
Shahnam Mirzaei, PhD
California State University, Northridge

Spring 2021
ECE 621 (Computer Arithmetic Design)

ECE621 - CSUN Computer Arithmetic, Real Arithmetic Slide 2

FLP Addition Hardware

Fig. 18.1 Block diagram of a
floating-point adder/subtractor.

Normalize

Add

Align significands

Unpack

Control
& sign
logic

Add/
Sub

Pack

Operands

Sum/Difference

Significands Exponents Signs

Significand Exponent Sign

x y

s

Sub

Add

Mux

c out c in

Selective complement
and possible swap

 Round and
selective complement

Normalize

Other key parts of the adder:
Significand aligner (preshifter): Sec. 18.2
Result normalizer (postshifter), including

leading 0s detector/predictor: Sec. 18.2
Rounding unit: Sec. 18.3
Sign logic: Problem 18.2

Converting internal to external
representation, if required, must
be done at the rounding stage

Isolate the sign, exponent, significand
Reinstate the hidden 1
Convert operands to internal format
Identify special operands, exceptions

Combine sign, exponent, significand
Hide (remove) the leading 1
Identify special outcomes, exceptions

ECE621 - CSUN Computer Arithmetic, Real Arithmetic Slide 3

18.4 Floating-Point Multipliers and Dividers

Fig. 18.6 Block diagram of a
floating-point multiplier (divider).

Speed considerations
Many multipliers produce the lower half
of the product (rounding info) early

Need for normalizing right-shift is known
at or near the end

Hence, rounding can be integrated in
the generation of the upper half,
by producing two versions of these bits

s1 × s2 ∈ [1, 4): may need postshifting

(± s1 × b e1) × (± s2 × be2) = (± s1 × s2)×b e1+e2

XOR Add
Exponents

Unpack

Normalize
 Adjust
Exponent

Round

Normalize

Pack

 Multiply
Significands

Floating-point operands

Product

 Adjust
Exponent

Overflow or underflow can occur during
multiplication or normalization

ECE621 - CSUN Computer Arithmetic, Real Arithmetic Slide 4

XOR Subtract
Exponents

Unpack

Normalize
 Adjust
Exponent

Round

Normalize

Pack

 Divide
Significands

Floating-point operands

Quotient

 Adjust
Exponent

Floating-Point Dividers

Rounding considerations
Quotient must be produced with two
extra bits (G and R), in case of the need
for a normalizing left shift

The remainder acts as the sticky bit

s1 / s2 ∈ (0.5, 2): may need postshifting

(± s1 × b e1) / (± s2 × be2) = (± s1 / s2)×be1−e2

Overflow or underflow can occur during
division or normalization
Note: Square-rooting never leads to
overflow or underflow

Fig. 18.6 Block diagram of a
floating-point multiplier (divider).

1

ADDERS AND MULTIPLIERS

University Concordia

FLOATING POINT

2

Lecture #4

In this lecture we will go over the following concepts:

1) Floating Point Number representation

2) Accuracy and Dynamic range; IEEE standard

3) Floating Point Addition

4) Rounding Techniques

5) Floating point Multiplication

6) Architectures for FP Addition

7) Architectures for FP Multiplication

8) Comparison of two FP Architectures

9) Barrel Shifters

Concordia University

3

(a) IEEE single precision data format

(b) IEEE double precision data format

 - Single and double precision data formats of IEEE 754 standard

8 bit - biased
Exponent E

Sign
23 bits - unsigned fraction P

1 1 bit - biased
Exponent E

Sign
52 bits - unsigned fraction p

S

S

4

 Format parameters of IEEE 754 Floating Point Standard

Parameter

Format

Single

Precision

Double

Precision

 Format width in bits

32

64

Precision (p) =

fraction + hidden bit

23 + 1

52 + 1

Exponent width in bits

8

11

Maximum value of exponent

+ 127

+ 1023

Minimum value of exponent

-126

-1022

5

0 - Positive numbers Negative numbers

Underflow

W i thin Range W i thin Range Overflow Overflow

- Range of floating point numbers

Denormalized

6

Exceptions in IEEE 754

Exception

Remarks

Overflow

Result can be or default maximum value

Underflow

Result can be 0 or denormal

Divide by Zero

Result can be

Invalid

Result is NaN

Inexact

System specified rounding may be required

7

• Operations that can generate Invalid Results

Operation

Remarks

Addition/

Subtraction

An operation of the type

Multiplication

An operation of the type 0 x

Division

Operations of the type 0/0 and /

Remainder

Operations of the type x REM 0 and REM y

Square Root

Square Root of a negative number

8

IEEE compatible floating point multipliers

• Algorithm

Step 1

Calculate the tentative exponent of the product by adding the biased exponents of the two numbers, subtract-

ing the bias, (). bias is 127 and 1023 for single precision and double precision IEEE data format respectively

Step 2

If the sign of two floating point numbers are the same, set the sign of product to ‘+’, else set it to ‘-’.

