
Int. J. Biometrics, Vol. x, No. x, xxxx

New Color SIFT Descriptors for Image
Classification with Applications to Biometrics

Abhishek Verma and Chengjun Liu

Department of Computer Science
New Jersey Institute of Technology
Newark, NJ 07102, USA
E-mail:{av56, chengjun.liu}@njit.edu

Jiancheng (Kevin) Jia

International Game Technology
Reno, NV 89521, USA
E-mail: kevin.jia@igt.com

Abstract: This paper first presents a new oRGB-SIFT descriptor,

and then integrates it with other color SIFT features to produce the

novel Color SIFT Fusion (CSF) and the Color Grayscale SIFT Fusion

(CGSF) descriptors for image classification with special applications

to biometrics. Classification is implemented using a novel EFM-KNN

classifier, which combines the Enhanced Fisher Model (EFM) and the

K Nearest Neighbor (KNN) decision rule. The effectiveness of the

proposed descriptors and classification method are evaluated using 20

image categories from two large scale, grand challenge datasets: the

Caltech 256 database and the UPOL Iris database. The experimental

results show that (i) the proposed oRGB-SIFT descriptor slightly

improves recognition performance upon other color SIFT descriptors;

and (ii) both the CSF and the CGSF descriptors perform better than

the other color SIFT descriptors.
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1 Introduction

Color features provide powerful information for biometric image classification,
indexing, and retrieval [19], [27], [23], as well as for identification of object and
natural scene categories and geographical features from images. The choice of
a color space is important for many computer vision algorithms. Different color
spaces display different color properties. With the large variety of available color
spaces, the inevitable question that arises is how to select the color space that
produces the best result for a particular computer vision task. Two important
criteria for color feature detectors are that they should be stable under varying
viewing conditions, such as changes in illumination, shading, highlights, and they
should have high discriminative power. Color features such as the color histogram,
color texture and local invariant features provide varying degrees of success against
image variations such as viewpoint and lighting changes, clutter and occlusions [4],
[3], [25].

Recently, there has been much emphasis on the detection and recognition of
locally affine invariant regions [20], [22], [2]. Successful methods are based on
representing a salient region of an image by way of an elliptical affine region,
which describes local orientation and scale. After normalizing the local region
to its canonical form, image descriptors are able to capture the invariant region
appearance. Interest point detection methods and region descriptors can robustly
detect regions, which are invariant to translation, rotation and scaling [20], [22], [2].



New Color SIFT Descriptors

Affine region detectors when combined with the intensity Scale-Invariant Feature
Transform (SIFT) descriptor [20] has been shown to outperform many alternatives
[22].

In this paper, we extend the SIFT descriptor to different color spaces, including
the recently proposed oRGB color space [2] and propose a new oRGB-SIFT feature
representation, and then integrate it with other color SIFT features to produce
the Color SIFT Fusion (CSF), and the Color Grayscale SIFT Fusion (CGSF)
descriptors for image category classification with special applications to biometrics.
Classification is implemented using a novel EFM-KNN classifier [17], [15], which
combines the Enhanced Fisher Model (EFM) and the K Nearest Neighbor (KNN)
decision rule [5]. The effectiveness of the proposed descriptors and classification
method will be evaluated using 20 image categories from two large scale, grand
challenge datasets: the Caltech 256 database and the UPOL Iris database.

2 Related Work

This section briefly surveys the recent work on biometric image retrieval and
object and scene recognition. In recent years, use of color as a means to biometric
image recognition [19], [12], [23] and object and scene classification has gained
popularity. Color features can capture discriminative information by means of the
color invariants, color histogram, color texture, etc. One of the earlier works is
the color indexing system designed by Swain and Ballard, which uses the color
histogram for image inquiry from a large image database [26]. More recent work
on color based image classification appears in [19], [27], [13] that propose several
new color spaces and methods for face classification and in [1] the HSV color
space is used for the scene category recognition. Evaluation of local color invariant
descriptors is performed in [3]. Fusion of color models, color region detection and
color edge detection have been investigated for representation of color images [25].
Key contributions in color, texture, and shape abstraction have been discussed in
Datta et al. [4].

