6TH ANNUAL STUDENT RESEARCH SYMPOSIUM

April 7 & 8, 2021
@3:30 p.m.
Posters and Oral Presentations [Online]

attract, inspire, mentor, support students

AIMS
COLLEGE OF ENGINEERING AND COMPUTER SCIENCE

CSUN
This collaborative project is led by the College of Engineering and Computer Science (CECS) at California State University, Northridge (CSUN), in partnership with four community colleges: Glendale Community College (GCC), College of the Canyons (COC), Pierce College, and Moorpark College. It builds on the highly successful and nationally recognized AIMS² program that has served approximately 1500 students during the past decade, supported by the U.S. Department of Education and led by Dr. S. K. Ramesh, faculty and staff from the partner institutions. The program was named a 2019 Example of Excelencia in the baccalaureate program category, and was a finalist the year prior in 2018. It was one of ten programs worldwide shortlisted for the 2018 Airbus Global Engineering Deans Council Diversity award. It was also previously recognized by Excelencia in Education with an Honorable Mention award (2014), and as a Bright Spot in Hispanic Education (2015) by the White House Initiative for Educational Excellence for Hispanics for its success in retention and improved graduation of Latinx students and underrepresented minorities.
in engineering and computer science. Students in the AIMS² cohorts have access to special mentoring and advisement by faculty, tutoring and peer mentoring, social activities, field trips and opportunities to take part in undergraduate research projects. They are expected to carry a full academic load (a minimum of 24 semester units/year). Results from our work indicate that student contact with faculty mentors on research projects, coupled with participation in cohort group meetings, and informal interaction leads to their academic, social, and career development. The program continues to make a difference effectively bridging the achievement gaps, improving transfer success, and increasing overall graduation rates for all Latinx and low-income students in the College of Engineering and Computer Science.

Disclaimer: The contents of this brochure were developed under a grant from the U.S. Department of Education. However, those contents do not necessarily represent the policy of the U.S. Department of Education, and you should not assume endorsement by the Federal Government.
Welcome to the sixth annual AIMS² research symposium at CSUN supported through our sequel 2016 HSI-STEM collaborative grant from the U.S. Department of Education. It is hard to imagine how much the world has changed since our last symposium in September 2019. Our students were busy working on their research projects and looking forward to the symposium in fall 2020 when the pandemic emerged in March 2020. In the space of a week, the world as we knew it transitioned to online virtual modalities to protect lives and halt the spread of the virus. To say that this was challenging would be an understatement. The toll on humanity has been devastating and has affected all of us in deeply personal ways. Yet, here we are today, a year later, with the unprecedented development and deployment of vaccines to combat the virus, and the promise to return to face-to-face modalities in the not too distant future. We are rediscovering our values as we build trust, respect, and collaboration and the things that are truly important in life.

Our faculty, and staff, across AIMS² worked hard to adapt to the new technology enabled realities and found innovative ways to engage and support our students. It is that spirit that led to our 100% online virtual research program which began with a summer 2020 pilot with 4 projects and 10 students, blossoming to 7 projects and 24 students in fall 2020. Our students have adapted very well, demonstrating tremendous resilience in the face of adversity. In this year’s symposium, you have the opportunity to view student research posters on an exciting new virtual platform where you can interact live with the students, followed by oral presentations on their projects.

The National Academy of Engineering noted, “No profession unleashes the power of innovation like Engineering” in its signature 2008 publication “Changing the Conversation”. Our students, faculty, and staff are a living testament to the power of innovation. “Engineering the Future” with AIMS²! See you online in April!

