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Abstract— Astronomical objects like the Sun are studied 

through remote sensing, allowing detailed analysis of atmospheric 

properties from high-resolution spectra. A typical 1-hour solar 

observation results in a 4D data cube with 700 million spectra, 

requiring individual analysis. Processing this data on a standard 

quad-core desktop takes about 250 days with current inversion 

codes. In this paper, we present a hardware-accelerated 

framework for solar spectral analysis, featuring a parameterized 

matched filter IP core. Our system processes a 3D data cube of 

700,000 spectra, matching it to an archive of 240,000 spectra in 

under 3 minutes. Operating at 90 MHz, it processes each spectrum 

in 124 µs, achieving a 241x speedup over software-based analysis 

and 10x faster than a GTX 1050 Ti GPU. Implemented on a Zynq 

UltraScale+ MPSoC, our framework uses the SSD method for 

spectral matching and can be scaled for higher accuracy and 

throughput. The IP core is highly configurable for various 

parameters, such as accuracy, wavelength points, performance, 

and speedup. This work represents the first hardware-accelerated 

system for solar spectral matching, truly accelerating the software 

algorithm on hardware, providing a significant improvement in 

performance over conventional approaches. 

Keywords—ZYNQ, SoC, Match Filter, FPGA, Solar Spectra 

Matching, High Speed Processing, Hardware Acceleration, 

Inversion, Data cube 

I. INTRODUCTION 

Astronomical objects such as stars or the Sun can only be 
studied by remote sensing as in situ measurements are rarely 
possible [1]. The primary tool is the detailed analysis of the 
electromagnetic radiation that these objects emit. Stars are 
usually spatially unresolved and thus only provide disc-
integrated radiation, while the Sun can be studied at high spatial 
resolution down to a few ten kilometers on its surface thanks to 
its relative proximity [2, 3]. For stars observations in broad 
wavelength ranges of several ten nm suffice to determine 
characteristic properties such as the average surface 
temperature. However, the largest amount of information in the 
electromagnetic spectrum is contained in the shape of absorption 
or emission lines from different chemical elements that form in 
the solar or stellar atmospheres and that contain height-
dependent information on the atmospheric properties [4]. 
Spectral imaging is a technology that integrates conventional 
imaging and spectroscopy to get both spatial and spectral 
information from an object. Although this technology was 
originally developed for remote sensing, it has been extended to 

the biomedical engineering field as a powerful analytical tool for 
biological and biomedical research [5].  

This framework can be scaled up using faster and higher 

density memories and FPGA devices to enable researchers to 

design and build a hardware accelerated computer system to 

analyze solar spectral data (or any other spectral data) in 

considerably less time and with less upfront effort than it would 

take using existing software tools alone. The following is the 

contribution of our work: 

a. Develop an FPGA framework to accelerate solar 

spectral data analysis. 

b. Implement efficient data transfer from memory and 

processing system to the spectral matching accelerator. 

c. Design a parameterized filter core for configurable 

trade-offs in accuracy, performance, and speedup. 

 

This paper presents a configurable matched filter IP core that 

finds the best-fit spectral data cube from an archive using the 

sum of squared differences (SSD) method. The IP core, designed 

for solar physics inversion codes, allows parameter tuning to 

meet user requirements. Implemented on the Xilinx Zynq 

UltraScale+ MPSoC, it combines ARM-based processing with 

programmable logic, leveraging both memory space and 

hardware parallelism. This is the first hardware implementation 

of direct solar spectra matching on reconfigurable hardware.  

The paper is organized as follows: Section II covers 

background and related work. Section III explains spectral data 

extraction from the data cube. Section IV details the hardware 

accelerator framework on the Zynq UltraScale+ MPSoC. 

Section V presents experimental results and analyzes the 

hardware implementation. Section VI concludes with key 

remarks and future work. 

