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FLP Addition Hardware

Fig. 18.1    Block diagram of a 
floating-point adder/subtractor.
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Other key parts of the adder:
Significand aligner (preshifter): Sec. 18.2
Result normalizer (postshifter), including

leading 0s detector/predictor: Sec. 18.2
Rounding unit: Sec. 18.3
Sign logic: Problem 18.2

Converting internal to external 
representation, if required, must 
be done at the rounding stage

Isolate the sign, exponent, significand
Reinstate the hidden 1
Convert operands to internal format
Identify special operands, exceptions

Combine sign, exponent, significand
Hide (remove) the leading 1
Identify special outcomes, exceptions
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18.4  Floating-Point Multipliers and Dividers

Fig. 18.6   Block diagram of a 
floating-point multiplier (divider).

Speed considerations
Many multipliers produce the lower half 
of the product (rounding info) early

Need for normalizing right-shift is known 
at or near the end

Hence, rounding can be integrated in 
the generation of the upper half, 
by producing two versions of these bits

s1 × s2 ∈ [1, 4): may need postshifting

(± s1 × b e1) × (± s2 × be2) =  (± s1 × s2 )×b e1+e2

XOR     Add 
Exponents  

Unpack

Normalize
  Adjust 
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Pack
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Significands 

Floating-point operands

Product

  Adjust 
Exponent 

Overflow or underflow can occur during 
multiplication or normalization
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XOR  Subtract 
Exponents  

Unpack

Normalize
  Adjust 
Exponent 

Round

Normalize

Pack

   Divide 
Significands 

Floating-point operands

Quotient

  Adjust 
Exponent 

Floating-Point Dividers

Rounding considerations
Quotient must be produced with two 
extra bits (G and R), in case of the need 
for a normalizing left shift

The remainder acts as the sticky bit

s1 / s2 ∈ (0.5, 2): may need postshifting

(± s1 × b e1) / (± s2 × be2) =  (± s1 / s2)×be1−e2

Overflow or underflow can occur during 
division or normalization
Note: Square-rooting never leads to 
overflow or underflow

Fig. 18.6   Block diagram of a 
floating-point multiplier (divider).
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ADDERS AND MULTIPLIERS 

University Concordia  

FLOATING POINT 
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Lecture #4 
  

In this lecture we will go over the following concepts: 

  

1)       Floating Point Number representation 

2)       Accuracy and Dynamic range; IEEE standard 

3)       Floating Point Addition 

4)       Rounding Techniques 

5)       Floating point Multiplication 

6)       Architectures for FP Addition  

7)       Architectures for FP Multiplication 

8)       Comparison of  two FP Architectures  

9)      Barrel Shifters 

 

Concordia  University 
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(a) IEEE single precision data format 

(b) IEEE double precision data format 

 - Single and double precision data formats of IEEE 754 standard 

8 bit - biased  
Exponent   E 

Sign  
23 bits - unsigned fraction    P 

1 1  bit - biased  
Exponent    E 

Sign  
52 bits - unsigned fraction  p 

S 

S 
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 Format parameters of IEEE 754 Floating Point Standard 
  

 

Parameter 

 
Format 

 
  

 
Single 

Precision 

 

Double 

Precision 

 Format width in bits 

 
32 

 
64 

 
Precision (p) =  

fraction + hidden bit 

 

23 + 1 

 
52 + 1 

 
Exponent width in bits 

 
8 

 
11 

 
Maximum value of exponent 

 
+ 127 

 
+ 1023 

 
Minimum value of exponent 

 
-126 

 
-1022 
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0  - Positive numbers Negative numbers 

Underflow 

W i thin Range W i thin Range Overflow Overflow 

- Range of floating point numbers 

Denormalized 
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Exceptions in IEEE 754 
  

 

Exception 

 
Remarks 

 
Overflow 

 
Result can be   or default maximum value 

 

Underflow 

 
Result can be 0 or denormal 

 
Divide by Zero 

 
Result can be   

 

Invalid 

 
Result is NaN 

 
Inexact 

 
System specified rounding may be required 
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•  Operations that can generate Invalid Results 

  

 

Operation 

 
Remarks 

 

Addition/ 

Subtraction 

 

An operation of the type     

 

Multiplication 

 
An operation of the type 0 x  

 

Division 

 
Operations of the type 0/0 and / 

 

Remainder 

 
Operations of the type x REM 0 and  REM y 

 

Square Root 

 
Square Root of a negative number 
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IEEE compatible floating point multipliers 

•                                                Algorithm 

 

Step 1 

Calculate the tentative exponent of the product by adding the biased exponents of the two numbers, subtract-

ing the bias, (). bias is 127 and 1023 for single precision and double precision IEEE data format respectively 

Step 2 

If the sign of two floating point numbers are the same, set the sign of product to ‘+’, else set it to ‘-’. 

Step 3 

Multiply the two significands. For p bit significand the product is 2p bits wide (p, the width of significand 

data field, is including the leading hidden bit (1)). Product of significands falls within range . 

