
Vivado Design Suite User
Guide

Synthesis

UG901 (v2025.1) June 11, 2025

See all versions
of this document

https://docs.amd.com/go/en-US/ug901-vivado-synthesis

Table of Contents
Chapter 1: Introduction.. 6

Navigating Content by Design Process.. 6

Chapter 2: Vivado Synthesis... 8
Synthesis Methodology.. 8
Using Synthesis... 8
RTL Linter... 18
Running Synthesis...21
Setting a Bottom-Up, Out-of-Context Flow.. 25
Incremental Synthesis.. 30
Using Third-Party Synthesis Tools with Vivado IP... 34
Moving Processes to the Background.. 34
Monitoring the Synthesis Run... 34
Flow After Synthesis Completion...35
Analyzing Synthesis Results... 36
Using the Synthesized Design Environment..37
Exploring the Logic... 38
Running Timing Analysis.. 40
Running Synthesis with Tcl...41
Multi-Threading in RTL Synthesis..46

Chapter 3: Synthesis Attributes... 49
Introduction... 49
Supported Attributes.. 49
Custom Attribute Support in Vivado...74
Using Synthesis Attributes in XDC files.. 76
Synthesis Attribute Propagation Rules...77

Chapter 4: Using Block Synthesis Strategies.. 79
Overview...79
Setting a Block-Level Flow..80
Block-Level Flow Options... 81

UG901 (v2025.1) June 11, 2025
Synthesis 2Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=2

Chapter 5: HDL Coding Techniques.. 84
Introduction... 84
Advantages of VHDL... 84
Advantages of Verilog...84
Advantages of SystemVerilog.. 85
Flip-Flops, Registers, and Latches... 85
Latches..88
Tristates.. 90
Shift Registers..92
Dynamic Shift Registers..95
Multipliers.. 98
Complex Multiplier Examples.. 101
Pre-Adders in the DSP Block.. 104
Using the Squarer in the UltraScale DSP Block... 107
FIR Filters..109
Convergent Rounding (LSB Correction Technique)..113
RAM HDL Coding Techniques.. 118
Inferring UltraRAM in Vivado Synthesis... 121
RAM HDL Coding Guidelines..124
Initializing RAM Contents... 158
3D RAM Inference... 165
Black Boxes.. 175
FSM Components.. 177
ROM HDL Coding Techniques..181

Chapter 6: VHDL Support..184
Introduction... 184
Supported and Unsupported VHDL Data Types..184
VHDL Objects... 188
VHDL Entity and Architecture Descriptions... 190
VHDL Combinatorial Circuits... 197
Generate Statements..198
Combinatorial Processes..200
VHDL Sequential Logic..204
VHDL Initial Values and Operational Set/Reset...207
VHDL Functions and Procedures...208
VHDL Predefined Packages..210
Defining Your Own VHDL Packages..213

UG901 (v2025.1) June 11, 2025
Synthesis 3Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=3

VHDL Constructs Support Status...214
VHDL RESERVED Words.. 216

Chapter 7: VHDL-2008 Language Support... 218
Introduction... 218
Setting up Vivado to use VHDL-2008.. 218
Supported VHDL-2008 Features.. 218
VHDL-2008 RESERVED Words...228
VHDL-2008 Constructs.. 228

Chapter 8: VHDL-2019 Language Support... 230
Introduction... 230
Setting up Vivado to use VHDL-2019.. 230
Supported VHDL-2019 Features.. 232

Chapter 9: Verilog Language Support...234
Introduction... 234
Verilog Design... 234
Verilog Functionality... 235
Verilog Constructs...245
Verilog System Tasks and Functions...246
Using Conversion Functions.. 248
Verilog Primitives.. 249
Verilog Reserved Keywords... 250
Behavioral Verilog... 251
Modules..259
Procedural Assignments.. 260
Tasks and Functions..267

Chapter 10: SystemVerilog Support... 276
Introduction... 276
Targeting SystemVerilog for a Specific File..276
Compilation Units..276
Data Types..278
Processes..283
Procedural Programming Assignments... 285
Tasks and Functions..287
Modules and Hierarchy.. 288
Interfaces... 289

UG901 (v2025.1) June 11, 2025
Synthesis 4Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=4

Packages...291
SystemVerilog Constructs.. 292

Chapter 11: Mixed Language Support...297
Introduction... 297
Mixing VHDL and Verilog... 297
Instantiation...297
VHDL and Verilog Libraries.. 299
VHDL and Verilog Boundary Rules..300
Binding... 300
Generics Support...300
Port Mapping... 301

Appendix A: Additional Resources and Legal Notices........................... 302
Finding Additional Documentation...302
Support Resources.. 303
References..303
Revision History...304
Please Read: Important Legal Notices... 304

UG901 (v2025.1) June 11, 2025
Synthesis 5Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=5

Chapter 1

Introduction
Synthesis is the process of transforming a Register Transfer Level (RTL) specified design into a
gate-level representation. AMD Vivado™ synthesis is timing-driven and optimized for memory
usage and performance. Vivado synthesis supports a synthesizeable subset of:

• SystemVerilog: IEEE Standard for SystemVerilog-Unified Hardware Design Specification, and
Verification Language (IEEE Std 1800-2012)

• Verilog: IEEE Standard for Verilog Hardware Description Language (IEEE Std 1364-2005)

• VHDL: IEEE Standard for VHDL Language (IEEE Std 1076-2002)

• VHDL 2008

• Mixed languages: Vivado supports a mix of VHDL, Verilog, and SystemVerilog.

In most instances, the Vivado tools also support Xilinx design constraints (XDC), which is based
on the industry-standard Synopsys design constraints (SDC).

IMPORTANT! Vivado synthesis does not support UCF constraints. Migrate UCF constraints to XDC
constraints. For more information, see ISE to Vivado Design Suite Migration Guide (UG911).

There are two ways to setup and run synthesis:

• Use Project Mode, selecting options from the Vivado Integrated Design Environment (IDE).

• Use Non-Project Mode, applying Tool Command Language (Tcl) commands or scripts and
controlling your own design files.

See the Vivado Design Suite User Guide: Design Flows Overview (UG892) for more information
about operation modes. This chapter covers both modes in separate subsections.

Navigating Content by Design Process
AMD Adaptive Computing documentation is organized around a set of standard design
processes to help you find relevant content for your current development task. You can access
the AMD Versal™ adaptive SoC design processes on the Design Hubs page. You can also use the
Design Flow Assistant to better understand the design flows and find content that is specific to
your intended design needs. This document covers the following design processes:

Chapter 1: Introduction

UG901 (v2025.1) June 11, 2025
Synthesis 6Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug911-vivado-migration&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug892-vivado-design-flows-overview&ft:locale=en-US
https://docs.amd.com/p/design-hubs
https://docs.amd.com/p/versal-decision-tree-welcome
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=6

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, functional simulation, and evaluating the AMD Vivado™ timing,
resource use, and power closure. Also involves developing the hardware platform for system
integration. Topics in this document that apply to this design process include:

• Chapter 2: Vivado Synthesis

• Chapter 3: Synthesis Attributes

• Chapter 4: Using Block Synthesis Strategies

Chapter 1: Introduction

UG901 (v2025.1) June 11, 2025
Synthesis 7Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=7

Chapter 2

Vivado Synthesis

Synthesis Methodology
The AMD Vivado™ IDE includes a synthesis and implementation environment that facilitates
a push button flow with synthesis and implementation runs. The tool manages the run data
automatically, allowing repeated run attempts with varying RTL source versions, target devices,
synthesis or implementation options, and physical or timing constraints.

Within the Vivado IDE, you can do the following:

• Create and save a strategy. A strategy is a configuration of command options that you can
apply to design runs for synthesis or implementation. See Creating Run Strategies.

• Queue the synthesis and implementation runs to launch sequentially or simultaneously with
multi-processor machines. See Running Synthesis.

• Monitor synthesis or implementation progress, view log reports, and cancel runs. See
Monitoring the Synthesis Run.

Using Synthesis
This section describes using the AMD Vivado™ IDE to set up and run Vivado synthesis.
The corresponding Tcl Console commands follow most Vivado IDE procedures, and most Tcl
commands link directly to the Vivado Design Suite Tcl Command Reference Guide (UG835).
Additionally, there is more information regarding Tcl commands and using Tcl in the Vivado Design
Suite User Guide: Using Tcl Scripting (UG894).

VIDEO: See the following for more information: Vivado Design Suite QuickTake Video: Synthesis Options
and Vivado Design Suite QuickTake Video: Synthesizing the Design.

Using Synthesis Settings
1. From the Flow Navigator, click Settings, select Synthesis, or select Flow >Settings >

Synthesis Settings.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 8Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug835-vivado-tcl-commands&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug894-vivado-tcl-scripting&ft:locale=en-US
https://www.xilinx.com/video/hardware/synthesis-options.html
https://www.xilinx.com/video/hardware/synthesizing-the-design.html
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=8

The Settings dialog box opens, as shown in the following figure:

2. Under the Constraints section of the Settings dialog box, select the Default Constraint Set as
the active constraint set; a set of files containing design constraints captured in Xilinx design
constraints (XDC) files that you can apply to your design. The two types of design constraints
are:

• Physical constraints: These constraints define pin placement and absolute, or relative,
placement of cells such as block RAMs, LUTs, Flip-Flops, and device configuration settings.

• Timing constraints: These constraints define the frequency requirements for the design.
Without timing constraints, the Vivado Design Suite optimizes the design solely for wire
length and placement congestion.

See Vivado Design Suite User Guide: Using Constraints (UG903) for more information about
organizing constraints.

New runs use the selected constraint set, and the Vivado synthesis targets this constraint set
for design changes.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 9Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug903-vivado-using-constraints&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=9

3. From the Options area: Select a Strategy from the drop-down menu where you can view
and select a predefined synthesis strategy to use for the synthesis run. There are different
preconfigured strategies, as shown in the following figure.

You can also define your own strategy. When you select a synthesis strategy, the available
Vivado strategy displays in the dialog box. You can override synthesis strategy settings by
changing the option values described in Creating Run Strategies.

For a list of all the strategies and their respective settings, see the directive option in the
following list and see Vivado Preconfigured Strategies to see a matrix of strategy default
settings.

4. Select from the displayed options:

• flatten_hierarchy: Determines how Vivado synthesis controls hierarchy.

• none: Instructs the synthesis tool to never flatten the hierarchy. The output of
synthesis has the same hierarchy as the original RTL.

• full: Instructs the tool to fully flatten the hierarchy leaving only the top level.

• rebuilt: When set, rebuilt allows the synthesis tool to flatten the hierarchy, perform
synthesis, and rebuild the hierarchy based on the original RTL. This value allows the
QoR benefit of cross-boundary optimizations, with a final hierarchy that is similar to the
RTL for ease of analysis.

• gated_clock_conversion: Turns on and off the ability of the synthesis tool to convert the
clocked logic with enables.

The use of gated clock conversion also requires using an RTL attribute to work. See
GATED_CLOCK, for more information.

• bufg: Controls how many BUFGs the tool infers in the design. The Vivado design tools
use this option when other BUFGs in the design netlists are not visible to the synthesis
process.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 10Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=10

The tool infers up to the amount specified, and tracks how many BUFGs are instantiated
in the RTL. For example, if the -bufg option is set to 12, and there are three BUFGs
instantiated in the RTL, the Vivado synthesis tool infers up to nine more BUFGs.

• directive: Replaces the -effort_level option. When specified, this option runs Vivado
synthesis with different optimizations. See Vivado Preconfigured Strategies for a list of all
strategies and settings. Values are:

• Default: Default settings. See Vivado Preconfigured Strategies.

• RuntimeOptimized: Performs fewer timing optimizations and eliminates some RTL
optimizations to reduce synthesis runtime.

• AreaOptimized_high: Performs general area optimizations, including forcing ternary
adder implementation, applying new thresholds for using carry chain in comparators,
and implementing area-optimized multiplexers.

• AreaOptimized_medium: Performs general area optimizations, including changing the
threshold for control set optimizations, forcing ternary adder implementation, lowering
multiplier threshold of inference into DSP blocks, moving shift register into block
RAM, applying lower thresholds for use of CARRY chain in comparators, and also area
optimized MUX operations.

• AlternateRoutability: Set of algorithms to improve route-ability (less use of MUXFs and
CARRYs)

• AreaMapLargeShiftRegToBRAM: Detects large shift registers and implements them
using dedicated block RAM.

• AreaMultThresholdDSP: Lower threshold for dedicated DSP block inference.

• FewerCarryChains: Higher operand size threshold to use LUTs instead of the carry
chain.

• LogicCompaction: Arranges CARRY chains and LUTs in such a way that it makes the
logic more compact using fewer SLICES. This could have a negative effect on timing
QoR.

• PerformanceOptimized: Performs general timing optimizations, including logic level
reduction at the expense of area.

• PowerOptimized_high: Performs general timing optimizations including logic level
increase at the expense of area.

• PowerOptimized_medium: Performs general timing optimizations by lowering logic
level reduction at the expense of area.

• global_retiming: devices only. For controlling retiming select the -global_retiming
option. This option <auto|on|off> provides an option to perform for intra-clock sequential
paths by automatically moving registers (register balancing) across combinatorial gates or
LUTs. It maintains the original behavior and latency of the circuit and does not require
changes to the RTL sources. The default is auto. For Versaldevices retiming will performed
when auto is set. For non-Versaldevices, retiming will not be performed when auto is set.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 11Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=11

Note: When retiming in OOC mode, registers that are driven by or that are driving ports are not
retimed.

• fsm_extraction: Controls how synthesis extracts and maps finite state machines.
FSM_ENCODING describes the options in more detail.

• keep_equivalent_registers: Prevents merging of registers with the same input logic.

• resource_sharing: Sets the sharing of arithmetic operators between different signals. The
values are auto, on, and off. The auto value sets performing resource sharing depend on
the timing of the design.

• control_set_opt_threshold: Sets the threshold for the clock to enable optimization to the
lower number of control sets. The default is auto which means the tool chooses a value
based on the device being targeted. Any positive integer value is supported.

The given value is the number of fanouts necessary for the tool to move the control sets
into the D logic of a register. If the fanout is higher than the value, the tool attempts to
have that signal drive the control_set_pin on that register.

• no_lc: When checked, this option turns off LUT combining.

• no_srlextract: When checked, this option turns off SRL extraction for the full design so
that they are implemented as simple registers.

• shreg_min_size: Is the threshold for inference of SRLs. The default setting is 3. This sets
the number of sequential elements that would result in the inference of an SRL for fixed
delay chains (static SRL). Strategies define this setting as 5 and 10 also. See Vivado
Preconfigured Strategies for a list of all strategies and settings.

• max_bram: Describes the maximum number of block RAM allowed in the design. Often
this is used when there are black boxes or third-party netlists in the design and allow the
designer to save room for these netlists.

Note: The default setting of -1 indicates that the tool chooses the maximum number allowed for the
specified part.

• max_uram: Sets the maximum number of UltraRAM (AMD UltraScale+™ device block
RAMs) blocks allowed in design. The default setting of -1 indicates that the tool chooses
the maximum number allowed for the specified part.

• max_dsp: Describes the maximum number of block DSP allowed in the design. Often this
is used when there are black boxes or third-party netlists in the design and allows room
for these netlists. The default setting of -1 indicates that the tool chooses the maximum
number allowed for the specified part.

• max_bram_cascade_height: Controls the maximum number of block RAM that can be
cascaded by the tool. The default setting of -1 indicates that the tool chooses the
maximum number allowed for the specified part.

• max_uram_cascade_height: Controls the maximum number of UltraScale+ device
UltraRAM blocks that can be cascaded by the tool. The default setting of -1 indicates
that the tool chooses the maximum number allowed for the specified part.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 12Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=12

• cascade_dsp: Controls how adders in sum DSP block outputs are implemented. By default,
the sum of the DSP outputs is computed using the block built-in adder chain. The value
tree forces the sum to be implemented in the fabric. The values are auto, tree, and force.
The default is auto.

• no_timing_driven: (Optional) Disables the default timing-driven synthesis algorithm. This
results in a reduced synthesis runtime, but ignores the effect of timing on synthesis.

