The Gender Gap in STEM: The Unique Case of Computer Science

Linda J. Sax UCLA

Overview of Two STEM Projects

Gender Trends in STEM: 1971-2011

BRAID Initiative to Study Diversity in Computer Science

Building Recruiting And Inclusion for Diversity

Total Enrollment in Colleges and Universities (1966-2013)

Women Overrepresented Across All Fields, but Underrepresented in STEM

Proportions of Bachelor's Degree Recipients, by Gender

Source: National Center for Education Statistics, Digest of Education Statistics, 2011

Explanations for the Gender Gap in STEM

Educational Settings

Forces Beyond the Classroom

Educational Settings

- Women begin to opt out of STEM courses in middle and high school
 - Women underrepresented in AP courses in STEM (Calculus, Physics, Chemistry, Computer Science)
- * Unwelcome climate in many college STEM majors
 - Large lecture halls, grading on a curve
 - Underrepresentation of women = Less opportunity for female friendship groups in STEM
- * Teachers/Faculty
 - More traditional teaching practices (emphasis on lecturing, not studentcentered methods)
 - Faculty seen as intimidating (more impactful for female students)
 - Lack of female role models and mentors in STEM

Forces Beyond the Classroom

* Sense of belonging in STEM

- Science perceived as masculine domain by students and parents
- Science careers perceived as competitive, unwelcoming and difficult to balance work-family
- Societal benefits matter, but not clearly understood

* Women's Lower Self-confidence

(% rating "above average" or "highest 10%" in 2011):

- Computer abilities (47.4% of men, 30.3% of women)
- Math abilities (55.6% of men, 36.1% of women)

Enduring Gender Gap in Self-Rated Mathematical Ability

(% Above Average or Highest 10%)

How Has the Gender Gap in STEM Changed Over Time?

Proportion of Students Intending to Major in STEM, by Gender

Gender Gap Narrows... Then Widens

Difference in Men's and Women's Intention to Major in STEM

-25

Proportion of Women-Men

Need to Consider Differences Across STEM Fields

Women's Relative Representation in STEM Varies by Field

🛛 Women 🛛 🖿 Men

Biological Sciences Gender Gap Reversal

Math/Statistics No Gender Gap

Physical Sciences Diminished Gender Gap

Engineering Stable(ish) Gender Gap

Computer Science Fluctuating Gender Gap

Proportion of Prospective Computer Science Majors who are Female (1971-2011)

Women as % of all Computer Science Majors

Why Focus on Computer Science?

- Global demand for individuals with computer science training (valuable in any field)
- Computer-related careers among the fastest growing and highest paying occupations
- Number of colleges offering a CS degree has grown from 123 to 600 in past forty years
- Women remain vastly underrepresented in CS occupations
 - Women only 20% of software developers = women's voices not reflected in many emerging technologies

NSF-Funded Research (HRD #1135727)

- In order to attract more women to CS, we need to better understand female CS majors
 - How do they differ from male computer science majors?
 - How do they differ from women in other STEM fields?
 - How have they changed over the past four decades?

Data Source

- * CIRP Freshman Survey
 - * Over 8 million students entering over 1,000 baccalaureate institutions
- Focuses on 5 STEM fields: Biological sciences, Computer Science, Engineering, Math/statistics, Physical Sciences
- * Analyzes female and male STEM majors over the past 40 years (1971-2011)

Methods

Data Source:

- CIRP Freshman Survey
- Over 8 million students entering over 1,000 baccalaureate institutions between 1971-2011

Key comparison groups

- 54,845 women and 149,766 men planning to major in CS
- More than 1.7 million students planning to major in biological sciences, physical sciences, math/stats, and engineering
- Summary of findings in:
 - Background traits
 - Self-ratings
 - Community orientation
 - Career aspirations

Key Findings: Background Traits

Racial/Ethnic Distribution of Female Computer Science Majors (1971-2011)

Percentage of CS Bachelor's Degree Earners who are Female, by Race/Ethnicity

% Female

Median Family Income (1971-2011) (In 2011 Dollars)

A+/A High School GPA, by Field and Gender (2011)

Women Averaging A+, A, or A- Grades in High School (1971-2011)

Key Findings: Self-Ratings

Self-Rating Academic Ability (2011) (% Indicating "Highest 10%")

Self-Rating Intellectual Self-Confidence (2011) (% Indicating "Highest 10%")

Self-Rating Leadership Ability (2011) (% Indicating "Above Average" or "Highest 10%")

Self-Rating Drive to Achieve (2011) (% Indicating "Above Average" or "Highest 10%")

Self-Rating Emotional Health (2011) (% Indicating "Above Average" or "Highest 10%")

Women's Self-Rating Emotional Health (1985-2011) (% Indicating "Highest 10%" or "Above Average")

Self-Rating Physical Health (2011) (% Indicating "Above Average" or "Highest 10%")

Women's Self-Rating Physical Health (1985-2011) (% Indicating "Above Average" or "Highest 10%")

Self-Rating Artistic Ability (2011) (% Indicating "Highest 10%")

Women's Self-Rating Artistic Ability (1971-2011) (% Indicating "Highest 10%")

Key Findings: Community Orientation

Goal: Become a Community Leader (2011) (% Indicating "Essential" or "Very Important")

Goal: Become Involved in Environmental Programs (2011) (% Indicating "Essential" or "Very Important")

Will Participate in Community Service or Volunteer Work (2011) (% Indicating "Very Good Chance")

Key Findings: Career Aspirations

Career Aspirations of Male and Female CS Majors

Other Career Undecided Career Computer Programmer

Proportion of Entering Female CS Majors Who Aspire to be Computer Programmers (1971-2011)

Proportion of Entering Female CS Majors Who Are Undecided about their Career Aspirations (1971-2011)

Conclusion and Implications

CS tends to attract women who...

- Have low ratings of their emotional and physical health
 - Need to understand which comes first (Chicken-egg phenomenon)
- Are less committed to serving communities
 - How to rebrand CS to emphasize impact on society?
- Are increasingly creative and artistic
 - Do these women stay in CS and what do they do?
- Not necessarily planning on careers as programmers
 - What happens to these career plans over time?

Next Steps...

- Examines strategies to promote gender and racial/ethnic diversity in undergraduate computing
 - * Revamp intro courses
 - * Promote interdisciplinary CS
 - * Build community
 - * K-12 outreach
- * \$2.3 million in research funding
 - National Science Foundation, the Anita Borg Institute, Google, Facebook, Microsoft, Intel, and the Computing Research Association
- * Mixed-methods study:
 - * Five-year longitudinal study of students taking introductory CS courses nationwide
 - * Surveys of computer science faculty
 - Interviews with department chairs

Building Recruiting And Inclusion for Diversity