Step 3

Multiply the two significands. For p bit significand the product is 2p bits wide (p, the width of significand

data field, is including the leading hidden bit (1)). Product of significands falls within range .

Step 4

Normalize the product if MSB of the product is 1 (i.e. product of), by shifting the product right by 1 bit

position and incrementing the tentative exponent.

Evaluate exception conditions, if any.

Step 5

Round the product if R(M0 + S) is true, where M0 and R represent the pth and (p+1)st bits from the left end

of normalized product and Sticky bit (S) is the logical OR of all the bits towards the right of R bit. If the

rounding condition is true, a 1 is added at the pth bit (from the left side) of the normalized product. If all p

MSBs of the normalized product are 1’s, rounding can generate a carry-out. In that case normalization (step

4) has to be done again.

9

Figure 2.4 - Significand multiplication, normalization and rounding

p-bit significand field

C
out

Result of significand multiplication before normalization shift

}

R SM
0

p - 1 higher order bits

Normalized product before Rounding

Input
Significands

2p bits

1 p - 1 lower order bits

p - 1 lower order bits1

Significands before multiplication

p-bit significand field

Operands Multiplication and Rounding

10

Architecture Consideration

What’s the
best

architecture?

University Concordia

11

University Concordia

Exponent & Sign

Logic

Significand

Multiplier

Rounding
Logic

Normalization
Logic

Correction Shift

Result
Selector

Result Flags Logic

Significand1 Significand2 Exp1 Exp2 Sign1 Sign2

IEEE Product Flags

A Simple FP Multiplier

12

University Concordia

 Control / Sign Logic

CPA / Rounding Logic

 Result Selector /

 Normalization Logic

Exponent Logic

 Significand Multiplier

 (Partial Product

 Processing)

 Result Integration / Flag Logic

 Exponent
 Incrementer

 Sticky Logic

 Exponents

IEEE product Flag bits

Input Floating Point Numbers

Bypass Logic

2nd

Critical

Path

1st

3rd

Path 2

A Dual Path FP Multiplier

13

 Test Cases for IEEE Single Precision for SDFPM

Case-1

Normal

Number

S

Exponent

Significand

 Operand1

0

10000001

00000000101000111101011

 Operand2

0

10000000

10101100110011001100110

 Result

0

10000010

10101101110111110011100

Case-2

Normal

Number

S

Exponent

Significand

 Operand1

0

10000000

00001100110011001100110

 Operand2

0

10000000

00001100110011001100110

 Result

0

10000001

00011010001111010110111

14

AREA

(cell)

POWER

(mW)

Delay

(ns)

Single Data Path FPM

2288.5

204.5

69.2

Double Data Path FPM

2997

94.5

68.81

Pipelined Double Data Path

FPM

3173

105

42.26

Comparison 0f 3 types of FP Multipliers using 0.22

micron CMOS technology

15

IEEE compatible floating point adders

• Algorithm

Step 1

Compare the exponents of two numbers for (or) and calculate the absolute value of difference between the two

exponents (). Take the larger exponent as the tentative exponent of the result.

Step 2

Shift the significand of the number with the smaller exponent, right through a number of bit positions that is equal to

the exponent difference. Two of the shifted out bits of the aligned significand are retained as guard (G) and Round

(R) bits. So for p bit significands, the effective width of aligned significand must be p + 2 bits. Append a third bit,

namely the sticky bit (S), at the right end of the aligned significand. The sticky bit is the logical OR of all shifted out

bits.

Step 3

Add/subtract the two signed-magnitude significands using a p + 3 bit adder. Let the result of this is SUM.

Step 4

Check SUM for carry out (Cout) from the MSB position during addition. Shift SUM right by one bit position if a carry out is detected

and increment the tentative exponent by 1. During subtraction, check SUM for leading zeros. Shift SUM left until the MSB of the shifted

result is a 1. Subtract the leading zero count from tentative exponent.

Evaluate exception conditions, if any.