• sfcu: Run synthesis in single-file compilation unit mode.

• assert: Enable VHDL assert statements to be evaluated. A severity level of failure or error
stops the synthesis flow and produces an error. A severity level of warning generates a
warning.

• debug_log: Prints out extra information in the synthesis log file for debugging purposes.
The -debug_log should be added to the More Options field.

• The tcl.pre and tcl.post options are hooks for Tcl files that run immediately before and
after synthesis.

Note: Paths in the tcl.pre and tcl.post scripts are relative to the associated run directory of
the current project: <project>/<project.runs>/<run_name>.

See Vivado Design Suite User Guide: Using Tcl Scripting (UG894) for more information about
Tcl scripting.

Use the DIRECTORY property of the current project or current run to define the relative
paths in your scripts.

5. Click Finish.

Tcl Commands to Get Property

get_property DIRECTORY [current_project]
get_property DIRECTORY [current_run]

Creating Run Strategies
A strategy is a set of switches to the tools, which are defined in a pre-configured set of options
for the synthesis application or the various utilities and programs that run during implementation.
Each major release has version-specific strategy options.

VIDEO: See the following for more information: Vivado Design Suite QuickTake Video: Creating and
Managing Runs.

Select Settings from the Flow Navigator, select Synthesis, and select a Strategy from the
Strategy drop-down list, shown in previous figure, and click OK.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 13Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug894-vivado-tcl-scripting&ft:locale=en-US
https://www.xilinx.com/video/hardware/creating-and-managing-runs.html
https://www.xilinx.com/video/hardware/creating-and-managing-runs.html
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=13

Setting Synthesis Inputs
Vivado synthesis allows two input types: RTL source code and timing constraints. To add RTL or
constraint files to the run:

1. From the File menu or the Flow Navigator, select the Add Sources command to open the Add
Sources wizard, shown in the following figure.

2. Select an option corresponding to the files to add, and click Next.

The following figure shows the Add or Create Design Sources page that is displayed if Add or
create design sources is selected.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 14Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=14

3. Add constraint, RTL, or other project files, click Finish.

See Vivado Design Suite User Guide: System-Level Design Entry (UG895) for more information
about creating RTL source projects.

The Vivado synthesis tool reads the subset of files that can be synthesized in VHDL, Verilog,
SystemVerilog, or mixed language options supported in the AMD tools.

The following chapters provide details on supported HDL constructs.

• Chapter 5: HDL Coding Techniques

• Chapter 6: VHDL Support

• Chapter 7: VHDL-2008 Language Support

• Chapter 9: Verilog Language Support

• Chapter 10: SystemVerilog Support

• Chapter 11: Mixed Language Support

Vivado synthesis also supports several RTL attributes that control synthesis behavior.
Chapter 3: Synthesis Attributes describes these attributes. For timing constraints, Vivado
synthesis uses the XDC file.

Chapter 4: Using Block Synthesis Strategies describes the available Block Synthesis
Strategies.

IMPORTANT! Vivado Design Suite does not support the UCF format. See ISE to Vivado Design Suite
Migration Guide (UG911) for the UCF to XDC conversion procedure.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 15Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug895-vivado-system-level-design-entry&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug911-vivado-migration&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=15

Controlling File Compilation Order
A specific compile order is necessary when one file has a declaration and another file depends
upon that declaration. The Vivado IDE controls RTL source files compilation from the top of the
graphical hierarchy shown in the Sources window Compile Order window to the bottom.

The Vivado tools automatically identify and set the best top-module candidate, and
automatically manage the compile order. The top-module file and all sources that are under
the active hierarchy are passed to synthesis and simulation in the correct order.

In the Sources window, a pop-up menu provides the Hierarchy Update command. The provided
options specify to the Vivado IDE how to handle changes to the top module and to the source
files in the design.

The default setting, Automatic Update and Compile Order, specifies that the tool manages the
compilation order as shown in the Compilation Order window, and shows which modules are
used and where they are in the hierarchy tree in the Hierarchy window.

The compilation order updates automatically as you change source files.

To modify the compile order before synthesis, select a file, and right-click Hierarchy Update >
Automatic Update, Manual Compile Order so that the Vivado IDE can automatically determine
the best top module for the design and allows for manual specification of the compilation order.

Manual Compile is off by default. If you select a file and move it in the Compile Order window, a
popup menu asks if you want Manual Compile turned on, as shown in the following figure.

Figure 1: Move Sources Option

From the Sources window Compile order tab, drag, and drop files to arrange the compilation
order, or use the menu Move Up or Move Down commands.

Other options are available from the Hierarchy Update context menu, as shown in the following
figure.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 16Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=16

Figure 2: Hierarchy Update Options

See Vivado Design Suite User Guide: Design Flows Overview (UG892) for information about design
flows.

Defining Global Include Files
The Vivado IDE supports designating one of more Verilog or Verilog Header source files as global
‘include files and processes those files before any other sources. Designs that use common
header files might require multiple `include statements to be repeated across multiple Verilog
sources used in the design.

To designate a Verilog or Verilog header file as a global `include file:

1. In the Sources window, select the file.

2. Check the Global include check box in the Source File Properties window, as shown in the
following figure.

TIP: In Verilog, reference header files that are specifically applied to a single Verilog source (for
example; a particular `define  macro), with an `include  statement instead of marking it as a
global `include  file.

See Vivado Design Suite User Guide: Using the Vivado IDE (UG893), for information about the
Sources window.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 17Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug892-vivado-design-flows-overview&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug893-vivado-ide&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=17

RTL Linter
Vivado Synthesis includes an RTL linter that can analyze your code to determine if there are any
code segments that, while legal, could cause issues with your design.

Running the Linter
There are two ways to run the linter. The first is the command line with the -lint option in
synth_design :

synth_design -top <top_level> -part <part> -lint

The second way is with the IDE. In the RTL ANALYSIS section of the Project Manager, there is a
Run Linter button that runs the linter with the current part and top level.

Figure 3: RTL Analysis

Note: The RTL linter currently does not work on out-of-context runs.

Linter Output
After running the linter, the tool will create a new tab with the results.

Figure 4: Linter

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 18Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=18

The output will have a Rule ID, the RTL name of the signal or port with the problem, the
hierarchy where this is found, and a message and file name of the potential problem. In the
previous figure, there is a port called “in3” in test.v, that is never used.

Linter with OOC Runs
There are two options for running the linter on a design containing out-of-context (OOC) runs. To
run the linter on the top design and its OOC modules, generate the output products of the OOC
runs first. To run the linter on individual OOC runs, use the -srcset option:

synth_design -lint -srcset [get_property SRCSET [get_runs
my_IP_core_synth_1]]

Creating Waivers for the RTL Linter
Waivers are created so that the Linter can ignore certain conditions. These are created with the
create_waiver command with the -type LINT option For example :

create_waiver -type LINT -id ASSIGN-1 -rtl_hierarchy x/y

This waiver suppresses reporting on any ASSIGN-1 issues in the x/y hierarchy. Waivers can use
the following options in any combination.

• id: Rule ID for the waiver.

• rtl_name: The signal or port name.

• rtl_hierarchy: The hierarchy in the design.

• rtl_file: The file in question.

Once you get the correct waivers for your design, you can write these to a Tcl file for future use
in your flow:

write_waivers -type LINT -file <filename>.tcl

List of Linter Rules
The RTL linter warns about the following types of issues.

Table 1: Linter Rules

Name ID name Description
Arithmetic overflow ASSIGN-1 For arithmetic expressions when the

target is not large enough to hold the
full precision of the result.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 19Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=19

Table 1: Linter Rules (cont'd)

Name ID name Description
Operands have mixed signs ASSIGN-2 In an arithmetic operation, when

operands have different signs.

Note: Operands on mixed signs in
Verilog are treated as unsigned.

Shifter overflow ASSIGN-3 In a shift operation, when the shift
value is larger than the size of the
result. The result is in all 0's.

Signal bits not set ASSIGN-5 When one or more bits of signal are
not set.

Signal bits are not used ASSIGN-6 When one ore more bits of a signal are
not read from.

Multiple assignments in an array ASSIGN-7 When one or more bits in an array have
been assigned multiple times. Could
lead to multi-driver issues later in flow.

Comparison of arrays of different sizes ASSIGN-8 When signals of array types of different
dimensions are directly compared.

IO bits are not set ASSIGN-9 When one or more bits of an I/O are
not set.

IO bits are not used ASSIGN-10 When one or more bits of an I/O are
not read.

Arithmetic operators are not
mergeable

QOR-1 When two consecutive arithmetic
operators cannot be merged.

Inferred latch INFER-1 Latch is inferred instead of register,
which can be unintended.

Full case statement INFER-2 Case statement covering all conditions
or has a default statement

Module using both clock edges CLOCK-1 Report module if both clock edges are
used.

Mixed asynchronous reset in same
block

RESET-1 Report sequential always/process block
which has more than one types of
asynchronous resets.

Missing asynchronous resets RESET-2 Report registers within always/process
block when there is an asynchronous
reset in sensitivity list but the reset
logic not specified.

Enable contains synchronous reset RESET-3 Issue warning when register without
synchronous reset has its enable driven
by synchronous reset within same
always/process block.

Case equality detection INFER-3 When case equality === is used, Vivado
synthesis automatically converts it to
logical equality ==.

Combinational loop detection INFER-4 Flag RTL signal within which 1 or
multiple bits are assigned through
combinational loop.

Unconnected inputs on module
instances

ASSIGN-12 Warn for unconnected pin for
instantiated module instance.

Mixed blocking and non-blocking
assign

ASSIGN-11 Flag mixed usage of blocking and non-
blocking assignment for same signals.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 20Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=20

Running Synthesis
A run defines and configures aspects of the design that are used during synthesis. A synthesis
run defines the following:

• AMD device to target during synthesis

• Constraint set to apply

• Options to launch single or multiple synthesis runs

• Options to control the results of the synthesis engine

To define a run of the RTL source files and the constraints:

1. Select Flow > Create Runs, or in Design Runs, click the Create Runs button to open the
Create New Runs wizard. The Create New Runs dialog box opens, as shown in the following
figure.

2. Select Synthesis, and click Next.

The Configure Synthesis Runs opens, as shown in the following figure.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 21Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=21

3. Click the Add button and configure the synthesis run with the Name, Constraints Set, Part,
Strategy, and check Make Active, if you want this run to be the active run.

The Vivado IDE contains a default strategy. You can set a specific name for the strategy
run or accept the default name(s), which are numbered as synth_1, synth_2, and so forth. To
create your own run strategy, see Creating Run Strategies.

See Vivado Design Suite User Guide: Using Constraints (UG903)

• For detailed information on constraints, see "About XDC Constraints."

• For detailed information about constraint processing order, see "Constraint Files Order
with IP Cores."

After some constraints are processed for a project, those constraint attributes can become
design properties. For more information about design properties, see the Vivado Design Suite
Properties Reference Guide (UG912).

4. Click Next. The Launch Options page opens.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 22Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug903-vivado-using-constraints&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug912-vivado-properties&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=22

5. In the Launch Options page, set the options as follows, click Next.

• In the Launch Directory drop-down option, browse to and select the directory from which
to launch the run.

• In the Options area, choose one of the following:

• Launch runs on local host: Runs the options from the machine on which you are
working. The Number of jobs drop-down lets you specify how many runs to launch.

Note: The number of jobs can significantly affect the amount of memory used by the Vivado
tool. Turning this to a very high number could cause the tool to take up large amounts of
memory depending on the sizes of the individual runs or OOC runs in the design. Using too
much memory could lead to crashes in the tool.

• Launch runs on remote hosts (Linux only): Launches the runs on a remote host and
configures that host. See Vivado Design Suite User Guide: Implementation (UG904), for
more information about launching runs on remote hosts in Linux. Use the Configure
Hosts button to configure the hosts from the dialog box.

• Launch runs on cluster: Launches the runs on an external tool such as lsf. Hitting the
settings button allows the configuration of that cluster tool.

• Generate scripts only: Generates scripts to run later. Use runme.bat (Windows) or
runme.sh (Linux) to start the run.

6. After setting the Create New Runs wizard option, click Finish in the Launch Runs summary.

You can see the results in the Design Runs window, as shown in the following figure.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 23Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug904-vivado-implementation&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=23

Using the Design Runs Window
The Design Runs window displays the synthesis and implementation runs created in a project
and provides commands to configure, manage, and launch the runs.

If the Design Runs window is not already displayed, select Window > Design Runs to open
the Design Runs window. A synthesis run can have multiple implementation runs. Use the tree
widgets in the window to expand, and collapse synthesis runs. The Design Runs window reports
the run status (when the run is not started, is in progress, is complete, or is out-of-date). Runs
become out-of-date when you modify source files, constraints, or project settings.

To reset, delete, or change properties on specific runs, right-click the run and select the
appropriate command.

Setting the Active Run
Only one synthesis run and one implementation run can be active in the Vivado IDE at any time.
All the reports and tab views display the information for the active run. The Project Summary
window only displays compilations, resource, and summary information for the active run.

To make a run active, select the run in the Design Runs window, right-click, and select the Make
Active command from the pop-up menu to set it as the active run.

Launching a Synthesis Run
To launch a synthesis run, do one of the following:

• From the Flow Navigator, click the Run Synthesis command.

• From the main menu, select the Flow > Run Synthesis command.

• In the Design Runs window, right-click the run, and select Launch Runs.

The first two options start the active synthesis run. The third option opens the Launch Selected
Runs window.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 24Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=24

Here, you can select to run on local host, run on a remote host, or generate the scripts to be run.
See Vivado Design Suite User Guide: Implementation (UG904), for more information about using
remote hosts.

Setting a Bottom-Up, Out-of-Context Flow
You can set a bottom-up flow by selecting any HDL object to run as a separate out-of-context
(OOC) flow. For an overview of the OOC flow, see Vivado Design Suite User Guide: Design Flows
Overview (UG892).

The OOC flow behaves as follows:

• Lower OOC modules run separately from the top level and have their own constraints.

• OOC modules can be run as needed.

• After you have run synthesis on an OOC module, it does not need to be rerun unless you
change the RTL or constraints for that run.

• When the top level is run, the lower level OOC runs are treated as black boxes.

If any IP is synthesized in OOC mode, the top-level synthesis run infers a black box for these
IP. Hence, users cannot reference objects, such as pins, nets, and cells, internal to the IP as
part of the top-level synthesis constraints. During implementation, the netlists from the IP
DCPs are linked with the netlist produced when synthesizing the top-level design files, and the
Vivado Design Suite resolves the IP black boxes. The IP XDC output products generated during
implementation are applied along with any user constraints. If any constraints reference items
inside the IP, there are warnings during synthesis about this, but they can be resolved during
implementation.

This can result in a large runtime improvement for the top level because synthesis no longer
needs to improve for the top level because synthesis no longer needs to be run on the full design.

To set up a module for an OOC run, find that module in the hierarchy view, and right-click the
Set As Out-Of-Context for Synthesis option, shown in the following figure, and click OK.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 25Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug904-vivado-implementation&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug892-vivado-design-flows-overview&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=25

Figure 5: Set as Out-of-Context Synthesis Dialog Box

The Set as Out-of-Context for Synthesis dialog box displays the following information and
options:

• Source Node: Module to which you apply the OOC.

• New Fileset: Lists the New Fileset name, which you can edit.

• Generate Stub: A checkbox that you can check to have the tool create a stub file.

• Clock Constraint File: Choose to have the tool create a new XDC template for you, or you
can use the drop-down menu to copy an existing XDC file to this Fileset. This XDC file should
have clock definitions for all your clock pins on the OOC module.

RECOMMENDED: Leave the stub file option on. If you turn it off, you must create and set your stub files
in the project.

The tool sets up the OOC to run automatically. As shown in the following figure, you can see it as
a new run in the Design Runs window and as a block source in the Compile Order tab.

Figure 6: Compile Order Tab

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 26Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=26

When you set a flow to Out-of-Context, a new run is set up in the tool.