Efficient retrieval requires a robust feature extraction method that has the
ability to learn meaningful low-dimensional patterns in spaces of very high
dimensionality [9], [18], [14]. Low-dimensional representations are also important
when one considers the intrinsic computational aspect. PCA has been widely
used to perform dimensionality reduction for image indexing and retrieval [15],
[11]. Recently, Support Vector Machine (SVM) classifier for multiple category
recognition has gained popularity [28], [1] though it suffers from the drawback of
being computationally too expensive on large scale image classification tasks. The
EFM classifier has achieved good success for the task of image based recognition
[17], [16], [10].

3 New Color SIFT Descriptors

We first review in this section five color spaces in which our new color SIFT
descriptors are defined, and then discuss five conventional SIFT descriptors: the
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RGB-SIFT, the rgb-SIFT, the HSV-SIFT, the YCbCr-SIFT, and the grayscale-
SIFT descriptors. We finally present three new color SIFT descriptors: the oRGB-
SIFT, the Color SIFT Fusion (CSF), and the Color Grayscale SIFT Fusion
(CGSF) descriptors for image classification with applications to biometrics.

A color image contains three component images, and each pixel of a color
image is specified in a color space, which serves as a color coordinate system.
The commonly used color space is the RGB color space. Other color spaces are
usually calculated from the RGB color space by means of either linear or nonlinear
transformations.

To reduce the sensitivity of the RGB images to luminance, surface orientation,
and other photographic conditions, the rgb color space is defined by normalizing
the R, G, and B components:

r = R/(R + G + B)
g = G/(R + G + B)
b = B/(R + G + B)

(1)

Due to the normalization r and g are scale-invariant and thereby invariant to light
intensity changes, shadows and shading [6].

The HSV color space is motivated by human vision system because human
describes color by means of hue, saturation, and brightness. Hue and saturation
define chrominance, while intensity or value specifies luminance [7]. The HSV color
space is defined as follows [24]:
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The YCbCr color space is developed for digital video standard and television
transmissions. In YCbCr, the RGB components are separated into luminance,
chrominance blue, and chrominance red:
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where the R, G, B values are scaled to [0,1].
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Figure 1 Color component images in the five color spaces: RGB, HSV, rgb, oRGB,
and YCbCr. The color image is from the Caltech 256 dataset, whose
grayscale image is displayed as well.

The oRGB color space [2] has three channels L, C1 and C2. The primaries of
this model are based on the three fundamental psychological opponent axes: white-
black, red-green, and yellow-blue. The color information is contained in C1 and
C2. The value of C1 lies within [-1, 1] and the value of C2 lies within [-0.8660,
0.8660]. The L channel contains the luminance information and its values range
between [0, 1]:
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Fig. 1 shows the color component images in the five color spaces: RGB, HSV,
rgb, oRGB, and YCbCr.

The SIFT descriptor proposed by Lowe transforms an image into a large
collection of feature vectors, each of which is invariant to image translation,
scaling, and rotation, partially invariant to the illumination changes, and robust
to local geometric distortion [20]. The key locations used to specify the SIFT
descriptor are defined as maxima and minima of the result of the difference of
Gaussian function applied in the scale-space to a series of smoothed and resampled
images. SIFT descriptors robust to local affine distortions are then obtained by
considering pixels around a radius of the key location.

The grayscale SIFT descriptor is defined as the SIFT descriptor applied to
the grayscale image. A color SIFT descriptor in a given color space is derived
by individually computing the SIFT descriptor on each of the three component
images in the specific color space. This produces a 384 dimensional descriptor that
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is formed from concatenating the 128 dimensional vectors from the three channels.
As a result, four color SIFT descriptors are defined: the RGB-SIFT, the YCbCr-
SIFT, the HSV-SIFT, and the rgb-SIFT descriptors.