Step 4 

Normalize the product if MSB of the product is 1 (i.e. product of ), by shifting the product right by 1 bit 

position and incrementing the tentative exponent. 

Evaluate exception conditions, if any. 

Step 5 

Round the product if R(M0 + S) is true, where M0 and R represent the pth and (p+1)st bits from the left end 

of normalized product and Sticky bit (S) is the logical OR of all the bits towards the right of R bit. If the 

rounding condition is true, a 1 is added at the pth bit (from the left side) of the normalized product. If all p 

MSBs of the normalized product are 1’s, rounding can generate a carry-out. In that case normalization (step 

4) has to be done again. 
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Figure 2.4 - Significand multiplication, normalization and rounding
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Architecture Consideration 

What’s the 
best 

architecture? 

University Concordia  
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University Concordia  
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University Concordia  

 Control / Sign Logic  

CPA / Rounding Logic  

      Result Selector / 

 Normalization Logic 

Exponent Logic 

 Significand Multiplier 

     (Partial Product 

         Processing) 

     Result Integration / Flag Logic 

     Exponent  
   Incrementer 

   Sticky Logic 
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IEEE product Flag bits 

Input Floating Point Numbers 

Bypass Logic 

2nd 

Critical 

Path 

1st 

3rd 

Path 2 

A Dual Path FP Multiplier 
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 Test Cases for IEEE Single Precision for SDFPM 
  

 
 

 

Case-1 

Normal 

Number 

 

  

 
S 

 
Exponent 

 
Significand 

 Operand1 

 
0 

 
10000001 

 
00000000101000111101011 

 Operand2 

 
0 

 
10000000 

 
10101100110011001100110 

 Result 

 
0 

 
10000010 

 
10101101110111110011100 

 

 

 

Case-2 

Normal 

Number 

  

 

  

 
S 

 
Exponent 

 
Significand 

 Operand1 

 
0 

 
10000000 

 
00001100110011001100110 

 Operand2 

 
0 

 
10000000 

 
00001100110011001100110 

 Result 

 
0 

 
10000001 

 
00011010001111010110111 
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AREA 

(cell) 

 

POWER 

(mW) 

 

Delay 

(ns) 

 
Single Data Path FPM 

 
2288.5 

 
204.5 

 
69.2 

 
Double Data Path FPM 

 
2997 

 
94.5 

 
68.81 

 
Pipelined Double Data Path 

FPM 

 

3173 

 
105 

 
42.26 

 

Comparison 0f 3 types of FP Multipliers using 0.22 

micron CMOS technology  
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IEEE compatible floating point adders 

•                                      Algorithm 

 

Step 1 

Compare the exponents of two numbers for ( or ) and calculate the absolute value of difference between the two 

exponents (). Take the larger exponent as the tentative exponent of the result. 

Step 2 

Shift the significand of the number with the smaller exponent, right through a number of bit positions that is equal to 

the exponent difference. Two of the shifted out bits of the aligned significand are retained as guard (G) and Round 

(R) bits. So for p bit significands, the effective width of aligned significand must be p + 2 bits. Append a third bit, 

namely the sticky bit (S), at the right end of the aligned significand. The sticky bit is the logical OR of all shifted out 

bits. 

Step 3 

Add/subtract the two signed-magnitude significands using a p + 3 bit adder. Let the result of this is SUM. 

Step 4 

Check SUM for carry out (Cout) from the MSB position during addition. Shift SUM right by one bit position if a carry out is detected 

and increment the tentative exponent by 1. During subtraction, check SUM for leading zeros. Shift SUM left until the MSB of the shifted 

result is a 1. Subtract the leading zero count from tentative exponent. 

Evaluate exception conditions, if any. 

Step 5 

Round the result if the logical condition R”(M0 + S’’) is true, where M0 and R’’ represent the pth and (p + 1)st bits from the left 

end of the normalized significand. New sticky bit (S’’) is the logical OR of all bits towards the right of the R’’ bit. If the rounding condition 

is true, a 1 is added at the pth bit (from the left side) of the normalized significand. If p MSBs of the normalized significand are 1’s, 

rounding can generate a carry-out. in that case normalization (step 4) has to be done again. 
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R S

a
0

b
0

p - 1 higher order bits

p - 1 higher order bits

p bit significand field

Fig. 1 - Aligned significands

G
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out

 

Result of significand addition before normalization shift
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}

R” S”M
0

p - 1 higher order bits

Normalized Significand before Rounding

Significands before addition 

Fig 2.6 - Significand addition, normalization and rounding

 

 

Floating Point Addition of Operands with Rounding 
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IEEE Rounding 
•  IEEE default rounding mode -- Round to nearest - even 
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Architecture Consideration 

What’s the 
best 

architecture? 

University Concordia  



19 

Floating Point Adder Architecture 
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Fig 4.2 - Block diagram of the TDPFADD
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                         Comparison of Synthesis results  for IEEE 754 Single Precision  

                                  FP addition Using  Xilinx 4052XL-1 FPGA 
  

 
Parameters 

 
SIMPLE 

 
TDPFADD 

 
PIPE/ 

TDPFADD 

 
Maximum delay, D (ns) 

 
327.6 

 
213.8 

 
101.11 

 
Average Power, P 

(mW)@ 2.38 MHz 

 

1836 

 
1024 

 
382.4 

 
Area A, Total  

number of CLBs (#) 

 

664 

 
1035 

 
1324 

 
Power Delay Product 

(ns. 10mW) 

 

7.7. *104 

 
4.31  *104.  