To run the option, right-click and select Launch Runs, described in Launching a Synthesis Run.
This action sets the lower level as a top module and runs synthesis on that module without
creating I/O buffers.

The run saves the netlist from synthesis and creates a stub file (if you selected that option) for
later use. The stub file is the lower level with inputs and outputs and the black-box attribute set.

When you rerun the top-level module, the bottom-up synthesis inserts the stub file into the
flow and compiles the lower level as a black box. The implementation run inserts the lower-level
netlist, thus completing the design.

CAUTION! Do not use the Bottom-Up OOC flow when there are AMD IP in OOC mode in the lower levels
of the OOC module. To have AMD IP in an OOC module, turn off the IP OOC mode. Do not use this flow
when there are parameters on the OOC module or the ports of the OOC module are user-defined types.
Those circumstances cause errors later in the flow.

Manually Setting a Bottom-Up Flow and Importing
Netlists
To manually run a bottom-up flow, instantiate a lower-level netlist or third-party netlist as a black
box, and the Vivado tools fit that black box into the full design after synthesis completes. The
following sections describe the process.

IMPORTANT! Vivado synthesis does not synthesize or optimize encrypted or non-encrypted synthesized
netlists; consequently, XDC constraints or synthesis attributes do not affect synthesis with an imported
core netlist. Also, Vivado synthesis does not read the core netlist and modify the instantiated components
by default; however, Vivado synthesis does synthesize secure IP and RTL. Constraints do affect synthesis
results.

Creating a Lower-Level Netlist
To create a lower-level netlist, set up a project with that netlist as the top-level module. Before
you run synthesis, set the out-of-context (OOC) mode, as shown in the following figure.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 27Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=27

Figure 7: Settings Dialog Box

In the More Options section, you can type -mode out_of_context to have the tool not
insert any I/O buffers in this level.

After you run synthesis, open the synthesized design and in the Tcl Console, type the
write_edif Tcl command in the Tcl Console. The syntax is as follows:

write_edif <design_name>.edf

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 28Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=28

Instantiating the Lower-Level Netlist in a Design
To run the top-level design with the lower-level netlist or third-party netlist, instantiate the
lower-level as a black box by providing a description of the port in a lower-level to the Vivado
tool. In the Setting a Bottom-Up, Out-of-Context Flow, this is referred to as a stub file.

IMPORTANT! The port names provided to the Vivado tool and the port names in the netlist must match.

In VHDL, describe the ports with a component statement, as shown in the following code
snippet:

component <name>
port (in1, in2 : in std_logic;
out1 : out std_logic);
end component;

Because Verilog does not have an equivalent of a component, use a wrapper file to communicate
the ports to the Vivado tool. The wrapper file looks like a typical Verilog file, but contains only
the ports list, as shown in the following code snippet:

module <name> (in1, in2, out1);
input in1, in2;
output out1;
endmodule

Putting Together the Manual Bottom-Up
Components
After you create the lower-level netlist and instantiate the top-level netlists correctly, you can
either add the lower-level netlists to the Vivado project in Project mode, or you can use the
read_edif or read_verilog command in Non-Project mode.

In both modes, the Vivado tool merges the netlist after synthesis.

Note: If a design is from third-party netlists only, and no other RTL files are meant to be part of the
project, you can either create a project with those netlists, or you can use the read_edif and read_verilog
Tcl commands along with the link_design Tcl command in Non-Project Mode.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 29Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=29

Incremental Synthesis
Vivado Synthesis can be run incrementally. In this flow, the tool puts incremental synthesis
info in the generated DCP file that can be referenced in later runs. It detects when the design
has changed and only re-runs synthesis on sections of the design that have changed. The key
advantage of this flow is that the runtime is significantly reduced for designs with small changes.
In addition, the QoR of the design fluctuates less when small changes are inserted into the RTL.

Setting Up Incremental Synthesis in Project Mode
You can set up Incremental Synthesis with a project in the Synthesis page of the Settings dialog
box.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 30Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=30

Figure 8: Synthesis Page of Settings Dialog Box

Note the following important settings:

• Incremental Synthesis selection box: Use the Browse button to indicate if incremental
synthesis uses a known checkpoint, the last checkpoint created (default), or if incremental
synthesis is disabled.

• incremental_mode Synth Design option: Describes how aggressive synthesis is with
optimizations across partitions. The values are quick, default, aggressive, and off. Quick
turns off most optimizations, aggressive turns on more and repeat synthesis on certain
sections. Off tells synthesis not to use the incremental synthesis information in the DCP
file.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 31Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=31

Using Incremental Synthesis in Non-Project Mode
In project mode, the tool automatically reads in the last DCP file from when synthesis was the
last run if running in default mode or any DCP that is specifically mentioned. In non-project
mode, the reference DCP must be read before synthesis. The command for that is:

read_checkpoint -auto_incremental -incremental<path to dcp file>

Or

read_checkpoint -incremental <path to dcp file>

After this, run the synth_design command as normal.

Note: The -auto_incremental option in read_checkpoint is the same as the default behavior in the
IDE.

Interpreting the Log File
When the reference run is performed, the tool partitions out the design as it is performing
synthesis. When the incremental run is started, it compares the elaborated design with the
reference run and identifies the changed modules. The partitioning from the reference run is
initialized in the incremental run. The partitions that contain the changed modules and the
partitions that are affected by them are marked. Based on this, the tool performs synthesis on
the marked partitions. The information on how much of the design and what parts of the design
were re-synthesized can be found in the log file after the incremental run.

This information is in the “Incremental Synthesis Report Summary.” The following is an example
of the report.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 32Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=32

Figure 9: Incremental Synthesis Report Summary

This section has information on which sections of the design changed and needed to be
re-synthesized. In addition, it also has information on how much of the design changed from
reference run to incremental run.

Re-Synthesizing the Full Design
There are some cases or types of designs that cause the flow to trigger a full re-synthesis of the
design. These instances occur under the following conditions:

1. When changes to the top level of the hierarchy are made

2. When the Synthesis settings change

3. When small designs contain few partitions

4. When more than 50% of the partitions have a change

In addition, unusually large XDC files can trigger a re-synthesis of the full design. This improves in
future releases.

Note: Even though it is a Synthesis setting, -mode out_of_context does not trigger a full re-synthesis.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 33Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=33

Using Third-Party Synthesis Tools with Vivado
IP

The Vivado IP catalog is designed, constrained, and validated with the Vivado Design Suite
synthesis.

Note: Even though this is a synthesis setting, -mode out_of_context does not trigger a full resynthesis.

Most AMD-delivered IP has HDL that is encrypted with IEEE P1735, and no support is available
for third-party synthesis tools for AMD IP.

To instantiate AMD IP that is delivered with the Vivado IDE inside of a third-party synthesis tool,
the following flow is recommended:

1. Create the IP customization in a managed IP project.

2. Generate the output products for the IP, including the synthesis design checkpoint (DCP).

The Vivado IDE creates a stub HDL file, which is used in third-party synthesis tools to infer a
black box for the IP (_stub.v | _stub.vhd). The stub file contains directives to prevent
I/O buffers from being inferred; you might need to modify these files to support other
synthesis tool directives.

3. Synthesize the design with the stub files for the AMD IP.

4. Use the netlist produced by the third-party synthesis tool and the DCP files for the AMD
IP, run Vivado implementation. For more information, see Vivado Design Suite User Guide:
Designing with IP (UG896).

Moving Processes to the Background
As the Vivado IDE initiates the process to run synthesis or implementation, an option in
the dialog box lets you put the process into the background. When you put the run in the
background, it releases the Vivado IDE to perform other functions, such as viewing reports.

Monitoring the Synthesis Run
Monitor the status of a synthesis run from the Log window, shown in the following figure.
The messages that show in this window during synthesis are also the messages included in the
synthesis log file.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 34Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug896-vivado-ip&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=34

Figure 10: Log Window

Flow After Synthesis Completion
After the run is complete, the Synthesis Completed dialog box opens, as shown in the following
figure.

Figure 11: Synthesis Completed Dialog Box

Select one of the options:

• Run Implementation: Launches implementation with the current Implementation Project
Settings.

• Open Synthesized Design: Opens the synthesized netlist, the active constraint set, and
the target device into a Synthesized Design environment so that you can perform I/O pin
planning, design analysis, and floorplanning.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 35Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=35

• View Reports: Opens the Reports window so you can view reports.

• Don’t show this dialog again: Use the checkbox to stop this dialog box display.

TIP: You can revert to having the dialog box present by selecting Tools → Settings → Window Behavior.

Analyzing Synthesis Results
After synthesis completes, you can view the reports, and open, analyze, and use the synthesized
design. The Reports window contains a list of reports provided by various synthesis and
implementation tools in the Vivado IDE.

VIDEO: See the following for more information: Vivado Design Suite QuickTake Video: Advanced Synthesis
using Vivado.

Open the Reports view, shown in the following figure, and select a report for a specific run.

Figure 12: Synthesis Reports View

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 36Send Feedback

https://www.xilinx.com/video/hardware/advanced-synthesis-using-vivado.html
https://www.xilinx.com/video/hardware/advanced-synthesis-using-vivado.html
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=36

Using the Synthesized Design Environment
The Vivado IDE provides an environment to analyze the design from several different
perspectives. When you open a synthesized design, the software loads the synthesized netlist,
the active constraint set, and the target device.

To open a synthesized design, select Open Synthesized Design from the Flow Navigator or the
Flow menu.

With a synthesized design open, the Vivado IDE opens a Device window, as shown in the
following figure.

Figure 13: Device Window

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 37Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=37

From this perspective, you can examine the design logic and hierarchy, view the resource usage
and timing estimates, or run design rule checks (DRCs). For more information, see the Vivado
Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

Exploring the Logic
The Vivado IDE provides several logic exploration perspectives: All windows cross-probe to
present the most useful information:

• The Netlist and Hierarchy windows contain a navigable hierarchical tree-style view.

• The Schematic window allows selective logic expansion and hierarchical display.

• The Device window provides a graphical view of the device, placed logic objects, and
connectivity.

Exploring the Logic Hierarchy
The Netlist window displays the logic hierarchy of the synthesized design. You can expand and
select any logic instance or net within the netlist.

As you select logic objects in other windows, the Netlist window expands automatically to
display the selected logic objects, and the information about instances or nets displays in the
Instance or Net Properties windows.

The Synthesized Design window displays a graphical representation of the RTL logic hierarchy.
Each module is sized in relative proportion to the others, so you can determine the size and
location of any selected module.

To open the Hierarchy window, in the Netlist window, right-click to bring up the context menu.
Select Show Hierarchy, as shown in the following figure. Also, you can press F6 to open the
Hierarchy window.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 38Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug906-vivado-design-analysis&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=38

Figure 14: Show Hierarchy Option

Exploring the Logical Schematic
The Schematic window allows selective expansion and exploration of the logical design. You
must select at least one logic object to open and display the Schematic window.

In the Schematic window, view, and select any logic. You can display groups of timing paths to
show all of the instances on the paths. This aids floorplanning because it helps you visualize
where the timing critical modules are in the design.

To open the Schematic window, select one or more instances, nets, or timing paths, and select
Schematic from the window toolbar or the right-click menu, or press the F4 key.

The window opens with the selected logic displayed, as shown in the following figure.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 39Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=39

Figure 15: Schematic Window

You can select and expand the logic for any pin, instance, or hierarchical module.

Running Timing Analysis
Timing analysis of the synthesized design is useful to ensure that paths have the necessary
constraints for effective implementation. The Vivado synthesis is timing-driven and adjusts the
outputs based on provided constraints.

As more physical constraints, such as Pblocks and LOC constraints, are assigned in the design,
the results of the timing analysis become more accurate, although these results still contain some
estimation of path delay. The synthesized design uses an estimate of routing delay to perform
analysis.

You can run timing analysis at this level to ensure that the correct paths are covered and for a
more general idea of timing paths.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 40Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=40

IMPORTANT! Only timing analysis after implementation (place and route) includes the actual delays for
routing. Running timing analysis on the synthesized design is not as accurate as running timing analysis on
an implemented design.

Running Synthesis with Tcl
The Tcl command to run synthesis is synth_design. Typically, this command is run with
multiple options, for example:

synth_design -part xc7k30tfbg484-2 -top my_top

In this example, synth_design is run with the -part option and the -top option.

In the Tcl Console, you can set synthesis options and run synthesis using Tcl command options.
To retrieve a list of options, type synth_design -help in the Tcl Console. The following
snippet is an example of the -help output: synth_design -help.

Description: Synthesize a design using Vivado Synthesis and open that design

Syntax: synth_design [-name <arg>] [-part <arg>] [-constrset <arg>] [-top <arg>]

[-include_dirs <args>] [-generic <args>]

[-verilog_define <args>]

[-flatten_hierarchy <arg>]

[-gated_clock_conversion <arg>]

[-directive <arg>] [-rtl] [-bufg <arg>] [-no_lc]

[-shreg_min_size <arg>] [-mode <arg>]

[-fsm_extraction <arg>][-rtl_skip_mlo][-rtl_skip_ip]

[-rtl_skip_constraints]

[-keep_equivalent_registers] [-resource_sharing <arg>]

[-cascade_dsp <arg>] [-control_set_opt_threshold <arg>]

[-max_bram <arg>] [-max_uram <arg>]

[-max_dsp <arg>] [-max_bram_cascade_height <arg>]

[-max_uram_cascade_height <arg>] [-global_retiming]

[-no_srlextract]

[-assert] [-no_timing_driven] [-sfcu] [-debug_log]

[-quiet] [-verbose]

Returns:

design object

Usage:

Name

Name Description

[-name] Design name

[-part] Target part

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 41Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=41

[-constrset] Constraint fileset to use

[-top] Specify the top module name.

[-include_dirs] Specify verilog search directories.

[-generic] Specify generic parameters. Syntax: -generic <name>=<value> -generic
<name>=<value> ...

[-verilog_define] Specify verilog defines. Syntax: -verilog_define
<macro_name>[=<macro_text>] -verilog_define <macro_name>[=<macro_text>]

[-flatten_hierarchy] Flatten hierarchy during LUT mapping. Values: zull, none, rebuilt.
Default: rebuilt

[-
gated_clock_conversi
on]

Convert clock gating logic to flop enable.Values: off, on, auto Default:
off

[-directive] Synthesis directive. Values: default, RuntimeOptimized,
AreaOptimized_high, AreaOptimized_medium, AlternateRoutability,
AreaMapLargeShiftRegToBRAM, AreaMultThresholdDSP, FewerCarryChains.
Default: default

[-rtl] Elaborate and open an rtl design.

[-bufg] Max number of global clock buffers used by synthesis. Default = 12

[-no_lc] Disable LUT combining. Do not allow combining.

[-shreg_min_size] Minimum length for chain of registers to be mapped onto SRL. Default: 3

[-mode] The design mode. Values: default, out_of_context. Default: default

[-fsm_extraction] FSM Extraction Encoding. Values: off, one_hot, sequential, johnson, gray,
user_encoding, auto. Default: auto

[-rtl_skip_mlo] Skip mandatory logic optimization for RTL elaboration of the design;
requires -rtl option.

[-rtl_skip_ip] Exclude subdesign checkpoints in the RTL elaboration of the design;
requires -rtl option.

[-
rtl_skip_constraints
]

Do not load and validate constraints against elaborated design; requires
-rtl option.

[-srl_style] Static SRL Implementation Style. Values: register, rl, srl_reg, reg_srl,
reg_srl_reg.

[-
keep_equivalent_regi
sters]

Prevents registers sourced by the same logic from being merged. (Note
that the merging can otherwise be prevented using the synthesis KEEP
attribute).