II. BACKGROUND AND RELATED WORK 

The inversion process separately analyses each and every 
observed spectrum I(x, y, λ), where x, y indicate the spatial 
location and λ indicates the wavelength (see Figure 1). From the 
comparison to the pre-calculated spectral archive, a single best 
matching spectrum is found that minimizes the sum given by 
Equation (II-1): 
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Where ����is the intensity of the observed spectral data and 
��������  is the intensity of the archive spectral data. Each 
archive spectrum is uniquely coupled to one specific 
temperature stratification in the optical depth scale T(log τ) or in 
geometrical height T(z). By finding the best matching spectrum 
for each observed spectrum in a single spectral scan, one thus 
obtains a temperature cube T(x, y, z) in the solar atmosphere at 
one moment of time. Running the inversion over multiple 
spectral scans acquired at different times ti then provides a four 
dimensional temperature cube T(x, y, z, t) that traces the 
evolution of the solar atmosphere in space and time. The 
information on the thermal properties of the solar atmosphere 
can then be used to determine the two-dimensional (2D) or 
three-dimensional (3D) structure of solar structures such as 
magnetic elements [6], hot chromospheric loops [7] or flow 
channels [8]. An analysis of time series of thermal cubes can be 
used to trace wave propagation [9] or energy deposit in the upper 
solar atmosphere [10, 11]. For the solar case, high spectral 
resolution is possible due to abundant light. Capturing the Sun's 
rapid atmospheric changes also requires a cadence of a few 
seconds. Combined with high spatial resolution, this results in 
four-dimensional data cubes: spatial (x, y), spectral (λ), and 
temporal (t), as shown in Figure 1. 

 

Fig. 1. Inversion process for a spectral scan. The data cube I(x, y, λ) (top 

left) is used to extract an individual spectrum I(x, y, λ) (top right). The FPGA 
finds the best-matching spectrum from the archive, yielding the temperature 

stratification T(x, y, z) (bottom right). After processing all pixels, a 

temperature cube T(x, y, z) is generated (bottom left). The 3D rendering 
shows maximum temperature along each ray, with sunspots appearing as dark 

patterns and bright regions indicating higher temperatures. 

For modern-day imaging spectrometers such as the 
Interferometric BIdimensional Spectrometer (IBIS) [12] with a 
1k × 1k chip at a 7Hz frame rate and a 5 s cadence for a spectral 
scan, a typical data cube from a 1-hr observation contains a total 
of 1000 × 1000 × 720 = 720,000,000 spectra. To understand the 
structure and the temporal evolution of the solar atmosphere in 
detail, each and every spectrum must be examined. However, 
converting observed spectral intensities to atmospheric 
properties is complex due to contributions from different height 
layers in the atmosphere. Typically, the "inverse" problem is 
solved by adjusting a model atmosphere to match the observed 
spectrum using an iterative gradient method. The model 
atmosphere is iteratively modified by a gradient method that 
minimizes the least-squares difference between the observed 
and the synthetic spectrum [13]. This process, requiring multiple 

radiative transfer integrations, makes inversion codes slow, 
often taking several seconds per spectrum. As a result, analyzing 
data cubes with millions of spectra becomes computationally 
unfeasible. One solution is to use a pre-calculated archive of 
spectra for various atmospheric stratifications, avoiding 
repeated radiative transfer calculations [14, 15]. The inversion 
process then involves finding the closest match in the archive. 
While this approach has limitations, such as a fixed set of 
solutions, it significantly speeds up analysis, reducing 
processing time to milliseconds per spectrum on a standard 
desktop [15]. However, even with 30 ms per spectrum, 
analyzing a data cube with 720 million spectra would still take 
about 250 days of computation for 1 hour of observations. 

To the best of our knowledge, the only hardware-based 
solution to solar spectral matching/inversion problem is 
implemented by Carrascosa et al. [16. 17]. An FPGA based 
system was developed to implement radiative transfer equation 
(RTE) inversion. Authors have implemented a multiple 
instruction multiple data (MIMD) processor system on Virtex 5 
FPGA with the utilization of 21745 LUTs, 28399 FFs, 212 
BRAMs, and 136 DSP blocks running at 200 MHz. It is claimed 
that the system can achieve the speed up of 41 compared to the 
software-based solution running on standard personal computers 
(PCs). However, this may not be compared to our work as the 
framework proposed by this paper implements a true 
acceleration of the inversion software algorithms. There has not 
been any custom hardware developed for the inversion process 
in [16].  