S. K. Rahman
AIMS² Project Director and
Lead Principal Investigator
SUNAND BHATTACHARYA, IDSA
Associate Vice Provost for Design and Innovation Strategies
Boston College

VAUGHN CABLE
Spacecraft Antenna Research Group, Caltech-JPL
College Industry Advisory Board (Chair)
CSUN Electrical & Computer Engineering Industry Liaison Council

LUIS CARBAJO
ECE Program Alumnus
Director, Los Angeles Promise
Neighborhood, Promise Zone, Youth Policy Institute

FATIMA COLORADO
Senior Capital Sponsor
Portland General Electric

RUPA DACHERE
Member of Technical Staff, VMware
Executive Director & Founder, CodeChix.org
Computer Science Advisory Board,
University of Colorado, Boulder

LINDA FRIEDMAN
Director, Software & Systems Engineering
Northrop Grumman Corporation, Navigation Systems
CSUN Computer Science Industry Liaison Council

TONY MAGEE
Senior Metallurgist, Aerojet Rocketdyne
CSUN Manufacturing Systems Engineering &
Management Liaison Council

MICHAEL MEDINA
Director, Civic CM
CMT Program Alumnus Analyst
Consulting and Claims Services, San Diego

JENNY TIEU
Education Project Office
NASA Jet Propulsion Laboratory
Faculty Mentors

BEHZAD BAVARIAN
Manufacturing Systems Engineering & Management

KYLE DEWEY
Computer Science

TZONG-YING HAO
Civil Engineering & Construction Management

BINGBING LI
Manufacturing Systems Engineering & Management

BRUNO OSORNO
Electrical & Computer Engineering

LISA REINER
Manufacturing Systems Engineering & Management

JOHN VALDOVINOS
Electrical & Computer Engineering
YOLANDA BARRETT
AIMS² Tech Support
CECS Information Systems

JOSEFINA GUDINO
AIMS² Student Support

EMIL HENRY
AIMS² Tech Support Lead
CECS Technical Services Manager

KATHLEEN POHL
AIMS² Administrative Assistant
CECS Dean’s Assistant
POSTER SESSION [ON SPATIAL CHAT]
Wednesday, April 7, 2021 • 3:30 – 5:30 PM PST

ORAL PRESENTATIONS [ON ZOOM]
Thursday, April 8, 2021
Session A: 3:30 – 4:30 PM PST
Session B: 5:00 – 6:15 PM PST
AIMS² SIXTH ANNUAL STUDENT RESEARCH SYMPOSIUM

• POSTER SESSION [ON SPATIAL CHAT]:
 Wednesday, April 7, 2021 • 3:30 – 5:30 PM PST

• ORAL PRESENTATIONS [ON ZOOM]:
 Thursday, April 8, 2021
 Session A: 3:30 – 4:30 PM PST
 Session B: 5:00 – 6:15 PM PST

Click here for a complete schedule.

CIVIL ENGINEERING & CONSTRUCTION MANAGEMENT

• Analysis of Ground Motions and its Application to Earthquake Early-Warning Systems [Session A]
 Students: Luke Barrella, Alex Leong, Jessica Perez
 Faculty Mentor: Dr. Tzong-Ying (Kay) Hao

COMPUTER SCIENCE

• Towards the Sentiment Analysis of Tweets [Session B]
 Students: Joshua Alvarado, Nuelbella Sandoval, Fernando Vargas
 Faculty Mentor: Dr. Kyle Dewey

• Building on the Proteus Programming Language [Session B]
 Students: Simran Gill, Eileen Quiroz, Frank Serdenia
 Faculty Mentor: Dr. Kyle Dewey

ELECTRICAL & COMPUTER ENGINEERING

• Modeling and Simulation of Electric Vehicles, Energy-Battery Systems and Environmental Impact [Session A]
 Students: John Dizon, Lucia Castillo, Farouk Mostafa
 Faculty Mentor: Prof. Bruno Osorno

• Two-Dimensional Biomagnetic Model of Cardiac Tissue [Session B]
 Students: Suzanne Fisher, Jessica Frederich, Ashley Kuhnley, Robert Salone
 Faculty Mentor: Dr. John Valdovinos

MANUFACTURING SYSTEMS ENGINEERING & MANAGEMENT

• Corrosion and Corrosion Protection of Aluminum Alloys for Automotive Applications [Session A]
 Students: Beatriz Acuna, Emily Rossiter, Christopher Villalpando
 Faculty Mentors: Dr. Behzad Bavarian and Prof. Lisa Reiner