The three new color SIFT descriptors are defined in the oRGB color space and
the fusion in different color spaces. In particular, the oRGB-SIFT descriptor is
constructed by concatenating the SIFT descriptors of the three component images
in the oRGB color space. The Color SIFT Fusion (CSF) descriptor is formed by
fusing the RGB-SIFT, the YCbCr-SIFT, the HSV-SIFT, the oRGB-SIFT, and
the rgb-SIFT descriptors. The Color Grayscale SIFT Fusion (CGSF) descriptor is
obtained by fusing further the CSF descriptor and the grayscale-SIFT descriptor.

4 The Novel EFM-KNN Classifier

Image classification using the new descriptors introduced in the preceding section
is implemented using a novel EFM-KNN classifier [17], [15], which combines the
Enhanced Fisher Model (EFM) and the K Nearest Neighbor (KNN) decision rule
[5]. Let X ∈ R

N be a random vector whose covariance matrix is ΣX :

ΣX = E{[X − E(X )][X − E(X )]t} (5)

where E(·) is the expectation operator and t denotes the transpose operation. The
eigenvectors of the covariance matrix ΣX can be derived by PCA:

ΣX = ΦΛΦt (6)

where Φ = [φ1φ2 . . . φN ] is an orthogonal eigenvector matrix and Λ =
diag{λ1, λ2, . . . , λN} a diagonal eigenvalue matrix with diagonal elements in
decreasing order. An important application of PCA is dimensionality reduction:

Y = P tX (7)

where P = [φ1φ2 . . . φK ], and K < N . Y ∈ R
K thus is composed of the most

significant principal components. PCA, which is derived based on an optimal
representation criterion, usually does not lead to good image classification
performance. To improve upon PCA, the Fisher Linear Discriminant (FLD)
analysis [5] is introduced to extract the most discriminating features.

The FLD method optimizes a criterion defined on the within-class and
between-class scatter matrices, Sw and Sb [5]:

Sw =

L
∑

i=1

P (ωi)E{(Y − Mi)(Y − Mi)
t|ωi} (8)

Sb =

L
∑

i=1

P (ωi)(Mi − M)(Mi − M)t (9)

where P (ωi) is a priori probability, ωi represent the classes, and Mi and M are
the means of the classes and the grand mean, respectively. The criterion the FLD
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Figure 2 Multiple feature fusion methodology using the EFM.

method optimizes is J1 = tr(S−1

w Sb), which is maximized when Ψ contains the
eigenvectors of the matrix S−1

w Sb [5]:

S−1

w SbΨ = Ψ∆ (10)

where Ψ, ∆ are the eigenvector and eigenvalue matrices of S−1

w Sb, respectively. The
FLD discriminating features are defined by projecting the pattern vector Y onto
the eigenvectors of Ψ:

Z = ΨtY (11)

Z thus is more effective than the feature vector Y derived by PCA for image
classification.

The FLD method, however, often leads to overfitting when implemented in
an inappropriate PCA space. To improve the generalization performance of the
FLD method, a proper balance between two criteria should be maintained: the
energy criterion for adequate image representation and the magnitude criterion for
eliminating the small-valued trailing eigenvalues of the within-class scatter matrix
[15]. A new method, the Enhanced Fisher Model (EFM), is capable of improving
the generalization performance of the FLD method [15]. Specifically, the EFM
method improves the generalization capability of the FLD method by decomposing
the FLD procedure into a simultaneous diagonalization of the within-class and
between-class scatter matrices [15]. The simultaneous diagonalization is stepwise
equivalent to two operations as pointed out by Fukunaga [5]: whitening the
within-class scatter matrix and applying PCA to the between-class scatter matrix
using the transformed data. The stepwise operation shows that during whitening
the eigenvalues of the within-class scatter matrix appear in the denominator.
Since the small (trailing) eigenvalues tend to capture noise [15], they cause the
whitening step to fit for misleading variations, which leads to poor generalization
performance. To achieve enhanced performance, the EFM method preserves a
proper balance between the need that the selected eigenvalues account for most
of the spectral energy of the raw data (for representational adequacy), and the
requirement that the eigenvalues of the within-class scatter matrix (in the reduced
PCA space) are not too small (for better generalization performance) [15].