III. UNDERSTANDING SOLAR SPECTRAL DATA 

The observed data cube is the solar chromospheric spectral 
line of Ca II IR at 854 nm, with 27 wavelength points and a 
1000×1000 pixel field of view [2]. Two data sets are prepared: 
the first is a 3D data cube rearranged into a 2D array of 
27×1,000,000; the second is the archive data, containing 
239,400 spectra of 27 wavelength points in a 2D array of 
27×239,400. Both arrays are converted to binary format using 
MATLAB and transferred to an SD memory card. Figure 2 
illustrates a conceptual data cube with 2D images at wavelengths 
1, 8, and 15. For the pixel at coordinates (400, 300), the observed 
spectral data is shown in the bottom right of Figure 2, where the 
horizontal axis represents wavelength and the vertical axis 
represents the normalized intensity at that pixel. 

 

Fig. 2. Observed solar spectra at coordinates (400, 300) with 27 different 
wavelength points for image frame sizes of 1000×1000 pixels 



IV. SOLAR SPECTRA ANALYSIS FRAMEWORK 

A. System Architecture Overview 

The components in the accelerator framework include: a 
software application that runs on an ARM cortex R5F processor, 
off-chip memory to store pixel and archive data, system 
interconnect, and the programmable logic (PL). The PL mainly 
consists of a parameterized matched filter IP core, a block 
memory (BRAM) controller and a BRAM storage unit. Figure 3 
shows the top-level block diagram of the system architecture.  

 

Fig. 3. Solar spectra accelerator system architecture 

     Solar spectral data are stored on an off-chip SD card and 

read via the FAT system. The data are transferred to DDR 

memory and loaded into PL BRAMs using DMA, which allows 

large data transfers without processor involvement. Interrupts 

are managed by the ARM generic interrupt controller (GIC), 

mapping all interrupts to the processing system (PS)’s IRQ 

input. The processing system provides the PL with requested 

observed or archive data. Since the data size exceeds BRAM 

capacity, it is divided into smaller chunks, transferred from 

DRAM to PL BRAM via DMA. The chunk size is configurable 

within the IP core. Figure 4 shows the software application 

functional diagram.  

 

Fig. 4. Processor system functional diagram 

After initialization, the first set of pixel and archive spectra 
are loaded into BRAMs. The PS triggers the matched filter IP 
core to find the best-fit archive spectrum for each pixel. An 
interrupt loads the next set of archive spectra, repeating until all 
spectra are compared. The PS reads the results, saves them to 
DDR, and sends the next set of pixel spectra. This continues 
until all pixels are matched, and the final interrupt transfers 
results to DDR and stops the PL. The bottom of Figure 3 shows 
the PL setup, where an AXI smart connector links three slave 

IPs in the PL to the PS via a high-performance AXI interface. 
Section B discusses the matched filter IP core architecture. 

B. Configurable Matched Filter IP Core Architecture 

The core of our framework is a configurable accelerated 
matched filter IP core. This parameterized module allows 
configuration of spectrum data width, wavelength points, 
BRAM usage, and depth. For a given data cube and archive, a 
module with 25 BRAMs per group is instantiated, as detailed in 
Sections IV.B.1 and IV.B.2. A decoder module ensures pixel 
and archive data are written sequentially into the appropriate 
BRAMs. Data is transferred via the high-performance AXI 
interface with 32-bit width, and pixel and archive data streams 
are read as outlined in Figure 5. 