[-resource_sharing] Sharing arithmetic operators. Value: auto, on, off. Default: auto

[-cascade_dsp] Controls how adders summing DSP block outputs will be implemented. Value:
auto, tree, force. Default: auto

[-
control_set_opt_thre
shold]

Threshold for synchronous control set optimization to lower number of
control sets. Valid values are 'auto' and non-negative integers. The
higher the number, the more control set optimization will be performed
and fewer control sets will result. To disable control set optimization
completely, set to 0. Default: auto

[-max_bram] Maximum number of block RAM allowed in design. (Note -1 means that
the tool will choose the max number allowed for the part in question).
Default: -1

[-max_uram] Maximum number of UltraRAM blocks allowed in design. (Note -1 means that
the tool will choose the max number allowed for the part in question).
Default: -1

[-max_dsp] Maximum number of block DSP allowed in design. (Note -1 means that
the tool will choose the max number allowed for the part in question).
Default: -1

[-
max_bram_cascade_hei
ght]

Controls the maximum number of BRAM that can be cascaded by the tool.
(Note -1 means that the tool will choose the max number allowed for the
part in question). Default: -1

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 42Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=42

[-
max_uram_cascade_hei
ght]

Controls the maximum number of UtraRAM that can be cascaded by the tool.
(Note -1 means that the tool will choose the max number allowed for the
part in question). Default:1

[-global_retiming] Seeks to improve circuit performance for intra-clock sequential paths by
automatically moving registers (register balancing) across combinatorial
gates or LUTs.It maintains the original behavior and latency of the
circuit and does not require changes to the RTL sources. A value of "on"
turns on retiming, "off" turns off retiming and "auto" will allow the
tool to decide. "auto" will have retiming turns on for Versal devices and
off for non-Versal devices. Default: "auto"

[-no_srlextract] Prevents the extraction of shift registers so that they get implemented
as simple registers.

[-assert] Enable VHDL assert statements to be evaluated. A severity level of
failure will stop the synthesis flow and produce an error.

[-no_timing_driven] Do not run in timing driven mode.

[-sfcu] Run in single-file compilation unit mode.

[-debug_log] Print detailed log files for debugging.

[-quiet] Ignore command errors.

[-verbose] Suspend message limits during command

For the -generic option, special handling needs to happen with VHDL boolean and
std_logic_vector types because those type do not exist in other formats. Instead of TRUE,
FALSE, or 0010, for example, Verilog standards should be given.

For boolean, the value for FALSE is:

-generic my_gen=1‘b0

For std_logic_vector, the value for 0010 is:

-generic my_gen=4‘b0010

Note: Overriding string generics or parameters is not supported.

Note: If you are using the -mode out_of_context option on the top-level, do not use the
PACKAGE_PIN property unless there is an I/O buffer instantiated in the RTL. The out_of_context
option tells the tool to not infer any I/O buffers including tristate buffers. Without the buffer, you get
errors in placer.

A verbose version of the help is available in the Vivado Design Suite Tcl Command Reference Guide
(UG835). To determine any Tcl equivalent to a Vivado IDE action, run the command in the Vivado
IDE and review the content in the Tcl Console or the log file.

Tcl Script Example
The following is an example synth_design Tcl script:

Setup design sources and constraints
read_vhdl -library bftLib [glob ./Sources/hdl/bftLib/*.vhdl]
read_vhdl ./Sources/hdl/bft.vhdl
read_verilog [glob ./Sources/hdl/*.v]
read_xdc ./Sources/bft_full.xdc

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 43Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug835-vivado-tcl-commands&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=43

Run synthesis
synth_design -top bft -part xc7k70tfbg484-2 -flatten_hierarchy rebuilt
Write design checkpoint
write_checkpoint -force $outputDir/post_synth
Write report utilization and timing estimates
report_utilization -file utilization.txt
report_timing > timing.txt

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 44Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=44

Setting Constraints
The following table shows the supported Tcl commands for Vivado timing constraints. The commands are linked to more information
to the full description in the Vivado Design Suite Tcl Command Reference Guide (UG835).

Table 2: Supported Synthesis Tcl Commands

Command Type Commands
Timing Constraints create_clock create_generated_clock set_false_path set_input_delay

set_output_delay set_max_delay set_multicycle_path get_cells

set_clock_latency set_clock_groups set_disable_timing get_ports

Object Access all_clocks all_inputs all_outputs

get_clocks get_nets get_pins

For details on these commands, see the following documents:

• Vivado Design Suite Tcl Command Reference Guide (UG835)

• Vivado Design Suite User Guide: Using Constraints (UG903)

• Vivado Design Suite Tutorial: Using Constraints (UG945)

• Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 45Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug835-vivado-tcl-commands&ft:locale=en-US
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=create_clock
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=create_generated_clock
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=set_false_path
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=set_input_delay
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=set_output_delay
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=set_max_delay
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=set_multicycle_path
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=get_cells
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=set_clock_latency
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=set_clock_groups
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=set_disable_timing
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=get_ports
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=all_clocks
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=all_inputs
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=all_outputs
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=get_clocks
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=get_nets
https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=get_pins
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug835-vivado-tcl-commands&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug903-vivado-using-constraints&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug945-vivado-using-constraints-tutorial&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug906-vivado-design-analysis&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=45

Multi-Threading in RTL Synthesis
On multiprocessor systems, RTL synthesis leverages multiple CPU cores by default (up to eight)
to speed up compile times.

The maximum number of simultaneous threads varies, depending on the number of processors
available on the system, the OS, and the stage of the flow (see Vivado Design Suite User Guide:
Implementation (UG904)).

The general.maxThreads Tcl parameter, which is common to all threads in Vivado, gives you
control to specify the number of threads to use when running RTL synthesis. For example:

Vivado% set_param general.maxThreads <new limit>

Where the <new limit> must be an integer from 1 to 8 inclusive. For RTL synthesis, 8 is the
maximum number of threads that can be set effectively.

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 46Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug904-vivado-implementation&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=46

Vivado Preconfigured Strategies
The following table shows the preconfigured strategies and their respective settings.

Table 3: Vivado Preconfigured Settings

Options\Strate
gies Default Flow_Area_Opt

imized_high
Flow_AreaOpti
mized_mediu

m

Flow_Area
Mult

ThresholdDSP
Flow_Alternat
e Routability

Flow_Perf
Optimized_hig

h

Flow_Perf
ThreshholdCar

ry
Flow_Runtime

Optimized

-flatten_hierarchy rebuilt rebuilt rebuilt rebuilt rebuilt rebuilt rebuilt none

-gated_clock_conv
ersion

off off off off off off off off

-bufg 12 12 12 12 12 12 12 12

-directive Default AreaOptimized_hi
gh

AreaOptimized_m
edium

AreaMult
ThresholdDSP

Alternate
Routability

PerformanceOpti
mized

FewerCarry
Chains

RunTime
Optimized

-global_retiming auto auto auto auto auto auto auto auto

-fsm_extraction auto auto auto auto auto one_hot auto off

-keep_equivalent_
registers

unchecked unchecked unchecked unchecked unchecked unchecked checked unchecked

-resource_sharing auto auto auto auto auto off off auto

-control_set_opt_t
hreshold

auto 1 1 auto auto auto auto auto

-no_lc unchecked unchecked unchecked unchecked checked checked checked unchecked

-no_srlextract unchecked unchecked unchecked unchecked unchecked unchecked unchecked unchecked

-shreg_min_size 3 3 3 3 10 5 3 3

-max_bram -1 -1 -1 -1 -1 -1 -1 -1

-max_uram -1 -1 -1 -1 -1 -1 -1 -1

-max_dsp -1 -1 -1 -1 -1 -1 -1 -1

-max_bram_casca
de_height

-1 -1 -1 -1 -1 -1 -1 -1

-max_uram_casca
de_height

-1 -1 -1 -1 -1 -1 -1 -1

-cascade_dsp auto auto auto auto auto auto auto auto

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 47Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=47

Table 3: Vivado Preconfigured Settings (cont'd)

Options\Strate
gies Default Flow_Area_Opt

imized_high
Flow_AreaOpti
mized_mediu

m

Flow_Area
Mult

ThresholdDSP
Flow_Alternat
e Routability

Flow_Perf
Optimized_hig

h

Flow_Perf
ThreshholdCar

ry
Flow_Runtime

Optimized

-assert unchecked unchecked unchecked unchecked unchecked unchecked unchecked unchecked

Chapter 2: Vivado Synthesis

UG901 (v2025.1) June 11, 2025
Synthesis 48Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=48

Chapter 3

Synthesis Attributes

Introduction
In the AMD Vivado™ Design Suite, Vivado synthesis can synthesize attributes of several types. In
most cases, these attributes have the same syntax and behavior.

• If Vivado synthesis supports the attribute. It uses the attribute and creates a logic that reflects
the used attribute.

• If the specified attribute is not recognized by the tool, the Vivado synthesis passes the
attribute and its value to the generated netlist.

It is assumed that a tool later in the flow can use the attribute. For example, the LOC constraint
is not used by synthesis. Still, the constraint is used by the Vivado placer and is forwarded by
Vivado synthesis.

Supported Attributes
ASYNC_REG
The ASYNC_REG is an attribute that affects many processes in the Vivado tools flow. The
purpose of this attribute is to inform the tool that a register is capable of receiving asynchronous
data in the D input pin relative to the source clock, or that the register is a synchronizing register
within a synchronization chain. The Vivado synthesis, when encountering this attribute treats it
as a DONT_TOUCH attribute and pushes the ASYNC_REG property forward in the netlist. This
process ensures that the object with the ASYNC_REG property is not optimized out, and that
tools later in the flow receive the property to handle it correctly.

For information on how other Vivado tools handle this attribute, see Vivado Design Suite
Properties Reference Guide (UG912).

You can place this attribute on any register; values are FALSE (default) and TRUE . This attribute
can be set in the RTL or the XDC.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 49Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug912-vivado-properties&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=49

IMPORTANT! Care should be taken when putting this attribute on loadless signals. The attribute and
signal might not be preserved. Attributes are case-insensitive, regardless of HDL.

ASYNC_REG Verilog Example

(* ASYNC_REG = "TRUE" *) reg [2:0] sync_regs;

ASYNC_REG VHDL Examples

attribute ASYNC_REG : string;
attribute ASYNC_REG of sync_regs : signal is "TRUE";
attribute ASYNC_REG : boolean;
attribute ASYNC_REG of sync_regs : signal is TRUE;

BLACK_BOX
The BLACK_BOX attribute is a useful debugging attribute directs synthesis to create a black box
for that module or entity. When the attribute is found, even if there is valid logic for a module
or entity, Vivado synthesis creates a black box for that level. This attribute can be placed on a
module, entity, or component. Because this attribute affects the synthesis compiler, it can only be
set in the RTL.

BLACK_BOX Verilog Example

(* black_box *) module test(in1, in2, clk, out1);

IMPORTANT! In the Verilog example, no value is needed. The presence of the attribute creates the black
box.

BLACK_BOX VHDL Example

attribute black_box : string;
attribute black_box of beh : architecture is "yes";

For more information regarding coding style for Black Boxes, see Black Boxes.

CASCADE_HEIGHT
The CASCADE_HEIGHT attribute is an integer used to describe the length of the cascade chains
of large RAMS that are put into block RAMs. When a RAM that is larger than a single block RAM
is described, the Vivado synthesis tool determines how it must be configured.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 50Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=50

Often, the tool chooses to cascade the block RAMs that it creates. This attribute can be used
to shorten the length of the chain. Place the attribute on the RAM in question, and you can
place the attribute in the RTL files. A value of 0 or 1 for this attribute effectively turns off any
cascading of block RAMs.

Note: This attribute is only applicable to AMD UltraScale™ and AMD Versal™ architecture block RAMs and
URAMs (UltraRAMs).

More information on CASCADE_HEIGHT attributes for UltraRAM is available in
CASCADE_HEIGHT.

CASCADE_HEIGHT Verilog example

(* cascade_height = 4 *) reg [31:0] ram [(2**15) - 1:0];

CASCADE_HEIGHT VHDL example

attribute cascade_height : integer;
attribute cascade_height of ram : signal is 4;

CLOCK_BUFFER_TYPE
Apply CLOCK_BUFFER_TYPE on an input clock to describe what type of clock buffer to use.

By default, Vivado synthesis uses BUFGs for clock buffers. Supported values are "BUFG",
"BUFH", "BUFIO", "BUFMR", "BUFR" or "none". The CLOCK_BUFFER_TYPE attribute can
be placed on any top-level clock port. It can be set in the RTL and XDC.

CLOCK_BUFFER_TYPE Verilog example

(* clock_buffer_type = "none" *) input clk1;

CLOCK_BUFFER_TYPE VHDL example

entity test is port(
in1 : std_logic_vector (8 downto 0);
clk : std_logic;
out1 : std_logic_vector(8 downto 0));
attribute clock_buffer_type : string;
attribute clock_buffer_type of clk: signal is "BUFR";
end test;

CLOCK_BUFFER_TYPE XDC Example

set_property CLOCK_BUFFER_TYPE BUFG [get_ports clk]

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 51Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=51

CRITICAL_SIG_OPT
CRITICAL_SIG_OPT is used to optimize sequential loops by restructuring logic in the feedback
path, so that timing-critical signals travel through the smallest number of logic levels. The
attribute should be placed on sequential objects such as registers, that drive critical paths to
their own inputs.

The optimization improves critical path timing, but at the expense of increased logic utilization
as it involves Shannon decomposition. You must mark the sequential elements (registers) with a
loop which have reasonable logic levels. It can cause resource overhead due to logic replication.

CRITICAL_SIG_OPT Verilog Example

(* CRITICAL_SIG_OPT = “true” *) reg [3 : 0] signal_name;

CRITICAL_SIG_OPT VHDL Example

attribute CRITICAL_SIG_OPT: string;

attribute CRITICAL_SIG_OPT of signal_name: signal is "true"

CRITICAL_SIG_OPT XDC Example

set_property CRITICAL_SIG_OPT 1 [get_cells <registers>]

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 52Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=52

Figure 16: Example

D
Q

C

DD
QQ

CCdout0_i

dino_dly_reg[630]

dino_dly_reg[630]

RTL_REG

RTL_REG

dino_dly_reg[630]

dino_dly_reg[630]

RTL_REG

RTL_REG

d k

din1[630]

din0[630]

dk

din1[630]

din0[630]

RTL_REDUCTION_XOR

RTL_REDUCTION_XOR

RTL_REDUCTION_XOR

RTL_REG

RTL_REG

dout

dout_reg

dout_reg

dout1_i

dout0_i_0

dout0_i
O

O

I0[630]

I0[630]

dout0_i

O

S RTL_MUX

RTL_MUX

0[630] 10[630]
10[630]

11[630]
O

5=11+1 10

5=default 11

5=11+1

5=default

S

C

D
Q

C

D
Q

C

D
Q

C

D
Q

dout

X30218-120924

DIRECT_ENABLE
Apply DIRECT_ENABLE on an input port or other signal to have it go directly to the enable line
of a flop when there is more than one possible enable, or when you want to force the synthesis
tool to use the enable lines of the flop.

The DIRECT_ENABLE attribute can be placed on any port or signal.

DIRECT_ENABLE Verilog Example

(* direct_enable = "yes" *) input ena3;

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 53Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=53

DIRECT_ENABLE VHDL Example

entity test is port(
in1 : std_logic_vector (8 downto 0);
clk : std_logic;
ena1, ena2, ena3 : in std_logic
out1 : std_logic_vector(8 downto 0));
attribute direct_enable : string;
attribute direct_enable of ena3: signal is "yes";
end test;

DIRECT_ENABLE XDC Example

set_property direct_enable yes [get_nets -of [get_ports ena3]]

Note: For XDC usage, this attribute only works on type net, so you must use the get_nets command for
the object.

DIRECT_RESET
Apply DIRECT_RESET on an input port or other signal to have it go directly to the reset line of a
flop when there is more than one possible reset or when you want to force the synthesis tool to
use the reset lines of the flop.

The DIRECT_RESET attribute can be placed on any port or signal.

DIRECT_RESET Verilog Example

(* direct_reset = "yes" *) input rst3;

DIRECT_RESET VHDL Example

entity test is port(
in1 : std_logic_vector (8 downto 0);
clk : std_logic;
rst1, rst2, rst3 : in std_logic
out1 : std_logic_vector(8 downto 0));
attribute direct_reset : string;
attribute direct_reset of rst3: signal is "yes";

end test;

DIRECT_RESET XDC Example

set_property direct_reset yes [get_nets -of [get_ports rst3]]

Note:

For XDC usage, this attribute only works on type net, so you need to use the get_nets command for the
object.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 54Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=54

DONT_TOUCH
Use the DONT_TOUCH attribute in place of KEEP or KEEP_HIERARCHY . The DONT_TOUCH
works in the same way as KEEP or KEEP_HIERARCHY attributes; however, unlike KEEP and
KEEP_HIERARCHY , DONT_TOUCH is forward-annotated to place and route to prevent logic
optimization.