Image classification is implemented using the EFM-KNN classifier, and Fig. 2
shows the fusion methodology of multiple descriptors using the EFM-KNN
classifier.
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Figure 3 Example images from the following categories: (a) Faces category in the
Caltech 256 dataset; (b) People category in the Caltech 256 dataset; (c) Iris
category in the UPOL dataset.

5 Experiments

We apply the following two publicly accessible datasets to evaluate our proposed
descriptors and classification method: the Caltech 256 object categories [8] and the
UPOL iris dataset [21]. The Caltech 256 dataset [8] holds 30,607 images divided
into 256 categories and a clutter class. The images have high intra-class variability
and high object location variability. Each category contains at least 80 images, a
maximum of 827 images and the mean number of images per category is 119. The
images have been collected from Google and PicSearch, they represent a diverse set
of lighting conditions, poses, back-grounds, image sizes, and camera systematics.
The various categories represent a wide variety of natural and artificial objects
in various settings. The images are in color, in JPEG format with only a small
number of grayscale images. The average size of each image is 351 x 351 pixels. See
Fig. 3 (a) and (b) for some sample images from the Faces and People categories
and Fig. 4 for some images from the object categories. The UPOL iris dataset
[21] contains 128 unique eyes (or classes) belonging to 64 subjects with each class
containing 3 sample images. The images of the left and right eyes of a person
belong to different classes. The irises were scanned by a TOPCON TRC50IA
optical device connected with a SONY DXC-950P 3CCD camera. The iris images
are in 24-bit PNG format (color) and the size of each image is 576 x 768 pixels.
See Fig. 3 (c) for some sample images from this dataset.

In order for us to make a thorough comparative assessment of our descriptors
and methods; from the above two databases we generate the Biometric Dataset
with 20 categories that includes the Iris category from the UPOL dataset, Faces
and People categories and 17 randomly chosen categories from the Caltech 256
dataset.
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Figure 4 Example images from the Caltech 256 dataset.

The classification task is to assign each test image to one of a number of
categories. The performance is measured using a confusion matrix, and the overall
performance rates are measured by the average value of the diagonal entries of
the confusion matrix. The dataset is split randomly into two separate sets of
images for training and testing. We randomly select from each class 60 images for
training and 20 images for testing. There is no overlap in the images selected for
training and testing. The classification scheme on the dataset compares the overall
and category wise performance of eight different descriptors: the oRGB-SIFT, the
YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, the rgb-SIFT, the grayscale-SIFT,
the CSF, and the CGSF descriptors. Classification is implemented using a novel
EFM-KNN classifier, which combines the Enhanced Fisher Model (EFM) and the
K Nearest Neighbor (KNN) decision rule.

The first set of experiments assesses the overall classification performance of
the eight descriptors on the Biometric Dataset with 20 categories. Note that
for each category we implement five-fold cross validation for each descriptor
using the EFM-KNN classification technique to derive the average classification
performance. As a result, each descriptor yields 20 average classification rates
corresponding to the 20 image categories. The mean value of these 20 average
classification rates is defined as the mean average classification performance for the
descriptor. Fig. 5 shows the mean average classification performance of the eight
descriptors: the oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT,
the rgb-SIFT, the grayscale-SIFT, the CSF, and the CGSF descriptors.