 

Fig. 5. Parameterized matched filter IP core block diagram 

B.1 Matched Filter IP Core Memory Banks 

Figure 6 shows the addressing of BRAMs for pixel and 
archive spectra. These dual-port BRAMs have port A as write-
only and port B as read-only. For the PS, they form a memory 
space of 50 BRAMs connected in a cascaded arrangement. The 
SSD module and BRAM controller access these BRAMs 
through a decoder. Dual-port BRAMs eliminate the need for 
extra decoders and MUXs, enabling simultaneous read and write 
operations. 

 

Fig. 6. Parameterized matched filter IP core memory bank block diagram. 

The memory bank in this work is configured for N =  25 

Extract pixel spectra from data cube and store in SD memory
1

Initialize and configure the system
2

Load data from SD memory to DDR memory
3

Load first set of spectral data from DDR to local BRAM 

memory and trigger matched filter
4

Run an iterative process to find the best fit for each pixel 

spectrum in all archive spectral data
5

Transfer the best fits from local memory to DDR
6



B.2 Bank of SSD Engines 

The SSD method has been used as a measure of similarity 
between two spectra according to equation (IV-1). 
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��
      (IV-1) 

Where n is the number of wavelength data points and ai and 
bi are intensity values at corresponding points of observed and 
archive spectral data respectively. For each pair of observed and 
archive spectra data, the SSD is calculated and the minimum 
value will be selected as the best fit within each set of data that 
is loaded into the BRAMs. On the other hand, since each group 
has a shared address bus on their port B, any address provided 
with the SSD module, reads the data from the same location of 
all BRAMs in its related group. Assuming the number of 
wavelength data points is represented by Wp, in every Wp+2 = 
29 cycles, the SSD module reads 25 pixel spectra (pixel 
spectrum group) and 25 archive spectra (archive spectrum 
group) from these two groups of BRAMs. Then it calculates the 
sum of squared differences between values of each spectrum 
from the pixel spectrum group and of all spectra from the archive 
spectrum group. The result is a two-dimensional 25×25 array of 
SSDs where each row contains the results for one pixel as shown 
in Figure 7. By utilizing this method, 625 SSD operations are 
done in Wp + 2 = 29 cycles. Reading values of each spectrum in 
a serial manner for the SSD calculation (for total time of Wp + 2 
cycles) allows the parameterization of the number of wavelength 
point values in the spectrum so the design can apply to any 
spectral data cube. The SSD module runs in parallel with 
comparator and Store/Call modules. While the SSD calculates 
the sum of squared differences between all 25-pixel spectra and 
all 25 archive spectra (total of 625 SSDs), comparator processes 
the result of the SSD module done in the previous round (each 
round takes Wp + 2 cycles). For each pixel spectrum, the 
comparator compares SSDs between the pixel spectrum and all 
25 archive spectra, as well as with the minimum SSD from the 
previous round. To do this, the Store/Call module retrieves the 
best-fit spectrum indices and SSDs from dedicated BRAMs in 
advance (Figure 5). The comparator stores its results in these 
BRAMs after processing each group of pixels. Designed to 
minimize resource usage, the comparator performs comparisons 
sequentially within its Wp + 2 cycles. Control signals between 
the matched filter IP core and the PL are transferred via the 
interrupt IP with an embedded AXI-Lite interface. For our 
design, the number of SSD engines was chosen to be 625 to fully 
utilize FPGA resources. Each SSD engine needs 4 DSP blocks 
to multiply two 27-bit numbers. The total number of DSP blocks 
available on XCZU9EG is 2520. Also, the number of BRAMs 
is related to the number of SSDs based on the Equation (IV-2) 
according to Figure 7. This gives 25 BRAMs for every group. 
The size of pixel spectra and archive data are still much larger 
than the total sizes of BRAMs. For this reason, data are divided 
into sets. The detail of this is presented in Section V.B. 
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Fig. 7. Parameterized N×N SSD engine pipelined array embedded in 

matched filter IP core. The SSD bank in this work is configured for N = 25 for 

total of 625 SSD engines. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

We implemented our hardware accelerated framework for 
solar spectral matching on Zynq UltraScale+ XCZU9EG 
running at 90 MHz. In the following we will discuss the 
implementation details.  