Step 5

Round the result if the logical condition R”(M0 + S’’) is true, where M0 and R’’ represent the pth and (p + 1)st bits from the left

end of the normalized significand. New sticky bit (S’’) is the logical OR of all bits towards the right of the R’’ bit. If the rounding condition

is true, a 1 is added at the pth bit (from the left side) of the normalized significand. If p MSBs of the normalized significand are 1’s,

rounding can generate a carry-out. in that case normalization (step 4) has to be done again.

16

R S

a
0

b
0

p - 1 higher order bits

p - 1 higher order bits

p bit significand field

Fig. 1 - Aligned significands

G

00 0

R’ S’G’C
out

Result of significand addition before normalization shift

Aligned

significands
}

R” S”M
0

p - 1 higher order bits

Normalized Significand before Rounding

Significands before addition

Fig 2.6 - Significand addition, normalization and rounding

Floating Point Addition of Operands with Rounding

17

IEEE Rounding
• IEEE default rounding mode -- Round to nearest - even

Significand

Rounded

Result

Error

Significand

Rounded

Result

Error

X0.00

X0.

0

X1.00

X1.

0

X0.01

X0.

- 1/4

X1.01

X1.

- 1/4

X0.10

X0.

- 1/2

X1.10

X1. + 1

+ 1/2

X0.11

X1.

+ 1/4

X1.11

X1. + 1

+ 1/4

18

Architecture Consideration

What’s the
best

architecture?

University Concordia

19

Floating Point Adder Architecture

20

Fig 4.2 - Block diagram of the TDPFADD

(0/1 Bit Right Shifter)

Adder/Rounding Logic

Leading Zero

Counting logic

Normalization

Result Selector

Data Selector/Pre-align

Exponent
Subtractor

(Left Barrel Shifter)

Data Selector

(Right Barrel Shifter)/
Complementer

Pre-alignment

Input Floating Point NumbersExponents

Control LogicExponent Logic

Bypass Logic

Result Integration/Flag Logic

Flags IEEE Sum

Adder/Rounding Logic

(1 bit Right/Left
Normalization

Shifter)

Exponent
Incr/Decr

Result
Selector

Triple Path Floating Point Adder

21

 Control Logic Exponent Logic

 Result Integration / Flag Logic

 Exponents

IEEE Sum

Input Floating Point Numbers

Bypass Logic

(0/1 Bit Right Shifter)

Adder/Rounding Logic

Leading Zero

Counter

Normalization

Result Selector

Data Selector/Pre-align

Exponent
Subtractor

(Barrel Shifter Left)

Data Selector

(Barrel Shifter Right)/

(1 bit Right/Left

Complementer

Pre-alignment

Normalization

Shifter)

Exponent
Incr/Decr

Result

Selector

Flag

1st

2nd

3rd

4th

5th

Critical Path

Adder/Rounding Logic

Pipelined Triple Paths Floating Point Adder TPFADD

22

BP (bypass)

BP

LZB LZA

LZB LZA

LZA

LZB

I

JK

BP

23

Control

exponent
0 1 0 1 0 1

compare right shifter

bit inverter bit inverter

LZA logic

LZA counter

56b adder

exponent
subtract

left shift incrementer

rounding control

selector

compensation
shifter

exponent
incrementer

difference

sign control

e1 e2 s1 s2

exponents significands

si
g
n

1

si
g
n

2

si
g

n

FPADDer with Leading Zero Anticipation Logic

24

 Comparison of Synthesis results for IEEE 754 Single Precision

 FP addition Using Xilinx 4052XL-1 FPGA

Parameters

SIMPLE

TDPFADD

PIPE/

TDPFADD

Maximum delay, D (ns)

327.6

213.8

101.11

Average Power, P

(mW)@ 2.38 MHz

1836

1024

382.4

Area A, Total

number of CLBs (#)

664

1035

1324

Power Delay Product

(ns. 10mW)

7.7. *104

4.31 *104.

3.82 *104

Area Delay Product

(10 # .ns)

2.18`*104

2.21 * 104

1.34 *104

Area-Delay2 Product

(10# . ns2)

7.13.*106

4.73 * 106

1.35 *106

25

26

[1] Computer Arithmetic Systems, Algorithms, Architecture and Implementations. A. Omondi. Prentice Hall, 1994.

[2] Computer Architecture A Quantitative Approach, chapter Appendix A. D. Goldberg. Morgan Kaufmann, 1990.