• Generative Design of Cam Plate Optimization for Metal Additive Manufacturing [Session B]
 Students: Jason Kim, Andrew Langwald, Christian Mariscal, Abraham Meiszner
 Faculty Mentor: Dr. Bingbing Li
Analysis of Strong Ground Motions and its Application to Earthquake Early-Warning Systems

Project Description: The real-time earthquake early warning system uses earthquake science and technology to detect significant earthquakes quickly so that alerts can reach many people before shaking arrives. With warning times of up to tens of seconds it is possible to mitigate the damage, but only if the seismic source parameters are determined rapidly and accurately. In this project we investigate recorded strong-motion accelerograms in California to demonstrate conventional methods of time-series analyses and calculate the wave arrival time.
Towards the Sentiment Analysis of Tweets

Project Description:
In online social networking, there is often a need to perform moderation, be it by blocking particular posts or potentially whole users. Due to the sheer quantity of posts and users, performing this moderation fully manually is often not feasible. To this end, we need automated tools which can assist human moderators. Towards assisting with this moderation, sentiment analysis is of great value. Sentiment analysis is used to automatically determine if a particular post displays a positive, negative, or neutral attitude.

The goal of this project is to build a sentiment analysis system for Twitter tweets. This system will utilize machine learning for this purpose.
Building On the Proteus Programming Language

Project Description:
In space applications, software correctness is of paramount importance. Humans are rarely physically available to reset malfunctioning software, and software bugs can (and have) lead to mission failure. For these reasons, the Jet Propulsion Lab (JPL) is particularly interested in the development and use of specialized programming languages (PLs) which can provide correctness guarantees about written software. To this end, we have been designing and implementing a new PL named Proteus for writing software with correctness guarantees. Proteus compiles to C++. Proteus is currently in an early state and is missing many common PL features.

The goal of this project is to add a number of essential common PL features to Proteus. A non-exhaustive list of possible features includes user-defined data structures, references, and function pointers. For each feature, we would discuss the impact on Proteus’ syntax and semantics, including how we could ensure the user uses the feature correctly (with types), and how we could compile the feature to C++. Once we understand the impact, we would incrementally add the feature to Proteus, which will likely require working with the entire Proteus compiler.
Modeling and Simulation of Electric Vehicles, Energy-Battery Systems and Environmental Impact

Project Description: Just recently a new state of the art vehicle called Lucid air was tested by the Federal government. The manufacturer claims that a range of approximately 500 miles per battery charge is possible. Looking into some details of the technology used, the voltage claims to have a 900VDC powertrain and smaller motors. The efficiency of the powertrain in an electric vehicle (EV) defines the efficiency of the electrical system. In this research, we propose to simulate and analyze the combined efficiency of the powertrain, and battery. We intend to focus in on three separate research topics: First, the powertrain, second, the DC-DC converter, and third, battery storage. Simulink/ MATLAB will be used to perform this research project.
Two-Dimensional Biomagnetic Model of Cardiac Tissue

Project Description: Magnetocardiograms (MCG) are biomagnetic signals that are an alternative measurement to electrocardiograms measured in a clinical setting. MCGs represent an improved and safer method to measure cardiac electrical activity in clinical scenarios where electrode placement is not possible. These biomagnetic signals are difficult to measure due to the need for specialized and highly sensitive magnetometers. Magnetoelectric laminate devices can operate as room-temperature magnetic field sensors if designed correctly. In this research project, we have developed a numerical model that simulates the electrical activity and the magnetic field distribution emanating from a piece of excitable cardiac tissue. The model will aid in the design of a room-temperature magnetoelectric laminate sensor to measure MCGs. The model uses a reaction-diffusion formulation and the Fitz-Hugh-Nagumo model for cardiac cells.
Corrosion and Corrosion Protection of Aluminum Alloys for Automotive Applications

Project Description: Lighter weight vehicles result in lower fuel consumption. As a result, automotive industries are considering the use of high strength lightweight aluminum alloys in the heat exchanging system, the body of the automobile, and the wheels. However, due to aggressive environmental exposure, corrosion is one of major concerns for these alloys. Corrosion inhibitors and coatings are the two main options to improve corrosion protection of aluminum alloys.

