 

LBP 

HSV 

LBP 

rgb 

LBP 

Gray 

LBP 

Aluminium Foil 
Brown Bread 

Corduroy 

Cork 
Cracker 

Lettuce Leaf 

Linen 
Wood 

Wool 

White Bread 
Cotton 

100 

100 

100 

100 

100 

100 

100 

100 

100 

99 

98 

100 

100 

100 

100 

100 

100 

100 

100 

100 

99 

97 

100 

100 

100 

100 

96 

100 

100 

100 

99 

99 

97 

100 

99 

100 

98 
93 

100 

99 

100 

100 

99 

96 

100 

99 

100 

98 
93 

100 

99 

100 

100 

99 

96 

100 

94 

93 

98 
90 

97 

99 

100 

96 

97 
91 

Mean 99.6 99.6 98.7 98.3 98.3 95.9 
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improves the fusion (CGLF) result slightly upon the CLF 

descriptor. 

The second set of experiments assesses the ten descriptors 

using the EFM-nearest neighbor classifier on individual image 

categories. From Table I it can be seen that the top six 

categories achieve a success rate of over 90%. The Forest 

category achieves a success rate of over 90% across all ten 

descriptors. Individual color LBP features improve upon the 

grayscale-LBP on most of the categories. The CLF results on 

each of the eight categories show significant improvement 

upon the grayscale-LBP and the CGLF slightly improves upon 

the CLF. Integration of PHOG with the CGLF to obtain the 

CGLF+PHOG highly benefits most categories and in 

particular there is a significant increase in the classification 

performance upon the CGLF results for the Highway, 

Mountain and Open Country categories where the increment is 

in the range of 5% to 7%. 

The final set of experiments further assesses the 

performance of the descriptors based on the correctly 

recognized images. See Fig. 5(a) for some example images 

that are not recognized by the EFM-nearest neighbor classifier 

using the grayscale-LBP descriptor but are correctly 

recognized using the oRGB-LBP descriptor. Fig. 5(b) shows 

images unrecognized using the oRGB-LBP descriptor but 

recognized using the CLF descriptor, Fig. 5(c) shows images 

unrecognized using the CLF but recognized using the CGLF 

descriptor and Fig. 5(d) shows images unrecognized using the 

CGLF but recognized using the CGLF+PHOG descriptor. 

From Table II it can be seen that on the 800 training images 

(100 images per class) and 1688 testing images we achieve 

84.3% success rate with the CGLF+PHOG descriptor. This 

improves over the result of authors in [29] by 0.6%. 

C. Evaluation of Novel Color Descriptors and EFM-

Nearest Neighbor Classifier on the KTH-TIPS2-b and the 

KTH-TIPS Datasets 

Here we present a detailed experimental evaluation on the 

KTH-TIPS2-b dataset followed by a comparison of success 

rate with other research groups on the KTH-TIPS dataset. The 

first set of experiments assesses the overall classification 

performance of the eight descriptors on the KTH-TIPS2-b 

dataset. Note that for each category we implement five-fold 

cross validation for each descriptor using the EFM-nearest 

neighbor classifier to derive the average classification 

performance. Fig. 6 shows the mean average classification 

performance of various descriptors. The best recognition rate 

that we obtain is 99.6% from the CLF and CGLF descriptors. 

The oRGB-LBP achieves the classification rate of 98.7%. It 

outperforms the other color LBP descriptors. It is noted that 

fusion of the color LBP descriptors (CLF) improves upon the 

grayscale-LBP by a significant 3.7% margin. The grayscale-

LBP descriptor does not have any effect on the fusion (CGLF) 

result in case of this dataset. 