The best recognition rate that we obtain is 75.5% from the CGSF, which is a
very respectable value for a dataset of this size and complexity. The oRGB-SIFT
achieves the classification rate of 62.8%. It outperforms other two color descriptors
(HSV-SIFT and rgb-SIFT) while showing roughly the same success rate as the
YCbCr-SIFT and RGB-SIFT, both are in second place with 62.5%. It is noted that
fusion of the color SIFT descriptors (CSF) improves upon the grayscale-SIFT by
a huge 12.8% margin. The grayscale-SIFT descriptor improves the fusion (CGSF)
result by a good 4.2% margin upon the CSF descriptor.
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Figure 5 The mean average classification performance of the eight descriptors: the
oRGB-SIFT, the YCbCr-SIFT, the RGB-SIFT, the HSV-SIFT, the rgb-SIFT,
the grayscale-SIFT, the CSF, and the CGSF descriptors.

The second set of experiments evaluates the classification performance using
the PCA and the EFM-KNN methods respectively by varying the number
of features over the following eight descriptors: CGSF, CSF, YCbCr-SIFT,
oRGB-SIFT, RGB-SIFT, HSV-SIFT, Grayscale-SIFT, and rgb-SIFT. We compute
classification performance for up to 780 features with the PCA method.

From Fig. 6 it can be seen that the success rate for the CGSF stays consistently
above that of the CSF over varying number of features. These two descriptors
show an increasing trend till 660 features and start to dip slightly thereafter. The
YCbCr-SIFT and oRGB-SIFT show a similar increasing trend and decline only
towards the later half. The HSV-SIFT and RGB-SIFT dip in the middle and gain
steadily thereafter. Performance of the grayscale-SIFT varies more sharply over
the increasing number of features peaking at 540 features.

Using the EFM-KNN method, we compute the success rates for up to 19
features. From Fig. 7 it can be seen that the success rate for the CGSF
stays consistently above that of the CSF over varying number of features and
peaks between 18 and 19 features. These two descriptors by and large show an
increasing trend throughout. The oRGB-SIFT, YCbCr-SIFT, and RGB-SIFT show
an increasing trend and outperform the rest of the descriptors. The grayscale-SIFT
maintains its higher performance over the rgb-SIFT for the varying number of
features.

The third set of experiments assesses the eight descriptors using the EFM-
KNN classifier on individual image categories. Here we perform a detailed analysis
of the performance of the descriptors with the EFM-KNN classifier over all the
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Figure 6 Classification results using the PCA method across the eight descriptors
with varying number of features on the Biometric dataset.

Figure 7 Classification results using the EFM-KNN method across the eight
descriptors with varying number of features on the Biometric dataset.

twenty image categories. First we present the classification results on the three
biometric categories. Table 1 shows that the Iris category has a 100% recognition
rate across all the descriptors. For the Faces category the color SIFT descriptors
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Table 1 Category Wise Descriptor Performance (in percentage %) Split-out with the
EFM-KNN Classifier on the Biometric Dataset. Note that the categories are
sorted on the CGSF results.

Category CGSF CSF oRGB YCbCr RGB HSV rgb Gray
SIFT SIFT SIFT SIFT SIFT SIFT

iris 100 100 100 100 100 100 100 100

faces 100 100 95 90 95 95 95 75
people 70 60 40 40 35 40 50 45

cartman 100 95 90 100 95 85 80 90
grand piano 100 95 85 85 70 95 65 90
roulette wheel 95 95 90 75 85 75 85 75
grapes 90 90 70 95 80 70 50 60
waterfall 90 95 80 75 85 70 95 75
human skeleton 90 80 70 60 75 65 65 60
rainbow 85 80 55 35 60 65 80 75
laptop 85 80 75 90 70 70 60 65
mountain bike 80 80 75 70 80 70 75 85