In this project, fellow researchers will conduct a literature survey and internet search of corrosion mechanisms of aluminum alloys in different environments, and will evaluate the existing corrosion protection techniques. The main objective of this project is to develop new green inhibitors to combat these corrosion problems.
Digital Design and Topology Optimization of Harley Davidson Engine CAM Support for Metal Additive Manufacturing

Project Description: The Cam Support Plate is critical to the success of this engine design. A failed cam support plate results in catastrophic engine failure. The Cam Support Plate supports one side of the flywheel, allowing the pinion shaft to turn the oil pump, a chain drive, and the camshaft. The Cam Support Plate directs the flow of oil from the oil pump throughout the engine. Working in conjunction with the oil pump, it is considered to be the heart of the engine. This project details the process of reverse engineering a Cam Support Plate used in the Harley Davidson Milwaukee 8 Engine. During this project, we have reverse engineered the Cam Support Plate by attempting a variety of processes including: white light and laser scanning, physical measuring, virtual recreation, redesign its oil channels, investigate surface finish and reduce the weight of the Cam support plate by using software tools such as SolidWorks, Autodesk Inventor, and SolidThinking Inspire. The focus of this project is to redesign the internal oil channels by removing the edges and making a curvy channel in order to make the oil flow smoother, look into the surface finish, change the topology, and eventually reduce the weight of the plate.
Attract Inspire Mentor Support (AIMS2) Program
California State University Northridge

Total project participants across five project sites: CSU Northridge, College of the Canyons, Glendale Community College, Moorpark College, and Los Angeles Pierce College

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>255</td>
<td>366</td>
<td>388</td>
<td>444</td>
</tr>
</tbody>
</table>

Key Program Components
- Faculty Mentoring
- Peer Mentoring
- Peer Tutoring

CSUN Mentee-Mentor Demographics

<table>
<thead>
<tr>
<th>Gender</th>
<th>Mentees</th>
<th>Mentors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>Female</td>
<td>130</td>
<td>50</td>
</tr>
<tr>
<td>Non-binary</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Not Provided</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Performance Measure Data for CSUN Project Participants
- 84% of 297 project participants who successfully completed gateway courses
- 71% of 134 project participants in good academic standing
- 97% of 127 females who successfully completed gateway courses
- 67% of 6 female project participants in good academic standing
- 3-year graduation rate from CSUN for the first two transfer cohorts of female project participants

Gains Reported on the Undergraduate Research Student Self-Assessment
- Strongly agreed or agreed that doing research confirmed their interest in their field of study (n=111)
- Reported great or good gains in confidence in their ability to do research (n=88)
- Reported great or good gains in understanding what everyday research work is like (n=87)
- Strongly agreed or agreed that their research experience has prepared them for graduate school (n=84)
- Strongly agreed or agreed that their research experience has prepared them for a job (n=102)

Contact Us
18111 Nordhoff St, Northridge, CA 91330-8295
(818) 677-4742
s.ramesh@csun.edu
www.ecs.csun.edu/aims2
Attract Inspire Mentor Support Students (AIMS²) Program
California State University Northridge

Total project participants across five project sites: CSU Northridge, College of the Canyons, Glendale Community College, Moorpark College, and Los Angeles Pierce College

Year 1
Year 2
Year 3
Year 4

CSU Northridge Participants

Mentors volunteered
Mentees matched

Key Program Components
Faculty Mentoring
Peer Mentoring
Peer Tutoring
Student Research with Faculty
Pre-professional and Career-related Activities

CSUN Mentee-Mentor Demographics

Race

- Hispanic-Latino
- African American
- Not Provided
- White-Non Hispanic
- Multi-racial
- Other
- Asian American
- Hawaiian-Pacific Islander