A. FPGA Implementation Results 

Table 1 shows the area utilization of the complete hardware 
accelerated system on Zynq UltraScale+XCZU9EG equivalent 
to the system architecture shown in Figure 3. Our implemented 
hardware accelerated framework can process a three-
dimensional data cube of 700,000 spectra to find the best fit to 
the observation from an archive of 240,000 pre-calculated 
spectra. We have measured the number of FPGA resources for 
two different parameters: wavelength data point data width (8, 
14, 20, and 27), and the number of BRAMs corresponding to the 
number of SSD operations (10, 15, 20, and 25). Results of these 
experiments are illustrated in Figure 8 when implemented on a 
Zynq MPSOC for these parameters. 

Table 1: Solar spectral matching FPGA resource utilization on XCZU9EG 

Subsystem LUT FF BRAM (18 Kb) 

 

DSP 

Interrupt Controller 55 170 0 0 

Filter IP Core 137562 118629 728 2507 

BRAM Controller 296 288 32 0 

AXI Interconnect 7864 8850 0 0 

Total 145787 127971 760 2507 

Available 274080 548160 912 2520 

Utilization Ratio 49.97% 21.59% 79.82% 99.48% 

 



    
 

Fig. 8. Device utilization of parameterized filter IP core for different parameters: LUTs (Left), FFs (Middle Left), BRAMs (Middle Right), DSP blocks (Right) 

B. Effect of matched Filter IP Core Parameters on 

Implementation Results 

The matched filter IP core is a customizable, 
parameterized module for various applications. It can be 
adjusted for the number of wavelength points, data width, 
memory depth, and SSD operations. More wavelength points 
improve accuracy but increase latency, while wider data 
increases resolution and accuracy. Increasing SSD operations 
boosts speed, and greater memory depth processes more 
spectra per round, reducing processing time. More 
wavelength points improve inversion accuracy but increase 
latency. Increasing data width enhances resolution and 
accuracy. The number of SSD operations has the greatest 
impact on speed, while greater memory depth processes more 
spectra per round, reducing profile processing time and 
improving performance. Memory depth is limited by FPGA 
resources, so careful selection of this parameter optimizes 
system performance. Increasing wavelength points has 
minimal impact on FPGA area usage, as shown in Table 2, 
which compares performance with 27 to 128 wavelength 
points, 27-bit data width, and 10 BRAMs per group. 

Table 2: Effect of wavelength points on FPGA area utilization 

Points LUT FF BRAM (36Kb) DSP 

27 24770 20917 323 404 

64 24764 21396 324 404 

128 24796 21594 325 404 

 

Assume Np is the number of pixel spectra, Nl is the number 
of archive spectra, Wp is is the number of wavelength points 
in one spectrum, Bp and Bl are the number of spectra in 
BRAMs (total size of BRAMs divided by the number of 
wavelength points Wp) for one set of pixel spectra and one set 
of archive spectra respectively, Tclk is the PL clock cycle time, 
and finally K is the number of BRAM instances for one set of 
pixel or archive spectra in the PL, then the number of pixel 
spectrum sets is pset = Np/Bp, the number of archive spectrum 
sets is lset = Nl/Bl , the number of groups (group refers to 
spectra located at the same addresses in BRAMs) in one set of 
pixel spectra is cntp = Bp/K and the number of groups in one 
archive spectra set is cntl = Bl/K . Since for each set of pixel 
the whole archive should be transferred to the PL, the 
estimated time spent on data transfer is (Bp +Nl) × Wp × Tclk 
and the time for all pixel sets is given by Equation (V-1): 

Total process time in PS = pset × (Bp+Nl) × Wp × Tclk =  

(Np+Np/Bp × Nl) × Wp × Tclk  (V-1) 

The time that the PL takes to process one set of pixel 
spectra with one set of archive spectra is cntl x cntp x (Wp + 
2) × t. So the estimated time spent in the PL for the whole 
process can be written using Equation (V-2): 

Total process time in PL =  

cntl × cntp × (Wp + 2) × Tclk × lset × pset =  

(Wp + 2) × Tclk × Nl/K × Np/K  (V-2) 

In these two equations the factors that can be changed are 
K and Bp. Since k2 indicates the number of squared differences 
calculated in (WP + 2) cycles, it is strictly limited by the 
number of available resources.  