The second set of experiments assesses the five best 

descriptors and the grayscale-LBP using the EFM-nearest 

neighbor classifier on individual image categories. From Table 

III it can be seen that nine out of eleven categories achieve 

100% success rate and all of the categories achieve a success 

rate of 98% or more with the CGLF descriptor. Aluminium 

Foil, Corduroy, Lettuce Leaf and Wood achieve 100% success 

rate across the best five descriptors. Individual color LBP 

features improve upon the grayscale-LBP on most of the 

categories. The CLF almost always improves upon the 

grayscale-LBP, this indicates that various color descriptors are 

not redundant. The CGLF very slightly improves upon the 

CLF. This, however, does not necessarily indicate that the 

grayscale information is redundant as almost all the categories 

show a success rate of 100% with these two descriptors. It 

only indicates that CLF alone contains enough information to 

correctly classify the texture images in the case of KTH-

TIPS2-b dataset. 

The final set of experiments further assesses the 

performance of the descriptors based on the correctly 

recognized images. See Fig. 7(a) for some example images 

that are not recognized by the EFM-nearest neighbor classifier 

using the grayscale-LBP descriptor but are correctly 

recognized using the oRGB-LBP descriptor. This reaffirms the 

importance of color and the distinctiveness of the oRGB-LBP 

 
 
Fig. 7.  Image recognition using the EFM-NN classifier on the KTH-TIPS2-b 

dataset: (a) example images unrecognized using the grayscale-LBP 

descriptor but recognized using the oRGB-LBP descriptor; (b) example 
images unrecognized using the RGB-LBP descriptor but recognized using 

the oRGB-LBP descriptor; (c) images unrecognized using the oRGB-LBP 

but recognized using the CLF descriptor; (d) images unrecognized using the 
grayscale-LBP but recognized using the CGLF descriptor. 

 

 

 
 

TABLE IV 

COMPARISON OF THE CLASSIFICATION PERFORMANCE (%) 

WITH OTHER METHODS ON THE KTH-TIPS DATASET 

Methods Performance 

Our Method: 

CGLF 

CLF 

oRGB-LBP 

  

99.6 

99.6 

99.1 

Crosier and Griffin [11] 

Kondra and Torre [31] 

Zhang et al. [19] 

 98.5 

97.7 

95.5 
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descriptor for image category recognition. Fig. 7(b) shows 

images unrecognized using the RGB-LBP descriptor but 

recognized using the oRGB-LBP descriptor, Fig. 7(c) shows 

images unrecognized using the oRGB-LBP but recognized 

using the CLF descriptor, and Fig. 7(d) shows images 

unrecognized using the grayscale-LBP but recognized when 

combined with the CLF, i.e., the CGLF descriptor. 

We ran the same set of experiments on the KTH-TIPS 

dataset with the aforementioned training and test image sets. 

The best result on this dataset while using a single color space 

was once again from the oRGB-LBP descriptor, which 

achieves a 99.1% classification rate with an improvement of 

3% over the grayscale-LBP. The CLF and the CGLF 

descriptors are tied at 99.6%. Table IV shows a comparison of 

our results with those obtained from other methods in [11], 

[19], [31]. In the oRGB color space, our technique 

outperforms the state of the art on this dataset even without 

combining color descriptors. Combined LBP descriptors (CLF 

and CGLF) improve upon the result in [11], previously the 

best result on this dataset. 

 

VI. CONCLUSION 

We have proposed four new color descriptors: the oRGB-

LBP descriptor, and then integrated it with other color LBP 

features to produce the Color LBP Fusion (CLF), the Color 

Grayscale LBP Fusion (CGLF), and the CGLF+PHOG 

descriptors for scene image and image texture classification 

with applications to image search and retrieval. Results of the 

experiments using three grand challenge datasets show that 

our oRGB-LBP descriptor improves recognition performance 

upon other color LBP descriptors, the CLF, the CGLF, and the 

CGLF+PHOG descriptors perform better than the other color 

LBP descriptors. The fusion of multiple Color LBP descriptors 

(CLF) and Color Grayscale LBP descriptor (CGLF) show 

improvement in the classification performance, which 

indicates that various color LBP descriptors are not redundant 

for image classification tasks. 
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