[3] Reduced latency IEEE floating-point standard adder architectures. Beaumont-Smith, A.; Burgess, N.; Lefrere, S.; Lim, C.C.; Computer Arithmetic,

 1999. Proceedings. 14th IEEE Symposium on , 14-16 April 1999

[4] Rounding in Floating-Point Addition using a Compound Adder. J.D. Bruguera and T. Lang. Technical Report. University of Santiago de Compostela.

 (2000)

[5] Floating point adder/subtractor performing ieee rounding and addition/subtraction in parallel. W.-C. Park, S.-W. Lee, O.-Y. Kown, T.-D. Han, and S.-D.

 Kim. IEICE Transactions on Information and Systems, E79-D(4):297–305, Apr. 1996.

[6] Efficient simultaneous rounding method removing sticky-bit from critical path for floating point addition. Woo-Chan Park; Tack-Don Han; Shin-Dug

 Kim; ASICs, 2000. AP-ASIC 2000. Proceedings of the Second IEEE Asia Pacific Conference on , 28-30 Aug. 2000 Pages:223 – 226

[7] Efficient implementation of rounding units. Burgess. N.; Knowles, S.; Signals, Systems, and Computers, 1999. Conference Record of the Thirty-Third

 Asilomar Conference on, Volume: 2, 24-27 Oct. 1999 Pages: 1489 - 1493 vol.2

[8] The Flagged Prefix Adder and its Applications in Integer Arithmetic. Neil Burgess. Journal of VLSI Signal Processing 31, 263–271, 2002

[9] A family of adders. Knowles, S.; Computer Arithmetic, 2001. Proceedings. 15th IEEE Symposium on , 11-13 June 2001 Pages:277 – 281

[10] PAPA - packed arithmetic on a prefix adder for multimedia applications. Burgess, N.; Application-Specific Systems, Architectures and Processors, 2002.

 Proceedings. The IEEE International Conference on, 17-19 July 2002 Pages:197 – 207

[11] Nonheuristic optimization and synthesis of parallel prefix adders. R. Zimmermann, in Proc. Int.Workshop on Logic and Architecture Synthesis, Grenoble,

 France, Dec. 1996, pp. 123–132.

[12] Leading-One Prediction with Concurrent Position Correction. J.D. Bruguera and T. Lang. IEEE Transactions on Computers. Vol. 48. No. 10. pp.

 1083-1097. (1999)

[13] Leading-zero anticipatory logic for high-speed floating point addition. Suzuki, H.; Morinaka, H.; Makino, H.; Nakase, Y.; Mashiko, K.; Sumi, T.;

 Solid-State Circuits, IEEE Journal of , Volume: 31 , Issue: 8 , Aug. 1996 Pages:1157 – 1164

[14] On low power floating point data path architectures. R. V. K. Pillai. Ph. D thesis, Concordia University, Oct. 1999.

[15] A low power approach to floating point adder design. Pillai, R.V.K.; Al-Khalili, D.; Al-Khalili, A.J.; Computer Design: VLSI in Computers and

 Processors, 1997. ICCD '97. Proceedings. 1997 IEEE International Conference on, 12-15 Oct. 1997 Pages:178 – 185

[16] Design of Floating-Point Arithmetic Units. S.F.Oberman, H. Al-Twaijry and M.J.Flynn. Proc. Of the 13th IEEE Symp on Computer Arithmetic.

 pp. 156-165 1997

[17] Digital Arithmetic. M.D. Ercegovac and T. Lang. San Francisco: Morgan Daufmann, 2004. ISBN 1-55860-798-6

[18] Computer Arithmetic Algorithms. Israel Koren. Pub A K Peters, 2002. ISBN 1-56881-160-8

[19] Parallel Prefix Adder Designs. Beaumont-Smith, A.; Lim, C.-C.; Computer Arithmetic, 2001. Proceedings. 15th IEEE Symposium on, 11-13 June 2001

 Pages:218 – 225

[20] Low-Power Logic Styles: CMOS Versus Pass-Transistor Logic. Reto Zimmmemann and Wolfgang Fichtner, IEEE Journal of Solid-State Circuits,

 VOL.,32, No.7, July 1997

[21] Comparative Delay, Noise and Energy of High-performance Domino Adders with SNP. Yibin Ye, etc., 2000 Symposium on VLSI Circuits Digest of

 Technical Papers

[22] 5 GHz 32b Integer-Execution Core in 130nm Dual-Vt CMOS. Sriram Vangal, etc., IEEE Journal of Solid-State Circuits, VOL.37, NO.11, November

 2002

[23] Performance analysis of low-power 1-bit CMOS full adder cells. A.Shams, T.Darwish and M.Byoumi, IEEE Trans. on VLSI Syst., vol. 10, no.1,

 pp. 20-29, Feb 2002.