CAUTION! Like KEEP  and KEEP_HIERARCHY  , be careful when using DONT_TOUCH  . In cases where
other attributes conflict with DONT_TOUCH  , the DONT_TOUCH  attribute takes precedence.

The values for DONT_TOUCH are TRUE/FALSE or yes/no . You can place this attribute on any
signal, module, entity, or component.

Note: The DONT_TOUCH attribute is not supported on the port of a module or entity. If specific ports are
needed to be kept, either use the -flatten_hierarchy none setting or put a DONT_TOUCH on the module/
entity itself.

In general, the DONT_TOUCH attribute should be set in RTL only. Signals that need to be kept
can often be optimized before the XDC file is read. Therefore, setting this attribute in the RTL
ensures that it is used. There is one use case where it is recommended that DONT_TOUCH is set
in the XDC file. This would be when DONT_TOUCH is set to yes in the RTL, and it is desired to
be taken out without having to change the RTL. In this case, setting DONT_TOUCH to no in XDC
when that same signal has DONT_TOUCH set to yes in RTL effectively removes that attribute
without having to change the RTL.

Note: When using the XDC to remove a DONT_TOUCH that is set in RTL, you can end up getting warnings
after synthesis when the implementation flow reads the same XDC but the signal in question has been
optimized out. These warnings can be ignored. However, you can also bypass them by putting the
DONT_TOUCH attributes in an XDC file marked as for synthesis only.

DONT_TOUCH Verilog Examples

Verilog Wire Example

(* dont_touch = "yes" *) wire sig1;
assign sig1 = in1 & in2;
assign out1 = sig1 & in2;
(* dont_touch="true" *) input data;

Note: A port declaration implicitly declares a wire with the same name as the port, so dont_touch can be
applied as attributes on module ports.

Verilog Module Example

(* DONT_TOUCH = "yes" *)
module example_dt_ver
(clk,
In1,
In2,
out1);

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 55Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=55

Verilog Instance Example

(* DONT_TOUCH = "yes" *) example_dt_ver U0
(.clk(clk),
.in1(a),
.in2(b),
out1(c));

DONT_TOUCH VHDL Examples

VHDL Signal Example

signal sig1 : std_logic;
attribute dont_touch : string;
attribute dont_touch of sig1 : signal is "true";
....
....
sig1 <= in1 and in2;
out1 <= sig1 and in3;

VHDL Entity Example

entity example_dt_vhd is
port (
clk : in std_logic;
In1 : in std_logic;
In2 : in std_logic;
out1 : out std_logic
);
attribute dont_touch : string;
attribute dont_touch of example_dt_vhd : entity is "true|yes";
end example_dt_vhd;

VHDL Component Example

entity rtl of test is
attribute dont_touch : string;
component my_comp
port (
in1 : in std_logic;
out1 : out std_logic);
end component;
attribute dont_touch of my_comp : component is "yes";

VHDL Example on Architecture

architecture rtl of test is
attribute dont_touch : string;
attribute dont_touch of rtl : architecture is "yes";

DSP_FOLDING
The DSP_FOLDING attribute controls whether the Vivado synthesis folds two MAC structures
connected with an adder into one DSP primitive.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 56Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=56

The values for DSP_FOLDING are:

• yes: The tool converts MAC structures.

• no: The tool does not convert MAC structures.

DSP_FOLDING is supported in RTL only. It should be placed on the module/entity/architecture
of the logic that contains the MAC structures.

DSP_FOLDING Verilog Example

(* dsp_folding = "yes" *) module top

DSP_FOLDING VHDL Example

attribute dsp_folding : string;
attribute dsp_folding of my_entity : entity is "yes";

DSP_FOLDING_FASTCLOCK
The DSP_FOLDING_FASTCLOCK attribute tells the tool which port should become the new
faster clock when using DSP folding.

The values for DSP_FOLDING_FASTCLOCK are:

• yes: The tool uses this port to connect to the new clock.

• no: The tool does not use this port.

DSP_FOLDING_FASTCLOCK is supported in RTL only. Place this attribute only on a port or a pin.

DSP_FOLDING_FASTCLOCK Verilog Example

(* dsp_folding_fastclock = "yes" *) input clk_fast;

DSP_FOLDING_FASTCLOCK VHDL Example

attribute dsp_folding_fastclock : string;
attribute dsp_folding_fastclock of clk_fast : signal is "yes";

EXTRACT_ENABLE
EXTRACT_ENABLE controls whether registers infer enables. Typically, the Vivado tools extract
or not extract enables based on heuristics that typically benefit the most amount of designs. In
cases where Vivado is not behaving in a desired way, this attribute overrides the default behavior
of the tool.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 57Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=57

If there is an undesired enable going to the CE pin of the flip-flop, this attribute can force it to
the D input logic. Conversely, if the tool is not inferring an enable that is specified in the RTL, this
attribute can tell the tool to move that enable to the CE pin of the flip-flop.

EXTRACT_ENABLE is placed on the registers and is supported in RTL and XDC. It can take
boolean values of: yes and no.

EXTRACT_ENABLE Verilog Example

(* extract_enable = "yes" *) reg my_reg;

EXTRACT_ENABLE VHDL Example

signal my_reg : std_logic;
attribute extract_enable : string;
attribute extract_enable of my_reg: signal is "no";

EXTRACT_ENABLE XDC Example

set_property EXTRACT_ENABLE yes [get_cells my_reg]

EXTRACT_RESET
EXTRACT_RESET controls if registers infer resets. Typically, the Vivado tools extract or not
extract resets based on heuristics that typically benefit the most designs. In cases where Vivado
is not behaving in a desired way, this attribute overrides the default behavior of the tool. If an
undesired synchronous reset goes to the flip-flop, this attribute can force it to the D input logic.
Conversely, if the tool is not inferring a reset specified in the RTL, this attribute can command the
tool to move that reset to the dedicated reset of the flop. This attribute can only be used with
synchronous resets; asynchronous resets are not supported.

EXTRACT_RESET is placed on the registers and supported in the RTL and XDC. It can take the
boolean values: yes or no. A value of no means that the reset does not go to the R pin of the
register but is routed through logic to the D pin of the register. A value of yes means that the
reset goes directly to the R pin of the register.

EXTRACT_RESET Verilog Example

(* extract_reset = "yes" *) reg my_reg;

EXTRACT_RESET VHDL Example

signal my_reg : std_logic;
attribute extract_reset : string;
attribute extract_reset of my_reg: signal is "no";

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 58Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=58

EXTRACT_RESET XDC Example

set_property EXTRACT_RESET yes [get_cells my_reg]

FSM_ENCODING
FSM_ENCODING controls encoding on the state machine. Typically, the Vivado tools choose an
encoding protocol for state machines based on heuristics that do the best for the most designs.
Certain design types work better with a specific encoding protocol.

FSM_ENCODING can be placed on the statemachine registers. The legal values for this are
one_hot, sequential, johnson, gray, user_encoding, and none. The auto value is the
default, and allows the tool to determine best encoding. The user_encoding value tells the
tool to still infer a statemachine, but to use the encoding given in the RTL by the user.

The FSM_ENCODING attribute can be set in the RTL or the XDC.

FSM_ENCODING Verilog Example

(* fsm_encoding = "one_hot" *) reg [7:0] my_state;

FSM_ENCODING VHDL Example

type count_state is (zero, one, two, three, four, five, six, seven);
signal my_state : count_state;
attribute fsm_encoding : string;
attribute fsm_encoding of my_state : signal is "sequential";

FSM_SAFE_STATE
FSM_SAFE_STATE instructs Vivado synthesis to insert logic into the state machine that detects
there is an illegal state, puts it into a known, good state on the next clock cycle.

For example, if there were a state machine with a "one_hot" encode, and that is in a "0101"
state (which is an illegal for "one_hot"), the state machine would be able to recover. Place the
FSM_SAFE_STATE attribute on the state machine registers. You can set this attribute in either
the RTL or in the XDC.

The legal values for FSM_SAFE_STATE are:

• auto_safe_state: Uses Hamming-3 encoding for auto-correction for one bit/flip.

• reset_state: Forces the state machine into the reset state using Hamming-2 encoding
detection for one bit/flip.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 59Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=59

• power_on_state: Forces the state machine into the power-on state using Hamming-2
encoding detection for one bit/flip.

• default_state: Forces the state machine into the default state specified in RTL: the state that
is specified in default branch of the case statement in Verilog or the state specified in the
others branch of the case statement in VHDL. For this to work, a default or others
state must be in the RTL.

FSM_SAFE_STATE Verilog Example

(* fsm_safe_state = "reset_state" *) reg [7:0] my_state;

FSM_SAFE_STATE VHDL Example

type count_state is (zero, one, two, three, four, five, six, seven);
signal my_state : count_state;
attribute fsm_safe_state : string;
attribute fsm_safe_state of my_state : signal is "power_on_state";

FULL_CASE (Verilog Only)
FULL_CASE indicates that all possible case values are specified in a case , casex , or casez
statement. If case values are specified, extra logic for case values is not created by Vivado
synthesis. This attribute is placed on the case statement.

IMPORTANT! Because this attribute affects the compiler and can change the logical behavior of the
design, it can be set in the RTL only.

FULL_CASE Verilog Example

(* full_case *)
case select
3’b100 : sig = val1;
3’b010 : sig = val2;
3’b001 : sig = val3;
endcase

GATED_CLOCK
Vivado synthesis allows the conversion of gated clocks. To perform this conversion, use:

• A switch in the Vivado IDE that instructs the tool to attempt the conversion.

• The GATED_CLOCK RTL attribute or XDC property that instructs the tool about which signal
in the gated logic is the clock.

Place this attribute on the signal or port that is the clock. To control the switch:

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 60Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=60

1. Select Tools > Settings > Project Settings > Synthesis.

2. In the Options area, set the -gated_clock_conversion option to one of the following
values:

• off : Disables the gated clock conversion.

• on: Gated clock conversion occurs if the gated_clock attribute is set in the RTL code.
This option gives you more control of the outcome.

• auto: Gated clock conversion occurs if either of the following events are true:

• The gated_clock attribute is set to YES.

• The Vivado synthesis can detect the gate and there is a valid clock constraint set. This
option lets the tool make decisions.

CAUTION! Care should be taken when using attributes like KEEP_HIERARCHY, DONT_TOUCH, and
MARK_DEBUG. These attributes can interfere with gated clock conversion if placed on hierarchies or
instances that need to change to support the conversion.

GATED_CLOCK Verilog Example

(* gated_clock = "yes" *) input clk;

GATED_CLOCK VHDL Example

entity test is port (
in1, in2 : in std_logic_vector(9 downto 0);
en : in std_logic;
clk : in std_logic;
out1 : out std_logic_vector(9 downto 0));
attribute gated_clock : string;
attribute gated_clock of clk : signal is "yes";
end test;

GATED_CLOCK XDC Example

set_property GATED_CLOCK yes [get_ports clk]

IOB
The IOB attribute controls if a register should go into the I/O buffer. The values are TRUE or
FALSE. Place this attribute on the register that you want in the I/O buffer. This attribute can be
set only in the RTL.

IOB Verilog Example

(* IOB = "true" *) reg sig1;

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 61Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=61

IOB VHDL Example

signal sig1:std_logic;
attribute IOB: string;
attribute IOB of sig1 : signal is "true";

IO_BUFFER_TYPE
Apply the IO_BUFFER_TYPE attribute on any top-level port to instruct the tool to use buffers.
Add the property with a value of "NONE" to disable the automatic inference of buffers on the
input or output buffers, which is the default behavior of Vivado synthesis. This attribute is only
supported, and can only be set in the RTL.

IO_BUFFER_TYPE Verilog Example

(* io_buffer_type = "none" *) input in1;

IO_BUFFER_TYPE VHDL Example

entity test is port(
in1 : std_logic_vector (8 downto 0);
clk : std_logic;
out1 : std_logic_vector(8 downto 0));
attribute io_buffer_type : string;
attribute io_buffer_type of out1: signal is "none";
end test;

KEEP
Use the KEEP attribute to prevent optimizations where signals are either optimized or absorbed
into logic blocks. This attribute instructs the synthesis tool to keep the signal it was placed on,
and that signal is placed in the netlist.

For example, if a signal is an output of a 2-bit AND gate, and it drives another AND gate, the
KEEP attribute can be used to prevent that signal from being merged into a larger LUT that
encompasses both AND gates.

CAUTION! Be careful when using KEEP with other attributes. In cases where other attributes conflict with
KEEP, the attribute usually takes precedence.

KEEP is also commonly used with timing constraints. If there is a timing constraint on a signal
that would generally be optimized, KEEP prevents that and allows the correct timing rules to be
used.

Note: The KEEP attribute is not supported on the port of a module or entity. If you need to keep specific
ports, use the -flatten_hierarchy none setting or put a DONT_TOUCH on the module or entity
itself.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 62Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=62

CAUTION! Take care when using KEEP  attribute on loadless signals. Synthesis keeps those signals
resulting in issues later in the flow.

Examples are:

• When you have a MAX_FANOUT attribute on one signal and a KEEP attribute on a second
signal that is driven by the first; the KEEP attribute on the second signal would not allow
fanout replication.

• With a RAM_STYLE="block" , when there is a KEEP on the register that would need to
become part of the RAM, the KEEP attribute prevents the block RAM from being inferred.

The supported KEEP values are:

• TRUE: Keeps the signal.

• FALSE: Allows Vivado synthesis to optimize. The FALSE value does not force the tool to
remove the signal. The default value is FALSE.

You can place this attribute on any signal, register, or wire.

RECOMMENDED: Set this attribute in the RTL only. Because signals that need to be kept are often
optimized before the XDC file is read, setting this attribute in the RTL ensures that the attribute is used.

Note: The KEEP attribute does not force the place and route to keep the signal. Instead, this is
accomplished using the DONT_TOUCH attribute.

KEEP Verilog Example

(* keep = "true" *) wire sig1;
assign sig1 = in1 & in2;
assign out1 = sig1 & in2;

KEEP VHDL Example

signal sig1 : std_logic;
attribute keep : string;
attribute keep of sig1 : signal is "true";
....
....
sig1 <= in1 and in2;
out1 <= sig1 and in3;

KEEP_HIERARCHY
KEEP_HIERARCHY is used to prevent optimizations along the hierarchy boundaries. The Vivado
synthesis tool attempts to keep the same general hierarchy specified in the RTL, but for better
Quality of Results (QoR) reasons it can flatten or modify them.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 63Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=63

If KEEP_HIERARCHY is placed on the instance, the synthesis tool keeps the boundary on that
level static.

This can affect QoR and also should not be used on modules that describe the control logic
of 3-state outputs and I/O buffers. The KEEP_HIERARCHY can be placed in the module or
architecture level or the instance. This attribute can be set in the RTL and in XDC. If it is used in
the XDC, it can only be put on the instance.

KEEP_HIERARCHY Verilog Example

On Module

(* keep_hierarchy = "yes" *) module bottom (in1, in2, in3, in4, out1, out2);

On Instance

(* keep_hierarchy = "yes" *)bottom u0 (.in1(in1), .in2(in2), .out1(temp1));

KEEP_HIERARCHY VHDL Example

On Architecture

attribute keep_hierarchy : string;
attribute keep_hierarchy of beh : entity is "yes";

KEEP_HIERARCHY XDC Example

On Instance

set_property keep_hierarchy yes [get_cells u0]

RECOMMENDED: KEEP_HIERARCHY=SOFT is preferred over KEEP_HIERARCHY=TRUE as it still allows
constant propagation.

MARK_DEBUG
This attribute is applicable to net objects. Some nets can have dedicated connectivity or other
aspects that prohibit visibility for debug purposes.