 
3.82 *104 

 
Area Delay Product 

(10 # .ns) 

 

2.18`*104 

 
2.21 * 104 

 
1.34 *104 

 
Area-Delay2 Product 

(10# . ns2 ) 

 

7.13.*106 

 
4.73 * 106 

 
1.35 *106 
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Barrel Shifters  

What about shifting? 
How to shift several 

bits at once ? 

University Concordia  
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MUX
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 Operation 

0 0 D3 D2 D1 D0 No Shift 

0 1 D2 D1 D0 D3 Rotate Once 

1 0 D1 D0 D3 D2 Rotate Twice 

1 1 D0 D3 D2 D1 Rotate 3 times 

 

Shift and Rotate Barrel Shifter 
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w1 w0w7 w6 w5 w3w4 w2

MUX MUX MUX MUX MUX MUX MUX MUX
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Please note that in this 

case if we have 8 bits 

of data then inputs to 

MUXes greater than 7 

should be be set to a 

desired value 
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A Normalization Shifter for FP Arithmetic 
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. Block Diagram of the Right Shifter & GRS-bit 

Generation Component  
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Thank you for your attendance 

University Concordia  

The  end 
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For Information 

University Concordia  

Appendix 2 
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S EXP. SIGNIF.S EXP. SIGNIF.
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Architecture Consideration 

5 

2 

1 

3 

4 

6 

7 
        Straightforward IEEE  

Floating-point addition algorithm 

 

1. Exponent subtraction.  

2. Alignment. 

3. Significand addition. 

4. Conversion. 

5. Leading-one detection. 

6. Normalization. 

7. Rounding. 

 
Advantages:  
1. Positive result, Eliminate Complement  
2. Comparison // Alignment  
3. Full Normal //  Rounding 
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Architecture Consideration Cont.  
S EXP. SIGNIF.S EXP. SIGNIF.
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--No Conversion 
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CLOSE data-path: 

--No Full Alignment 

The latency of the floating-point addition can 

 be improved if the rounding is  combined  

with the addition/subtraction. 
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Main Blocks 
What blocks are 

considered? 

University Concordia  

• Compound Adder with Flagged Prefix Adder (New) 
 

• LOP with Concurrent Position Correction (New) 
 

• Alignment Shifter 
 

• Normalization Shifter 
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Compound Adder 

How can a compound 
adder compute 

fastest? 

University Concordia  
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Compound Adder 

The Compound adder computes simultaneously the sum and the sum plus one, and then 

the correct rounded result is obtained by selecting according to the requirements of the 

rounding.  

B-ABA     

B-A-BA     

A-B-B     A

A-BB     A

nSubtractioEffective 

B     A

B     A

AdditionEffective 
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1

1

1
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Compound Adder Cont. 

• Round to nearest 

             if g=1 

                if (LSB=1) OR (r+s=1) 

                    Add 1 to the result 

             else Truncate at LSB 

• Round Toward zero 

             Truncate 

• Round Toward +Infinity 

            if sign=positive 

               if any bits to the right of the result LSB=1 

                   Add 1 to the result 

               else 

                   Truncate at LSB 

            if sign=negative 

                Truncate at LSB 

• Round Toward -Infinity 

            if sign=negative 

               if any bits to the right of the result LSB=1 

                   Add 1 to the result 

               else 

                   Truncate at LSB 

            if sign=positive 

                Truncate at LSB 

Rounding Block 

Sum, Sum+1 

Sum 

Sum, Sum+1 and Sum+2 

Sum, Sum+1 and Sum+2 
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Compound Adder 

The Compound adder computes simultaneously the sum and the sum plus one, and then 

the correct rounded result is obtained by selecting according to the requirements of the 

rounding.  

B-ABA     

B-A-BA     

A-B-B     A

A-BB     A

nSubtractioEffective 

B     A

B     A

AdditionEffective 













11

1

1

1



45 

Compound Adder Cont. 
• Round to nearest 

             if g=1 

                if (LSB=1) OR (r+s=1) 

                    Add 1 to the result 

             else Truncate at LSB 

• Round Toward zero 

             Truncate 

• Round Toward +Infinity 

            if sign=positive 

               if any bits to the right of the result LSB=1 

                   Add 1 to the result 

               else 

                   Truncate at LSB 

            if sign=negative 

                Truncate at LSB 

• Round Toward -Infinity 

            if sign=negative 

               if any bits to the right of the result LSB=1 

                   Add 1 to the result 

               else 

                   Truncate at LSB 

            if sign=positive 

                Truncate at LSB 

Rounding Block 

Sum, Sum+1 

Sum 

Sum, Sum+1 and Sum+2 

Sum, Sum+1 and Sum+2 
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