Reference List

27

Barrel Shifters

What about shifting?
How to shift several

bits at once ?

University Concordia

28

00

01

10

11

00

01

10

11

00

01

10

11

00

01

10

11

0

0

0

0

0

0

X0X1X2X3

S1 S0

Right Shift

Barrel Shifter

29

MUX

123

01

MUX

123 0

01

MUX

123 0

01

MUX

123 0

01

D
0

D
1D

2
D

3

Y
0

Y
1Y

2
Y

3

S
0

Select Out Put
Si So Y3 Y2 Y1 Y0

 Operation

0 0 D3 D2 D1 D0 No Shift

0 1 D2 D1 D0 D3 Rotate Once

1 0 D1 D0 D3 D2 Rotate Twice

1 1 D0 D3 D2 D1 Rotate 3 times

Shift and Rotate Barrel Shifter

30

w
1

w
0w

7 w
6

w
5 w

3w
4

w
2

MUX MUX MUX MUX MUX MUX MUX MUX

S
1

k
0

k
1

k
7

k
8

k
7

k
5

k
4

k
3

k
2

k
2

k
3

k
4

k
5

k
6

k
6

k
9

y
1

y
0y

7 y
6

y
5 y

3y
4

y
2

MUX MUX MUX MUX MUX MUX MUX MUX

S
2

w
0

w
1

w
7

w
10

w
9

w
5

w
6

w
5

w
4

w
2

w
3

w
4

w
7

w
8

w
6

w
11

k
1

k
0k

7 k
6

k
5 k

3k
4

k
2

MUXMUXMUX MUXMUXMUX MUX MUX

S
0

x
0

x
1

x
7

x
7

x
6

x
5

x
3

x
2

x
1

x
2

x
3

x
4

x
4

x
5

x
6

x
8

Distributed Barrel Shifter

31

w1 w0w7 w6 w5 w3w4 w2

MUX MUX MUX MUX MUX MUX MUX MUX

S1

k0k1k7 k8 k7 k5 k4 k3 k2k2k3k4 k5k6k6k9

y1 y0y7 y6 y5 y3y4 y2

MUX MUX MUX MUX MUX MUX MUX MUX

S2

w0w1w7 w10 w9 w5 w6 w5 w4w2w3w4 w7w8w6w11

k1 k0k7 k6 k5 k3k4 k2

MUXMUXMUX MUXMUXMUX MUX MUX

S0

x0x1x7 x7 x6 x5 x3 x2 x1x2x3x4 x4x5x6x8

S0=1 S1=0 S2=1

Paths of the distributed Barrel Shifter

Please note that in this

case if we have 8 bits

of data then inputs to

MUXes greater than 7

should be be set to a

desired value

32

A Normalization Shifter for FP Arithmetic

33

. Block Diagram of the Right Shifter & GRS-bit

Generation Component

34

Thank you for your attendance

University Concordia

The end

35

For Information

University Concordia

Appendix 2

36

Control

exponent
0 1 0 1 0 1

compare right shifter

bit inverter bit inverter

LZA logic

LZA counter

56b adder

exponent
subtract

left shift incrementer

rounding control

selector

compensation
shifter

exponent
incrementer

difference

sign control

e1 e2 s1 s2

exponents significands

si
g

n
1

si
g

n
2

si
g
n X X

S & M

X
X
X

S & M

S & M

Improvements to previous Designs

37

Control

exponent
0 1 0 1 0 1

compare right shifter

bit inverter bit inverter

LZA logic

LZA counter

56b adder

exponent
subtract

left shift incrementer

rounding control

selector

compensation
shifter

exponent
incrementer

difference

sign control

e1 e2 s1 s2

exponents significands

si
g

n
1

si
g

n
2

si
g
n

ABSENT

ABSENT

Improvements in FADD from Previous Designs

38

S EXP. SIGNIF.S EXP. SIGNIF.

Exponent

difference
0 1 0 1

control Right shifterBit inverter

LOP
2'COMP

Adder

complement

NORMAL

Rounding

Sign(d) Sign(d)

Sign opA

Sign opB

add/sub

d

MSB

and

Cout

opA opB

Architecture Consideration

5

2

1

3

4

6

7
 Straightforward IEEE

Floating-point addition algorithm

1. Exponent subtraction.

2. Alignment.

3. Significand addition.

4. Conversion.

5. Leading-one detection.

6. Normalization.

7. Rounding.

Advantages:
1. Positive result, Eliminate Complement
2. Comparison // Alignment
3. Full Normal // Rounding

S EXP. SIGNIF.S EXP. SIGNIF.