The MARK_DEBUG values are: "TRUE" or "FALSE".

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 64Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=64

Syntax

Verilog Syntax

To set this attribute, place the proper Verilog attribute syntax on the signal in question:

(* MARK_DEBUG = "{TRUE|FALSE}" *)

Verilog Syntax Example

// Marks an internal wire for debug
(* MARK_DEBUG = "TRUE" *) wire debug_wire,

VHDL Syntax

To set this attribute, place the proper VHDL attribute syntax on the signal in question.

Declare the VHDL attribute as follows:

attribute MARK_DEBUG : string;

Specify the VHDL attribute as follows:

attribute MARK_DEBUG of signal_name : signal is "{TRUE|FALSE}";

Where signal_name is an internal signal.

VHDL Syntax Example

signal debug_wire : std_logic;
attribute MARK_DEBUG : string;
-- Marks an internal wire for debug
attribute MARK_DEBUG of debug_wire : signal is "TRUE";

XDC Syntax

set_property MARK_DEBUG value [get_nets <net_name>]

XDC Syntax Example

Often, the use of MARK_DEBUG is on pins of hierarchies and can be used on any elaborated
sequential element, such as RTL_REG. MARK_DEBUG attributes are intended to go on nets. It is
recommended that you use both the get_nets and the get_pins command as shown, such
as.

set_property MARK_DEBUG true [get_nets -of [get_pins\ hier1/hier2/
<flop_name>/Q]]

This recommended use ensures that the MARK_DEBUG goes onto the net connected to that pin,
regardless of its name.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 65Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=65

Note: If a MARK_DEBUG is applied on a bit of a signal that was declared as a bit_vector, the whole bus
gets the MARK_DEBUG attribute. In addition, if a MARK_DEBUG is placed on a pin of a hierarchy, the full
hierarchy is kept.

MAX_FANOUT
MAX_FANOUT instructs Vivado synthesis on the fanout limits for registers and signals. You can
specify this either in RTL or as an input to the project. The value is an integer that indicates what
the fanout should be. A value of -1 tells the tool not to perform any replication.

This attribute only works on registers and combinatorial signals.

Note: It replicates the register or the driver that drives the combinatorial signal to achieve the fan outputs,
black boxes, EDIF files, and Native Generic Circuit (NGC) files are not supported with this attribute.

RECOMMENDED: Using MAX_FANOUT attributes on global high fanout signals leads to sub-optimal
replication in synthesis. For this reason, AMD recommends only using MAX_FANOUT inside the hierarchies
on local signals with medium to low fanout.

MAX_FANOUT Verilog Example

On Signal

(* max_fanout = 50 *) reg sig1;

MAX_FANOUT VHDL Example

signal sig1 : std_logic;
attribute max_fanout : integer;
attribute max_fanout of sig1 : signal is 50;

Note: In VHDL, max_fanout is an integer.

MAX_FANOUT XDC Examples

set_property MAX_FANOUT <value> [get_cells in1_int_reg]

set_property MAX_FANOUT <value> [get_nets top/my_net]

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 66Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=66

PARALLEL_CASE (Verilog Only)
PARALLEL_CASE specifies that the case statement must be built as a parallel structure. Logic
is not created for an if -elsif structure. Because this attribute affects the compiler and the
logical behavior of the design, it can be set in the RTL only.

(* parallel_case *) case select
3'b100 : sig = val1;
3'b010 : sig = val2;
3'b001 : sig = val3;
endcase

Note: This attribute can only be controlled through the Verilog RTL.

RAM_DECOMP
The RAM_DECOMP attribute instructs the tool to infer RTL RAMs that are too large to fit in a
single block RAM primitive to use a more customizable configuration.

For example, a RAM specified as 2K x 36 would often be configured as two 2 K x 18 block
RAMs arranged side by side. This is the configuration that yields the fastest design. By setting
RAM_DECOMP = "power", the RAM would instead be configured as two 1K x 36 block RAMs.
This is more power-friendly because during a read or write, only the one RAM with the address
being used is active. It comes at the cost of timing because Vivado synthesis must use address
decoding. The RAM_DECOMP would force the second configuration of that RAM.

Alternatively, a value of area would force the configuration to be as small of an area as possible.
This could also be a change from the fastest design.

The values accepted for RAM_DECOMP are "power and area".

This attribute can be set in either RTL or XDC. Place the attribute on the RAM instance itself.

RAM_DECOMP Verilog Example

(* ram_decomp = "power" *) reg [data_size-1:0] myram [2**addr_size-1:0];

RAM_DECOMP VHDL Example

attribute ram_decomp : string;
attribute ram_decomp of myram : signal is "power";

RAM_DECOMP XDC Example

set_property ram_decomp power [get_cells myram]

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 67Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=67

RAM_STYLE
RAM_STYLE instructs the Vivado synthesis tool on how to infer memory. Accepted values are:

• block: Instructs the tool to infer RAMB-type components.

• distributed: Instructs the tool to infer the LUT RAMs.

• registers: Instructs the tool to infer registers instead of RAMs.

• ultra: Instructs the tool to use the AMD UltraScale+™ URAM primitives.

• mixed: Instructs the tool to infer a combination of RAM types designed to minimize the
amount of space that is unused.

• auto: Lets the synthesis tool decide how to implement the RAM. This value is mainly used by
XPMs that must choose a value for RAM_STYLE. This is the same as the default behavior. That
must choose a value for RAM_STYLE.

By default, the tool selects which RAM to infer based on heuristics that give the best results for
most designs. Place this attribute on the array declared for the RAM or a hierarchy level.

• If set on a signal, the attribute affects that specific signal.

• If set on a hierarchy level, this affects all the RAMs in that level of hierarchy. Sub-levels of the
hierarchy are not affected.

This can be set in the RTL or the XDC.

RAM_STYLE Verilog Example

(* ram_style = "distributed" *) reg [data_size-1:0] myram
[2**addr_size-1:0];

RAM_STYLE VHDL Example

attribute ram_style : string;
attribute ram_style of myram : signal is "distributed";

For more information about RAM coding styles, see RAM HDL Coding Techniques.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 68Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=68

RETIMING_BACKWARD
The RETIMING_BACKWARD attribute instructs the tool to move a register backward through
logic closer to the sequential driving elements. Unlike the retiming global setting, this attribute is
not timing-driven and works regardless of whether the retiming global setting is active or if there
are even timing constraints. If the global retiming setting is active, the RETIMING_BACKWARD
step happens first, and the global retiming can enhance that register to move further back the
chain. However, it does not interfere with the attribute and moves the register back to the
original location.

Note: Cells with DONT_TOUCH/MARK_DEBUG attributes, cells with timing exceptions (false_path,
multicycle_path), and user-instantiated cells block this attribute.

The RETIMING_BACKWARD attribute takes an integer as a value. This value describes the amount
of logic the register is allowed to cross. Larger values allow the register to cross more logic. 0
would turn the attribute off.

RETIMING_BACKWARD Verilog Example

(*retiming_backward = 1 *) reg my_sig;

RETIMING_BACKWARD VHDL Example

attribute retiming_backward : integer;
attribute retiming_backward of my_sig : signal is 1;

RETIMING_BACKWARD XDC Example

set_property retiming_backward 1 [get_cells my_sig];

RETIMING_FORWARD
The RETIMING_FORWARD attribute instructs the tool to move a register forward through logic
closer to the driven sequential elements. Unlike the retiming global setting, this attribute is not
timing-driven and works regardless of whether the retiming global setting is active or if there
are even timing constraints. If the global retiming setting is active, the RETIMING_FORWARD step
happens first, and the global retiming can enhance that register to move further up the chain.
However, it does not interfere with the attribute and moves the register back to the original
location.

Note: Cells with DONT_TOUCH/MARK_DEBUG attributes, cells with timing exceptions (false_path,
multicycle_path), and user-instantiated cells block this attribute.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 69Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=69

The RETIMING_FORWARD attribute takes an integer as a value. This value describes the amount
of logic the register is allowed to cross. Larger values allow the register to cross more logic. 0
would turn the attribute off.

RETIMING_FORWARD Verilog Example

(* retiming_forward = 1 *) reg my_sig;

RETIMING_FORWARD VHDL Example

attribute retiming_forward : integer;
attribute retiming_forward of my_sig : signal is 1;

RETIMING_FORWARD XDC Example

set_property retiming_forward 1 [get_cells my_sig];

ROM_STYLE
ROM_STYLE instructs the synthesis tool on how to infer constant arrays into memory structures
like Block RAMs. Accepted values are:

• block: Instructs the tool to infer RAMB-type components

• distributed: Instructs the tool to infer the LUT ROMs. Instructs the tool to infer constant
arrays into distributed RAM (LUTRAM) resources. By default, the tool selects which ROM to
infer based on heuristics that give the best results for the most designs.

• ultra: Instructs synthesis to use URAM primitives. (AMD Versal™ adaptive SoC parts only).

This can be set in the RTL and the XDC.

ROM_STYLE Verilog Example

(* rom_style = "distributed" *) reg [data_size-1:0] myrom
[2**addr_size-1:0];

ROM_STYLE VHDL Example

attribute rom_style : string;
attribute rom_style of myrom : signal is "distributed";

For information about coding for ROM, see ROM HDL Coding Techniques.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 70Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=70

RW_ADDR_COLLISION
The RW_ADDR_COLLISION attribute is for specific types of RAMs. When RAM is a simple dual
port, and the read address is registered, Vivado synthesis infers a block RAM and sets the write
mode to WRITE_FIRST for best timing. Also, if a design writes to the same address it is reading
from, the RAM output is unpredictable. RW_ADDR_COLLISION overrides this behavior.

The values for RW_ADDR_COLLISION are:

• auto: The default behavior as described previously.

• yes: These inserts bypass logic so that when an address is read from the same time it is
written to, the value of the input is seen on the output making the whole array behave as
WRITE_FIRST.

• no: This is when you do not care about timing or the collision possibility. In this case, the write
mode is set to NO_CHANGE , resulting in power savings.

RW_ADDR_COLLISION is supported in RTL only.

RW_ADDR_COLLISION Verilog Example

(*rw_addr_collision = "yes" *) reg [3:0] my_ram [1023:0];

RW_ADDR_COLLISION VHDL Example

attribute rw_addr_collision : string;
attribute rw_addr_collision of my_ram : signal is "yes";

SHREG_EXTRACT
SHREG_EXTRACT instructs the synthesis tool on whether to infer SRL structures. Accepted
values are:

• YES: The tool infers SRL structures.

• NO: The does not infer SRLs and instead creates registers.

Place SHREG_EXTRACT on the signal declared for SRL or the module/entity with the SRL. It can
be set in the RTL or the XDC.

SHREG_EXTRACT Verilog Example

(* shreg_extract = "no" *) reg [16:0] my_srl;

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 71Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=71

SHREG_EXTRACT VHDL Example

attribute shreg_extract : string;
attribute shreg_extract of my_srl : signal is "no";

SRL_STYLE
SRL_STYLE instructs the synthesis tool on how to infer SRLs found in the design. Accepted
values are:

• register: The tool does not infer an SRL but instead only uses registers.

• srl: The tool infers an SRL without any registers before or after.

• srl_reg: The tool infers an SRL and leaves one register after the SRL.

• reg_srl: The tool infers an SRL and leaves one register before the SRL.

• reg_srl_reg: The tool infers an SRL and leaves one register before and one after the SRL.

• block: The tool infers the SRL inside a block RAM.

Place SRL_STYLE on the signal declared for SRL. This attribute can be set in RTL and XDC. The
attribute can only be used on static SRLs. The indexing logic for dynamic SRLs is located within
the SRL component itself. Therefore, the logic cannot be created around the SRL component to
look up addresses outside of the component.

Note: Use care when using combinations of SRL_STYLE, SHREG_EXTRACT, and -shreg_min_size. The
SHREG_EXTRACT attribute always takes precedence over the others. If SHREG_EXTRACT is set to "no"
and SRL_STYLE is set to "srl", registers are used. The -shreg_min_size, being the global variable,
always has the least amount of precedence. If an SRL of length 10 is set and SRL_STYLE is set to "srl",
and -shreg_min_size is set to 20, the SRL is still inferred.

Note: In the following examples, the SRLs are all created with buses where the SRL shifts from one bit to
the next. If the code to use SRL_STYLE has many differently named signals driving each other, place the
SRL_STYLE attribute on the last signal in the chain. This includes if the last register in the chain is in a
different hierarchy level than the other registers. The attribute always goes on the last register in the chain.

SRL_STYLE Verilog Example

(* srl_style = "register" *) reg [16:0] my_srl;

SRL_STYLE VHDL Example

attribute srl_style : string;
attribute srl_style of my_srl : signal is "reg_srl_reg";

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 72Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=72

SRL_STYLE XDC Example

set_property srl_style register [get_cells my_shifter_reg*]

TRANSLATE_OFF/TRANSLATE_ON OFF/ON
TRANSLATE_OFF and TRANSLATE_ON instruct the Synthesis tool to ignore blocks of code.
These attributes are given within a comment in RTL. The comment can start with one of the
following keywords:

• synthesis

• synopsy

• pragma

• xilinx

In newer versions of the tool, using a keyword has become optional. The tool works with
translate_off/on or off/on in the comment.

TRANSLATE_OFF starts the ignore, and it ends with TRANSLATE_ON. These commands cannot
be nested.

This attribute can only be set in the RTL.

TRANSLATE_OFF/TRANSLATE_ON OFF/ON Verilog Example

// synthesis translate_off
Code....
// synthesis translate_on
// synthesis off
Code....
// synthesis on

TRANSLATE_OFF/TRANSLATE_ON OFF/ON VHDL Example

-- synthesis translate_off
Code...
-- synthesis translate_on
-- synthesis on
Code....
-- synthesis off

CAUTION! Be careful with the types of code that are included between the translate statements. If it
is code that affects the behavior of the design, a simulator could use that code, and create a simulation
mismatch.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 73Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=73

USE_DSP
USE_DSP instructs the synthesis tool how to deal with synthesis arithmetic structures. By
default, unless there are timing concerns or threshold limits, synthesis attempts to infer mults,
mult-add, mult-sub, and mult-accumulate type structures into DSP blocks.

Adders, subtracters, and accumulators can go into these blocks also, but by default are
implemented with the logic instead of with DSP blocks. The USE_DSP attribute overrides the
default behavior and force these structures into DSP blocks.

Accepted values are: "logic" , "simd" , "yes" , and "no" :

• The "logic" value is used specifically for XOR structures to go into the DSP primitives. For
"logic" , this attribute can be placed on the module/architecture level only.

• The "simd" is used to instruct the tool to put SIMD structures (Single-instruction-multiple-
data) into DSPs. See the templates for examples.

• The "yes" and "no" values instruct the tool to either put the logic into a DSP or not. These
values can be placed in the RTL on signals, architecture, components, entities, and modules.
The priority is:

1. Signals

2. Architectures and components

3. Modules and entities

If the attribute is not specified, the default behavior is for Vivado synthesis to determine the
correct behavior. This attribute can be set in the RTL or the XDC.

USE_DSP Verilog Example

(* use_dsp = "yes" *) module test(clk, in1, in2, out1);

USE_DSP VHDL Example

attribute use_dsp : string;
attribute use_dsp of P_reg : signal is "no"

Custom Attribute Support in Vivado
Vivado synthesis supports the use of custom attributes in RTL. Behavior synthesis of a custom
attribute is unknown. Often, custom attributes are intended for use in other tools downstream
from the synthesis process.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 74Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=74

CAUTION! When Vivado synthesis encounters unknown attributes, it attempts to forward them to the
synthesis output netlist, but you need to understand the risk. A custom attribute does not stop synthesis
optimizations from occurring, which means that if synthesis can optimize an item with a custom attribute,
it does so, and the attribute is lost.

If you need custom attributes to go through synthesis, you must use the DONT_TOUCH or
KEEP_HIERARCHY attributes to prevent synthesis from optimizing the objects that need the
attributes.

There are two types of objects that can have custom attributes: hierarchies and signals.