rotary phone 80 80 60 75 45 70 35 45
cockroach 75 70 50 50 60 55 55 55
centipede 75 65 55 60 55 55 55 45
owl 60 45 40 45 30 25 25 25
buddha 50 40 40 65 45 20 40 45
jesus christ 40 30 35 10 30 25 20 20
wheelbarrow 25 20 25 10 25 20 10 25

snake 20 25 25 20 30 20 20 15

Mean 75.5 71.25 62.75 62.5 62.5 59.5 58 58.5

outperform the grayscale-SIFT descriptor by 15% to 20% and the fusion of all color
descriptors (CSF) reaches a 100% success rate. The People category achieves a high
success rate of 70% with the CGSF, which is a respectable recognition rate when
we consider very high intra-class variabilities due to the challenging background,
variable postures, variable appearance, occlusion, multiple humans in the same
image, and different illumination conditions. Fusion of the individual color SIFT
descriptors (CSF) improves the classification performance, which indicates that
various color descriptors are not redundant for recognition of the People category.

The average success rate for the CGSF descriptor over the top 15 categories
is 87.7% with only five categories below the 70% mark. Individual color SIFT
features improve upon the grayscale-SIFT features for most of the categories, in
particular for the Grapes, the Roulette wheel, the Waterfall, and the Rotary phone
categories. The CSF descriptor almost always improves upon the grayscale-SIFT
descriptor, with the exception of only a few categories where it performs at par
or slightly below. The CGSF descriptor either is at par or improves upon the
CSF descriptor for all categories with the exception of the Waterfall and snake
categories.



New Color SIFT Descriptors

Figure 8 Image recognition using the EFM-KNN classifier: (a) examples of the
correctly classified images from the three biometric image categories; (b)
images unrecognized using the grayscale-SIFT descriptor but recognized using
the oRGB-SIFT descriptor; (c) images unrecognized using the oRGB-SIFT
descriptor but recognized using the CSF descriptor.

Figure 9 Image recognition using the EFM-KNN classifier: (a) example images
unrecognized using the grayscale-SIFT descriptor but recognized using the
oRGB-SIFT descriptor; (b) example images unrecognized using the
oRGB-SIFT descriptor but recognized using the CSF descriptor.

The final set of experiments further assesses the performance of the descriptors
based on the correctly recognized images. Fig. 8 (a) for some examples of the
correctly classified images from the Iris, Faces, and People categories. Notice the
high intra-class variabilities for the Faces and People classes. Fig. 8 (b) shows
some example images from the Faces class that are not recognized by the EFM-
KNN classifier using the grayscale-SIFT descriptor but are correctly recognized
using the oRGB-SIFT descriptor. This reaffirms the importance of color and
the distinctiveness of the oRGB-SIFT descriptor for image category recognition.
Fig. 8 (c) shows some images that are not recognized by the EFM-KNN classifier
using the oRGB-SIFT descriptor but are correctly recognized by using the CSF
descriptor.

Fig. 9 (a) shows some example images that are not recognized by the EFM-
KNN classifier using the grayscale-SIFT descriptor but are correctly recognized
using the oRGB-SIFT descriptor. Fig. 9 (b) displays some images that are not
recognized by the EFM-KNN classifier using the oRGB-SIFT descriptor but are
correctly recognized using the CSF descriptor.
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6 Conclusion

We have proposed a new oRGB-SIFT feature descriptor, and then integrated it
with other color SIFT features to produce the Color SIFT Fusion (CSF) and the
Color Grayscale SIFT Fusion (CGSF) descriptors. Results of the experiments using
20 image categories from two large scale, grand challenge datasets show that our
oRGB-SIFT descriptor improves recognition performance upon other color SIFT
descriptors, and both the CSF and the CGSF descriptors perform better than the
other color SIFT descriptors. The fusion of both Color SIFT descriptors (CSF)
and Color Grayscale SIFT descriptor (CGSF) show significant improvement in the
classification performance, which indicates that various color-SIFT descriptors and
grayscale-SIFT descriptor are not redundant for image classification.
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