Performance Measure Data for CSUN Project Participants

- 84% (259 out of 297) CSUN project participants who successfully completed gateway courses
- 97% (130 out of 134) CSUN project participants in good academic standing
- 50 out of 50 Female CSUN project participants in good academic standing
- 71% (111 out of 127) Female CSUN project participants who successfully completed gateway courses
- 67% (4 out of 6) 3-year graduation rate from CSUN for the first two transfer cohorts of female project participants
- 3-year graduation rate from CSUN for the first two transfer cohorts of project participants

Gains Reported on the Undergraduate Research Student Self-Assessment

- Strongly agreed or agreed that doing research confirmed their interest in their field of study (n=111).
- Reported great or good gains in confidence in their ability to do research (n=88).
- Reported great or good gains in understanding what everyday research work is like (n=87).
- Strongly agreed or agreed that their research experience has prepared them for graduate school (n=84).
- Strongly agreed or agreed that their research experience has prepared them for a job (n=102).

Contact Us
18111 Nordhoff St, Northridge, CA 91330-8295
(818) 677-4742
s.ramesh@csun.edu
www.ecs.csun.edu/aims2
Attract Inspire Mentor Support Students (AIMS2) Program
California State University Northridge

Total project participants across five project sites: CSU Northridge, College of the Canyons, Glendale Community College, Moorpark College, and Los Angeles Pierce College

Year 4
Year 3
Year 2
Year 1

CSU Northridge Participants

Mentees matched
Mentors volunteered

Key Program Components
Faculty Mentoring
Peer Mentoring
Peer Tutoring
Student Research with Faculty
Pre-professional and Career-related Activities

CSUN Mentee-Mentor Demographics

Gender
Male
Female
Non-binary
Not Provided

Race
Hispanic-Latino
African American
Asian American
White-Non Hispanic
Hawaiian-Pacific Islander
Multi-racial
Other
Not Provided

Performance Measure Data for CSUN Project Participants

84%
259 out of 297 CSUN project participants who successfully completed gateway courses

97%
130 out of 134 CSUN project participants in good academic standing

71%
10 out of 14 3-year graduation rate from CSUN for the first two transfer cohorts of project participants

Gains Reported on the Undergraduate Research Student Self-Assessment

94.9%
75.2%
74.4%
71.8%
87.2%

Contact Us

18111 Nordhoff St, Northridge, CA 91330-8295
(818) 677-4742
s.ramesh@csun.edu
www.ecs.csun.edu/aims2
Attract Inspire Mentor Support Students (AIMS2) Program
California State University Northridge
Total project participants across five project sites: CSU Northridge, College of the Canyons, Glendale Community College, Moorpark College, and Los Angeles Pierce College

Year 4
Year 3
Year 2
Year 1

CSU Northridge Participants
Mentees matched
Mentors volunteered

Key Program Components
Faculty Mentoring
Peer Mentoring
Peer Tutoring
Student Research with Faculty
Pre-professional and Career-related Activities

CSUN Mentee-Mentor Demographics

Gender Race

Performance Measure Data for CSUN Project Participants
84%
259 out of 297 CSUN project participants who successfully completed gateway courses
111 out of 127 Female CSUN project participants who successfully completed gateway courses
97%
130 out of 134 CSUN project participants in good academic standing
100%
100%
100%
100%
100%
100%
100%

3-year graduation rate from CSUN for the first two transfer cohorts of female project participants
50 out of 50
67%
100%
100%
100%
100%
100%

Gains Reported on the Undergraduate Research Student Self-Assessment

strongly agreed or agreed that doing research confirmed their interest in their field of study (n=111).
reported great or good gains in confidence in their ability to do research (n=88).
reported great or good gains in understanding what everyday research work is like (n=87).
strongly agreed or agreed that their research experience has prepared them for graduate school (n=84).
strongly agreed or agreed that their research experience has prepared them for a job (n=102).

Contact Us
18111 Nordhoff St, Northridge, CA 91330-8295
(818) 677-4742
s.ramesh@csun.edu
www.ecs.csun.edu/aims2