Exponent

difference
0 1 0 1

control

Right shifter

Bit inverter

LOP
2'COMP

Adder

1-bit shifter

NORMAL Rounding

Sign(d) Sign(d)

Sign opA

Sign opB

add/sub

d

MSB

and

Cout

Comparator

Bit inverter

MUX

opA opB

39

Architecture Consideration Cont.
S EXP. SIGNIF.S EXP. SIGNIF.

Exponent

difference
0 1 0 1

control

1-bit shifter

LOP

2'COMP

Adder

complement

NORMAL

Rounding

Sign(d) Sign(d)

Sign opA

Sign opB

add/sub

d

opA opB

2'COMP

Adder

1-bit shifter

Rounding

Bit inverter

Right

shifter

Bit inverter

MUX
FAR path

Effective addition

Effective subtraction

with d>1

CLOSE path

Effective subtraction

with d=0,1

(Compare to signal path)

Reduce latency

FAR data-path:

--No Conversion

--No Full normalization

--No LOP

CLOSE data-path:

--No Full Alignment

The latency of the floating-point addition can

 be improved if the rounding is combined

with the addition/subtraction.

S EXP. SIGNIF.S EXP. SIGNIF.

Exponent

difference
0 1 0 1

control

1-bit shifter

LOP

NORMAL

Sign(d) Sign(d)

Sign opA

Sign opB

add/sub

d

opA opB

Compound

adder

1-bit shifter

Bit inverter

Right

shifter

Bit inverter

MUX

FAR path

Effective addition

Effective subtraction

with d>1

CLOSE path

Effective subtraction

with d=0,1

Compound

adder

Reduce total path delay
--eliminate Comparator
Increase area
--two 2’s COMP ADDER

40

Main Blocks
What blocks are

considered?

University Concordia

• Compound Adder with Flagged Prefix Adder (New)

• LOP with Concurrent Position Correction (New)

• Alignment Shifter

• Normalization Shifter

41

Compound Adder

How can a compound
adder compute

fastest?

University Concordia

42

Compound Adder

The Compound adder computes simultaneously the sum and the sum plus one, and then

the correct rounded result is obtained by selecting according to the requirements of the

rounding.

B-ABA

B-A-BA

A-B-B A

A-BB A

nSubtractioEffective

B A

B A

AdditionEffective

11

1

1

1

43

Compound Adder Cont.

• Round to nearest

 if g=1

 if (LSB=1) OR (r+s=1)

 Add 1 to the result

 else Truncate at LSB

• Round Toward zero

 Truncate

• Round Toward +Infinity

 if sign=positive

 if any bits to the right of the result LSB=1

 Add 1 to the result

 else

 Truncate at LSB

 if sign=negative

 Truncate at LSB

• Round Toward -Infinity

 if sign=negative

 if any bits to the right of the result LSB=1

 Add 1 to the result

 else

 Truncate at LSB

 if sign=positive

 Truncate at LSB

Rounding Block

Sum, Sum+1

Sum

Sum, Sum+1 and Sum+2

Sum, Sum+1 and Sum+2

44

Compound Adder

The Compound adder computes simultaneously the sum and the sum plus one, and then

the correct rounded result is obtained by selecting according to the requirements of the

rounding.

B-ABA

B-A-BA

A-B-B A

A-BB A

nSubtractioEffective

B A

B A

AdditionEffective

11

1

1

1

45

Compound Adder Cont.
• Round to nearest

 if g=1

 if (LSB=1) OR (r+s=1)

 Add 1 to the result

 else Truncate at LSB

• Round Toward zero

 Truncate

• Round Toward +Infinity

 if sign=positive

 if any bits to the right of the result LSB=1

 Add 1 to the result

 else

 Truncate at LSB

 if sign=negative

 Truncate at LSB

• Round Toward -Infinity

 if sign=negative

 if any bits to the right of the result LSB=1

 Add 1 to the result

 else

 Truncate at LSB

 if sign=positive

 Truncate at LSB

Rounding Block

Sum, Sum+1

Sum

Sum, Sum+1 and Sum+2

Sum, Sum+1 and Sum+2

	ece621sp21-research-paper3
	Research Paper 3
	FLP Addition Hardware
	18.4 Floating-Point Multipliers and Dividers
	Floating-Point Dividers

	FloatingPointArithmetic