C. Performance and Spectral Data Analysis 

The ultimate goal in this work is to speed up the solar 
spectral matching process for a data cube. As explained 
before, the SSD was used as a measure of similarity between 
two spectra. In this design, 625 SSDs are being calculated 
every 29 cycles (for total of 1000,000 × 239,400 SSDs). 
Figure 9 shows the comparison of six random pixel spectra 
against their corresponding best fits found by our accelerator.  

 

Fig. 9. Random samples of matched pair spectral data, horizontal axis: 

wavelength points, vertical axis: normalized intensity,  (a) through (f): Blue 

curves (solid lines): spectra of random pixel data, Red curves (dashed 
lines): best fit spectra from archive 



Our proposed hardware accelerated framework is able to 
process a three-dimensional data cube of 700,000 spectra to 
find the best fit to the Sun's spectral data from an archive of 
240,000 pre-calculated spectra in less than 3 min. Our 
hardware accelerated system has an average processing time 
of 0.124 ms per spectrum with no timing constraints at 90 
MHz as opposed to 30 ms running on a standard quad core 
desktop machine. This gives the speed up of almost 241. 

Compute Unified Device Architecture (CUDA) [18] is a 
parallel computing framework and programming model 
developed by NVIDIA [18] for general computing on 
graphical processing units (GPUs). We developed CUDA 
code for solar spectra matching and ran it on a GTX 1050 Ti 
GPU with 768 CUDA cores [20], achieving 5 ms per profile. 
Assuming each CUDA core is equivalent to one processing 
unit [21], it can be compared to a DSP block on the FPGA 
accelerator. To run the code on other GPUs, details like shared 
memory, multiprocessor count, and CUDA cores per 
multiprocessor are needed, which is beyond this work. 
Comparing the GPU to our hardware accelerator, each CUDA 
core roughly matches one DSP block on the FPGA. This gives 
a speedup of 10 for our hardware accelerator, as the GPU’s 
execution time per profile (5 ms) is roughly equivalent to 1.25 
ms on the FPGA, assuming each SSD uses 4 DSP blocks. 

VI. CONCLUSION AND FUTURE WORK 

The paper presents a hardware-accelerated framework for 
solar spectral matching using a scalable, parameterized 
matched filter IP core. This system efficiently matches a 3D 
data cube of 700,000 spectra against an archive of 240,000 
precomputed spectra in under 3 minutes. With an average 
processing time of 124 microseconds per spectrum at 90 MHz, 
the framework is approximately 241 times faster than a 
software-based solution on a quad-core CPU and about 10 
times faster than a GTX 1050 Ti GPU implementation. It is 
adaptable for larger datasets, higher accuracy, and general 
spectral analysis. 

Our work can serve as a foundation for larger data sets for 
scientific applications. In more realistic scientific 
applications, multiple spectral scans can be processed to 
increase the system throughput. This will be beneficial where 
input spectra would no longer be the 700,000 spectra from a 
single spectral scan, but hundreds of millions from a time 
series of observations. These scans can be processed 
sequentially, randomly, combined in batches, or in parallel 
across multiple FPGA frameworks. An interesting application 
of this work is FPGA-based inversion on satellites with low 
data bandwidth, allowing spectral analysis onboard and 
transferring only the results. The temperature stratification 
can be retrieved using the best-fit number from the archive, 
without needing the temperature archive onboard. Space-
qualified FPGAs can handle harsh environments, as 
demonstrated by the Solar Orbiter mission [22, 23], which 
performs onboard inversion due to the low data rate at its 
distance from Earth. Our framework offers scalable 
computing capacity at a lower cost compared to full-scale 
cores, thanks to the reprogrammable and configurable 
capabilities of FPGAs. 
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