When using custom attributes on hierarchies, the -flatten_hierarchy switch must be set
to none or a KEEP_HIERARCHY placed on that level, because synthesis, by default, flattens the
design, optimizes the design, and rebuilds the design.

After a design is first flattened, the custom attribute on the hierarchy is lost.

Example with Custom Attribute on Hierarchy
(Verilog)
(* my_att = "my_value", DONT_TOUCH = "yes" *) module test(....

Example with Custom Attribute on Hierarchy (VHDL)
attribute my_att : string;
attribute my_att of beh : architecture is "my_value"
attribute DONT_TOUCH : string;
attribute DONT_TOUCH of beh : architecture is "yes";

Be careful while using custom attributes on signals as well. When a custom attribute is seen on
a signal, the synthesis tool attempts to put that attribute on the item; however, this item could
be translated to a register or a net, depending on how the tool evaluates the RTL code. Also, as
with hierarchies, because a signal has a custom attribute, the tool can optimize that signal, and
the attribute is lost. To retain custom attributes on signals with custom attributes, you must place
the DONT_TOUCH or the KEEP attribute on those signals.

Finally, because a signal in RTL could describe both a register and the net coming out of the
register, the synthesis tool checks any items with custom attributes and the DONT_TOUCH
attribute. If the net in question is driven by a register, synthesis copies that custom attribute to
the register and the net because there are multiple ways of using custom attributes. Sometimes,
the attribute is wanted on the register, and sometimes the net.

Example with Custom Attribute on a Signal (Verilog)
(* my_att = "my_value", DONT_TOUCH = "yes" *) reg my_signal;

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 75Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=75

Example with Custom Attribute on a Signal (VHDL)
attribute my_att : string;
attribute my_att of my_signal : signal is "my_value";
attribute DONT_TOUCH : string;
attribute DONT_TOUCH of my_signal : signal is "yes";

Using Synthesis Attributes in XDC files
Some synthesis attributes can also be set from an XDC file as well as the original RTL file. In
general, attributes that are used in the end stages of synthesis and describe how synthesis-
created logic is allowed in the XDC file. Attributes that are used towards the beginning of
synthesis and affect the compiler are not allowed in the XDC.

For example, the KEEP and DONT_TOUCH attributes are not allowed in the XDC.

This is because, at the time the attribute is read from the XDC file, components that have the
KEEP or DONT_TOUCH attribute might have already been optimized and would therefore not
exist at the time the attribute is read. For that reason, those attributes must always be set in the
RTL code. For more information on where to set specific attributes, see the individual attribute
descriptions in this chapter.

Note: At the time the XDC file is read, multi-bit signals exist as single nodes in Synthesis. Because of this,
putting attributes on individual bits of a vector signal puts that attribute on all bits of the signal.

To specify synthesis attributes in XDC, type the following in the Tcl Console:

set_property <attribute> <value> <target>

For example:

set_property MAX_FANOUT 15 [get_cells in1_int_reg]

In addition, you can set these attributes in the elaborated design, as follows:

1. Open the elaborated design, shown in the following figure, and select the item on which to
place an attribute, using either of the following methods:

• Click the item in the schematic.

• Select the item in the RTL Netlist view, as shown in the following figure.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 76Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=76

2. In the Cell Properties window, click the Properties tab, and do one of the following:

• Modify the property.

• If the property does not exist, right-click, select Add Properties, and select the property
from the window that appears, or click the + sign.

This saves the attributes to your current constraint file or creates a new constraint file if one
does not exist.

Note: If the same attribute is put on the same object in both the XDC and in RTL, but the values of the
attributes are different, the XDC attribute is accepted, and the RTL attribute is ignored.

Synthesis Attribute Propagation Rules
Read each individual attribute for the rules on whether it should be placed on hierarchies or
signals.

Generally, when an attribute is placed on a hierarchy, it affects only that boundary and not the
items inside that hierarchy. For example, placing a DONT_TOUCH on a specific level affects that
level only, and not the signals inside that level.

There are some exceptions to this rule. These are DSP_FOLDING , RAM_STYLE, ROM_STYLE,
SHREG_EXTRACT, and USE_DSP. When these attributes are placed on a hierarchy, they also
affect the signals inside that hierarchy.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 77Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=77

Note: For the Verilog syntax of having the attribute inside block comments, /* attr = value */, this attribute
is attached to the next lexical item after the comment. If the comment is on its own line, the next item in
the RTL, no matter how far down, gets the attribute. If the attribute is specified at the end of the file, the
attribute gets attached to the module.

Chapter 3: Synthesis Attributes

UG901 (v2025.1) June 11, 2025
Synthesis 78Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=78

Chapter 4

Using Block Synthesis Strategies

Overview
AMD Vivado™ synthesis comes with many strategies and global settings that you can use
to customize how your design is synthesized. This Figure shows the available, pre-defined
strategies in the Synthesis Settings, and Vivado Preconfigured Strategies provides a side-by-side
comparison of the strategy settings.

You can override certain settings, such as -retiming, using attributes or XDC files in the RTL or
XDC files for specific hierarchies or signals. However, in general, options affect the whole design.

As designs become more complex, the application of such settings can limit your design from
reaching its full potential. Certain hierarchies in a design might work better with different options
than others. The following figure shows a medium-sized design that has many different types of
hierarchy.

Figure 17: Multiple Hierarchies within a Design

Chapter 4: Using Block Synthesis Strategies

UG901 (v2025.1) June 11, 2025
Synthesis 79Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=79

One option is to synthesize such hierarchies in out of context (OOC) mode; this is effective, but
complicates the design flow. The OOC flow separates the hierarchies that are assigned to be
synthesized in OOC mode, and runs them separately from the other parts of the design. This
means that synthesis runs more than one time per design. Also, the OOC constraints must be
separated from the constraints of the rest of the design, adding even more complexity.

The Block-Level Synthesis flow (BLOCK_SYNTH) uses a property that lets you use certain global
settings and strategies on specific levels of hierarchy in a top-down flow that is differs from the
top level of the full design.

Setting a Block-Level Flow
To set a Block-Level Synthesis flow (using the BLOCK_SYNTH property), you enter a Tcl property
in the XDC file only. The command syntax is, as follows:

set_property BLOCK_SYNTH.<option name> <value> [get_cells <instance_name>]

Where:

• <option_name> is the option that you want to set.

• <value> is the value you assign to that option.

• <instance_name> is the hierarchical instance on which to set the option.

For example:

set_property BLOCK_SYNTH.MAX_LUT_INPUT 4 [get_cells fftEngine]

Set the property to an instance name, and not on an entity or module name. By using instance
names, the Vivado synthesis tool is able to have more flexibility when there are modules/entities
that are instantiated multiple times. In the provided example, the fftEngine instance is being set,
so there are no LUT5 or LUT6 primitives.

Note: By setting a BLOCK_SYNTH on an instance, you affect that instance and everything below that
instance. For example, if fftEngine had other modules instantiated within it, those modules would also
not have any LUT5s or LUT6s primitives.

Note: In addition to affecting this instance, the BLOCK_SYNTH property also causes the hierarchy of this
instance to be hardened. Be careful with this, especially if this hierarchy contains I/O buffers or is inferring
input/output buffers.

When you put a BLOCK_SYNTH property on an instance, the instance gets that value for that
specific option; all other options use the default values.

Chapter 4: Using Block Synthesis Strategies

UG901 (v2025.1) June 11, 2025
Synthesis 80Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=80

Multiple BLOCK_SYNTH properties can be set on the same instance to try out different
combinations. For example, the following keeps equivalent registers, disables the FSM inference,
and uses the AlternateRoutability strategy:

set_property BLOCK_SYNTH.STRATEGY {ALTERNATE_ROUTABILITY} [get_cells
mod_inst]
set_property BLOCK_SYNTH.KEEP_EQUIVALENT_REGISTER 1 [get_cells mod_inst]
set_property BLOCK_SYNTH.FSM_EXTRACTION {OFF} [get_cells mod_inst]

To prevent impacting instances under the instance that require a different property setting, you
can nest BLOCK_SYNTH properties on multiple levels. If you only want this on one particular
level, you can set it on that level, and on the subsequent levels, you can set the default values
back, using the command as follows:

set_property BLOCK_SYNTH.MAX_LUT_INPUT 6 [get_cells fftEngine/newlevel]

If the new level is the only hierarchy under fftEngine, this command ensures that only
fftEngine gets the MAX_LUT_INPUT = 4 property. You can also put an entirely different
set of options on this level as well, and not go back to the default.

Note: When performing the block level flow, the tool keeps this design in a top-down mode meaning
that the full design goes through synthesis. For the instance in question, Vivado synthesis preserves the
hierarchy to ensure that the logic of that level does not blur and stays within that level. This could have a
potential effect on QoR. For this reason, be careful when setting BLOCK_LEVEL properties. Only set them
on instances you know need them.

Block-Level Flow Options
The block-level flow supports some of the predefined strategies that are in the tool as well. The
strategies that are allowed are: DEFAULT, AREA_OPTIMIZED, ALTERNATE_ROUTABILITY, and
PERFORMANCE_OPTIMIZED. The XDC constraint syntax is as follows:

set_property BLOCK_SYNTH.STRATEGY {<value>} [get_cells <inst_name>]

The following table lists the supported Vivado Block synthesis settings.

Table 4: Vivado Block Synthesis Settings

Option Type Values Description
RETIMING INTEGER 0/1 • 0 – Disable Retiming

• 1 – Enable Retiming

Chapter 4: Using Block Synthesis Strategies

UG901 (v2025.1) June 11, 2025
Synthesis 81Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=81

Table 4: Vivado Block Synthesis Settings (cont'd)

Option Type Values Description
ADDER_THRESHOLD INTEGER 4-128 Changes the threshold for

the size of an adder for
synthesis to infer in a CARRY
chain.
• Higher numbers mean

more LUTs.
• Lower numbers mean

more CARRY chains.
The threshold is calculated
by adding the sizes of
the adder operands. The
specified value should be >=
sum of the input widths.

COMPARATOR_THRESHOLD INTEGER 4-128 Changes the threshold for
the size of a comparator for
synthesis to infer in a CARRY
chain.
• Higher numbers mean

more LUTs.
• Lower numbers mean

more CARRY chains.

SHREG_MIN_SIZE INTEGER 3-32 Changes the threshold for
the size of a register chain
before synthesis infers SRL
primitives.
• Higher numbers mean

more registers.
• Lower numbers mean

more SRLs.

FSM_EXTRACTION STRING OFF
ONE_HOT

SEQUENTIAL
GRAY

JOHNSON
AUTO

Sets the encodings of state
machines that the synthesis
tool infers.

LUT_COMBINING INTEGER 0/1 • 0 – Disable LUT
combining

• 1 – Enable LUT
combining

CONTROL_SET_THRESHOLD INTEGER 0-128 Controls the fanout needed
on control signals before
synthesis infers registers
with control signals.
• Higher numbers mean

less logic on control
signals and more on D
input of flop.

• Lower numbers mean
more control signals and
less logic on D input.

Chapter 4: Using Block Synthesis Strategies

UG901 (v2025.1) June 11, 2025
Synthesis 82Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=82

Table 4: Vivado Block Synthesis Settings (cont'd)

Option Type Values Description
MAX_LUT_INPUT INTEGER 4-6 • 4 – No LUT5 or LUT6

primitives are inferred
• 5 – No LUT6 primitives

are inferred
• 6 – All LUTs can be

inferred.

MUXF_MAPPING INTEGER 0/1 • 0 – Disable MUXF7/F8/F9
inference

• 1 – Enable MUXF7/F8/F9
inference

KEEP_EQUIVALENT_REGISTER INTEGER 0/1 • 0 – Merges equivalent
registers

• 1 – Retains equivalent
registers

PRESERVE_BOUNDARY INTEGER Any number This option can be used with
incremental synthesis. It is
used to mark hierarchies
that are known to change.
Using this option can make
the hierarchy static and
allow the incremental flow to
work. The value given does
not matter because having
this option set is sufficient.

LOGIC_COMPACTION INTEGER 1 Arranges CARRY chains and
LUTs in such a way that
it makes the logic more
compact using fewer SLICES.

SRL_STYLE STRING REGISTER
SRL

SRL_REG
REG_SRL

REG_SRL_REG

Sets the default
implementation for inferred
SRLs.

Chapter 4: Using Block Synthesis Strategies

UG901 (v2025.1) June 11, 2025
Synthesis 83Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=83

Chapter 5

HDL Coding Techniques

Introduction
Hardware Description Language (HDL) coding techniques let you:

• Describe the most common functionality found in digital logic circuits.

• Take advantage of the architectural features of AMD devices.

• Templates are available from the AMD Vivado™ Design Suite Integrated Design Environment
(IDE). To access the templates, in the Window Menu, select Language Templates.

Coding examples are included in this chapter. Download the coding example files from Coding
Examples .

Advantages of VHDL
• Enforces stricter rules, in particular strongly typed, less permissive and error-prone

• Initialization of RAM components in the HDL source code is easier (Verilog initial blocks are
less convenient)

• Package support

• Custom types

• Enumerated types

• No reg versus wire confusion

Advantages of Verilog
• C-like syntax

• More compact code

• Block commenting

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 84Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=84

• No heavy component instantiation as in VHDL

Advantages of SystemVerilog
• More compact code compared to Verilog

• Structures and enumerated types for better scalability

• Interfaces for higher level of abstraction

• Supported in Vivado synthesis

Flip-Flops, Registers, and Latches
Vivado synthesis recognizes Flip-Flops, Registers with the following control signals:

• Rising or falling-edge clocks

• Asynchronous Set/Reset

• Synchronous Set/Reset

• Clock Enable

Flip-Flops, Registers, and Latches are described with:

• sequential process (VHDL)

• always block (Verilog)

• always_ff for flip-flops, always_latch for Latches (SystemVerilog)

The process or always block sensitivity list should list:

• The clock signal

• All asynchronous control signals

Flip-Flops and Registers Control Signals
Flip-Flops and Registers control signals include:

• Clocks

• Asynchronous and synchronous set and reset signals

• Clock enable

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 85Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=85

Coding Guidelines
• Do not asynchronously set or reset registers.

○ Control set remapping becomes impossible.

○ Sequential functionality in device resources, such as block RAM components and DSP
blocks, can be set or reset synchronously only.

○ If you use asynchronously set or reset registers, you cannot leverage device resources or
are configured sub-optimally.

• Do not describe flip-flops with both a set and a reset.

○ No flip-flop primitives feature both a set and a reset, whether synchronous or
asynchronous.

○ Flip-flop primitives featuring both a set and a reset can adversely affect area and
performance.

• Avoid operational set/reset logic whenever possible. There can be other, less expensive, ways
to achieve the desired effect, such as taking advantage of the circuit global reset by defining
an initial content.

• Always describe the clock enable, set, and reset control inputs of flip-flop primitives as
active-High. If they are described as active-Low, the resulting inverter logic penalizes circuit
performance.

Flip-Flops and Registers Inference
Vivado synthesis infers four types of register primitives depending on how the HDL code is
written:

• FDCE: D flip-flop with Clock Enable and Asynchronous Clear

• FDPE: D flip-flop with Clock Enable and Asynchronous Preset

• FDSE: D flip-flop with Clock Enable and Synchronous Set

• FDRE: D flip-flop with Clock Enable and Synchronous Reset

Flip-Flops and Registers Initialization
To initialize the content of a Register at circuit power-up, specify a default value for the signal
during declaration.

Flip-Flops and Registers Reporting
• Registers are inferred and reported during HDL synthesis.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 86Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=86

• The number of Registers inferred during HDL synthesis might not precisely equal the number
of Flip-Flop primitives in the Design Summary section.

• The number of Flip-Flop primitives depends on the following processes:

○ Absorption of Registers into DSP blocks or block RAM components

○ Register duplication

○ Removal of constant or equivalent Flip-Flops

Flip-Flops and Registers Reporting Example
--

RTL Component Statistics
--

Detailed RTL Component Info :
+---Registers :
8 Bit Registers := 1

Report Cell Usage:
-----+----+-----
|Cell|Count
-----+----+-----
3 |FDCE| 8
-----+----+-----

Flip-Flops and Registers Coding Examples
The following subsections provide VHDL and Verilog examples of coding for flip-flops and
registers. Download the coding example files from Coding Examples.

Register with Rising-Edge Coding Verilog Example

Filename: registers_1.v

// 8-bit Register with
// Rising-edge Clock
// Active-high Synchronous Clear
// Active-high Clock Enable
// File: registers_1.v

module registers_1(d_in,ce,clk,clr,dout);
input [7:0] d_in;
input ce;
input clk;
input clr;
output [7:0] dout;
reg [7:0] d_reg;
always @ (posedge clk)
begin
if(clr)
d_reg <= 8'b0;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 87Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=87

else if(ce)
d_reg <= d_in;
end
assign dout = d_reg;
endmodule

Flip-Flop Registers with Rising-Edge Clock Coding VHDL Example

Filename: registers_1.vhd

-- Flip-Flop with
-- Rising-edge Clock
-- Active-high Synchronous Clear
-- Active-high Clock Enable
-- File: registers_1.vhd

library IEEE;
use IEEE.std_logic_1164.all;

entity registers_1 is
port(
clr, ce, clk : in std_logic;
d_in : in std_logic_vector(7 downto 0);
dout : out std_logic_vector(7 downto 0)
);
end entity registers_1;
architecture rtl of registers_1 is
begin
process(clk) is
begin
if rising_edge(clk) then
if clr = '1' then
dout <= "00000000";
elsif ce = '1' then
dout <= d_in;
end if;
end if;
end process;
end architecture rtl;

Latches
The Vivado log file reports the type and size of recognized Latches.

Inferred Latches are often the result of HDL coding mistakes, such as incomplete if or case
statements.

Vivado synthesis issues a warning for the instance shown in the following reporting example.
This warning lets you verify that the inferred Latch functionality was intended.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 88Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=88

Latches Reporting Example
===
* Vivado.log *
===

WARNING: [Synth 8-327] inferring latch for variable 'Q_reg'

===
Report Cell Usage:
-----+----+-----
|Cell|Count
-----+----+-----
2 |LD | 1
-----+----+-----
===

Latch With Positive Gate and Asynchronous Reset
Coding Verilog Example
Filename: latches.v

// Latch with Positive Gate and Asynchronous Reset
// File: latches.v
module latches (
input G,
input D,
input CLR,
output reg Q
);
always @ *
begin
if(CLR)
Q = 0;
else if(G)
Q = D;
end

endmodule

Latch With Positive Gate and Asynchronous Reset
Coding VHDL Example
Filename: latches.vhd

-- Latch with Positive Gate and Asynchronous Reset
-- File: latches.vhd
library ieee;
use ieee.std_logic_1164.all;

entity latches is
port(
G, D, CLR : in std_logic;
Q : out std_logic

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 89Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=89

);
end latches;

architecture archi of latches is
begin
process(CLR, D, G)
begin
if (CLR = '1') then
Q <= '0';
elsif (G = '1') then
Q <= D;
end if;
end process;
end archi;

Tristates
• Tristate buffers are usually modeled by a signal or an if-else construct.

• This applies whether the buffer drives an internal bus or an external bus on the board on
which the device resides.

• The signal is assigned a high impedance value in one branch of the if-else. Download the
coding example files from Coding Examples.

Tristate Implementation
Inferred Tristate buffers are implemented with different device primitives when driving the
following:

• An external pin of the circuit (OBUFT)

• An Internal bus (BUFT):

○ An inferred BUFT is converted automatically to logic realized in LUTs by Vivado synthesis.

○ When an internal bus inferring a BUFT is driving an output of the top module, the Vivado
synthesis infers an OBUF.

Tristate Reporting Example

Tristate buffers are inferred and reported during synthesis.

===
* Vivado log file *
===
Report Cell Usage:
-----+-----+-----

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 90Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=90

|Cell |Count
-----+-----+-----
1 |OBUFT| 1
-----+-----+-----
===

Tristate Description Using Concurrent Assignment Coding Verilog
Example

Filename: tristates_2.v

// Tristate Description Using Concurrent Assignment
// File: tristates_2.v
//
module tristates_2 (T, I, O);
input T, I;
output O;
assign O = (~T) ? I: 1'bZ;
endmodule

Tristate Description Using Combinatorial Process Implemented
with OBUFT Coding VHDL Example

Filename: tristates_1.vhd

-- Tristate Description Using Combinatorial Process
-- Implemented with an OBUFT (IO buffer)
-- File: tristates_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;
entity tristates_1 is
port(
T : in std_logic;
I : in std_logic;
O : out std_logic
);
end tristates_1;
architecture archi of tristates_1 is
begin
process(I, T)
begin
if (T = '0') then
O <= I;
else
O <= 'Z';
end if;
end process;
end archi;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 91Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=91

Tristate Description Using Combinatorial Always Block Coding
Verilog Example

Filename: tristates_1.v

// Tristate Description Using Combinatorial Always Block
// File: tristates_1.v
//
module tristates_1 (T, I, O);
input T, I;
output O;
reg O;

always @(T or I)
begin
if (~T)
O = I;
else
O = 1'bZ;
end

endmodule

Shift Registers
A Shift Register is a chain of Flip-Flops allowing propagation of data across a fixed (static) number
of latency stages. In contrast, in Dynamic Shift Registers, the length of the propagation chain
varies dynamically during circuit operation. Download the coding example files from Coding
Examples.

Static Shift Register Elements
A static Shift Register usually involves:

• A clock

• An optional clock enable

• A serial data input

• A serial data output

Shift Registers SRL-Based Implementation
Vivado synthesis implements inferred Shift Registers on SRL-type resources such as:

• SRL16E

• SRLC32E

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 92Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=92

Depending on the length of the Shift Register, Vivado synthesis does one of the following:

• Implements it on a single SRL-type primitive

• Takes advantage of the cascading capability of SRLC-type primitives

• Attempts to take advantage of this cascading capability if the rest of the design uses some
intermediate positions of the Shift Register

Shift Registers Coding Examples

The following sections provide VHDL and Verilog coding examples for shift registers.

32-Bit Shift Register Coding Example One (VHDL)

This coding example uses the concatenation coding style.

Filename: shift_registers_0.vhd

-- 32-bit Shift Register
-- Rising edge clock
-- Active high clock enable
-- Concatenation-based template
-- File: shift_registers_0.vhd

library ieee;
use ieee.std_logic_1164.all;
entity shift_registers_0 is
generic(
DEPTH : integer := 32
);
port(
clk : in std_logic;
clken : in std_logic;
SI : in std_logic;
SO : out std_logic
);

end shift_registers_0;

architecture archi of shift_registers_0 is
signal shreg : std_logic_vector(DEPTH - 1 downto 0);
begin
process(clk)
begin
if rising_edge(clk) then
if clken = '1' then
shreg <= shreg(DEPTH - 2 downto 0) & SI;
end if;
end if;
end process;
SO <= shreg(DEPTH - 1);
end archi;

32-Bit Shift Register Coding Example Two (VHDL)

The same functionality can also be described as follows:

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 93Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=93

Filename: shift_registers_1.vhd

-- 32-bit Shift Register
-- Rising edge clock
-- Active high clock enable
-- foor loop-based template
-- File: shift_registers_1.vhd

library ieee;
use ieee.std_logic_1164.all;
entity shift_registers_1 is
generic(
DEPTH : integer := 32
);
port(
clk : in std_logic;
clken : in std_logic;
SI : in std_logic;
SO : out std_logic
);

end shift_registers_1;

architecture archi of shift_registers_1 is
signal shreg : std_logic_vector(DEPTH - 1 downto 0);
begin
process(clk)
begin
if rising_edge(clk) then
if clken = '1' then
for i in 0 to DEPTH - 2 loop
shreg(i + 1) <= shreg(i);
end loop;
shreg(0) <= SI;
end if;
end if;
end process;
SO <= shreg(DEPTH - 1);
end archi;

8-Bit Shift Register Coding Example One (Verilog)

This coding example uses a concatenation to describe the Register chain.

Filename: shift_registers_0.v

// 8-bit Shift Register
// Rising edge clock
// Active high clock enable
// Concatenation-based template
// File: shift_registers_0.v

module shift_registers_0 (clk, clken, SI, SO);
parameter WIDTH = 32;
input clk, clken, SI;
output SO;

reg [WIDTH-1:0] shreg;

always @(posedge clk)

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 94Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=94

begin
if (clken)
shreg = {shreg[WIDTH-2:0], SI};
end

assign SO = shreg[WIDTH-1];

endmodule

32-Bit Shift Register Coding Example Two (Verilog)

Filename: shift_registers_1.v

// 32-bit Shift Register
// Rising edge clock
// Active high clock enable
// For-loop based template
// File: shift_registers_1.v

module shift_registers_1 (clk, clken, SI, SO);
parameter WIDTH = 32;
input clk, clken, SI;
output SO;
reg [WIDTH-1:0] shreg;

integer i;
always @(posedge clk)
begin
if (clken)
begin
for (i = 0; i < WIDTH-1; i = i+1)
shreg[i+1] <= shreg[i];
shreg[0] <= SI;
end
end
assign SO = shreg[WIDTH-1];
endmodule

SRL Based Shift Registers Reporting

Report Cell Usage:
-----+-------+-----
|Cell |Count
-----+-------+-----
1 |SRLC32E| 1

Dynamic Shift Registers
A Dynamic Shift register is a Shift register the length of which can vary dynamically during circuit
operation.

A Dynamic Shift register can be seen as:

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 95Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=95

• A chain of Flip-Flops of the maximum length that it can accept during circuit operation.

• A Multiplexer that selects, in a given clock cycle, the stage at which data is to be extracted
from the propagation chain.

The Vivado synthesis tool can infer Dynamic Shift registers of any maximal length.

Vivado synthesis tool can implement Dynamic Shift registers optimally using the SRL-type
primitives available in the device family. The following figure illustrates the functionality of the
Dynamic Shift register.

Figure 18: Dynamic Shift Registers Diagram

Dynamic Shift Registers Coding Examples
Download the coding example files from Coding Examples.

32-Bit Dynamic Shift Registers Coding Verilog Example

Filename: dynamic_shift_registers_1.v

// 32-bit dynamic shift register.
// Download:
// File: dynamic_shift_registers_1.v

module dynamic_shift_register_1 (CLK, CE, SEL, SI, DO);
parameter SELWIDTH = 5;
input CLK, CE, SI;
input [SELWIDTH-1:0] SEL;
output DO;

localparam DATAWIDTH = 2**SELWIDTH;
reg [DATAWIDTH-1:0] data;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 96Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=96

assign DO = data[SEL];

always @(posedge CLK)
begin
if (CE == 1'b1)
data <= {data[DATAWIDTH-2:0], SI};
end
endmodule

32-Bit Dynamic Shift Registers Coding VHDL Example

Filename: dynamic_shift_registers_1.vd

-- 32-bit dynamic shift register.
-- File:dynamic_shift_registers_1.vhd
-- 32-bit dynamic shift register.
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity dynamic_shift_register_1 is
generic(
DEPTH : integer := 32;
SEL_WIDTH : integer := 5
);
port(
CLK : in std_logic;
SI : in std_logic;
CE : in std_logic;
A : in std_logic_vector(SEL_WIDTH - 1 downto 0);
DO : out std_logic
);

end dynamic_shift_register_1;

architecture rtl of dynamic_shift_register_1 is
type SRL_ARRAY is array (DEPTH - 1 downto 0) of std_logic;

signal SRL_SIG : SRL_ARRAY;

begin
process(CLK)
begin
if rising_edge(CLK) then
if CE = '1' then
SRL_SIG <= SRL_SIG(DEPTH - 2 downto 0) & SI;
end if;
end if;
end process;

DO <= SRL_SIG(conv_integer(A));

end rtl;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 97Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=97

Multipliers
Vivado synthesis infers multiplier macros from multiplication operators in the source code. The
resulting signal width equals the sum of the two operand sizes. For example, multiplying a 16-bit
signal by an 8-bit signal produces a result of 24 bits.

RECOMMENDED: If you do not intend to use all most significant bits of a device, AMD recommends that
you reduce the size of operands to the minimum needed, especially if the Multiplier macro is implemented
on slice logic.

Multipliers Implementation
Multiplier macros can be implemented on:

• Slice logic

• DSP blocks

The implementation choice is:

• Driven by the size of operands

• Aimed at maximizing performance

To force implementation of a Multiplier to slice logic or DSP block, set the USE_DSP attribute on
the appropriate signal, entity, or module to either:

• no (slice logic)

• yes (DSP block)

DSP Block Implementation

When implementing a Multiplier in a single DSP block, Vivado synthesis tries to take advantage
of the pipelining capabilities of DSP blocks. Vivado synthesis pulls up to two levels of registers
present: On the multiplication operands, and after the multiplication.

When a Multiplier does not fit on a single DSP block, Vivado synthesis decomposes the macro to
implement it. In that case, Vivado synthesis uses either of the following:

• Several DSP blocks

• A hybrid solution involving both DSP blocks and slice logic

Use the KEEP attribute to restrict absorption of Registers into DSP blocks. For example, if a
Register is present on an operand of the multiplier, place KEEP on the output of the Register to
prevent the Register from being absorbed into the DSP block.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 98Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=98

Multipliers Coding Examples

Unsigned 16x24-Bit Multiplier Coding Verilog Example

Filename: mult_unsigned.v

// Unsigned 16x24-bit Multiplier
// 1 latency stage on operands
// 3 latency stage after the multiplication
// File: multipliers2.v
//
module mult_unsigned (clk, A, B, RES);

parameter WIDTHA = 16;
parameter WIDTHB = 24;
input clk;
input [WIDTHA-1:0] A;
input [WIDTHB-1:0] B;
output [WIDTHA+WIDTHB-1:0] RES;

reg [WIDTHA-1:0] rA;
reg [WIDTHB-1:0] rB;
reg [WIDTHA+WIDTHB-1:0] M [3:0];

integer i;
always @(posedge clk)
begin
rA <= A;
rB <= B;
M[0] <= rA * rB;
for (i = 0; i < 3; i = i+1)
M[i+1] <= M[i];
end

assign RES = M[3];

endmodule

Unsigned 16x16-Bit Multiplier Coding VHDL Example

Filename: mult_unsigned.vhd

-- Unsigned 16x16-bit Multiplier
-- File: mult_unsigned.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity mult_unsigned is
generic(
WIDTHA : integer := 16;
WIDTHB : integer := 16
);
port(
A : in std_logic_vector(WIDTHA - 1 downto 0);
B : in std_logic_vector(WIDTHB - 1 downto 0);

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 99Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=99

RES : out std_logic_vector(WIDTHA + WIDTHB - 1 downto 0)
);
end mult_unsigned;

architecture beh of mult_unsigned is
begin
RES <= A * B;
end beh;

Multiply-Add and Multiply-Accumulate

The following macros are inferred:

• Multiply-Add

• Multiply-Sub

• Multiply-Add/Sub

• Multiply-Accumulate

The macros are inferred by aggregation of:

• A Multiplier

• An Adder/Subtractor

• Registers

Multiply-Add and Multiply-Accumulate Implementation

During Multiply-Add and Multiply-Accumulate implementation:

• Vivado synthesis can implement an inferred Multiply-Add or Multiply-Accumulate macro on
DSP block resources.

• Vivado synthesis attempts to take advantage of the pipelining capabilities of DSP blocks.

• Vivado synthesis pulls up to:

○ Two register stages are present on the multiplication operands.

○ One register stage present after the multiplication.

○ One register stage found after the Adder, Subtractor, or Adder/Subtractor.

○ One register stage on the add/sub-selection signal.

○ One register stage on the Adder optional carry input.

• Vivado synthesis can implement a Multiply Accumulate in a DSP block if its implementation
requires only a single DSP resource.

• If the macro exceeds the limits of a single DSP, Vivado synthesis does the following:

○ Processes it as two separate Multiplier and Accumulate macros.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 100Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=100

○ Makes independent decisions on each macro.

Macro Implementation on DSP Block Resources

Macro implementation on DSP block resources is inferred by default in Vivado synthesis.

• In default mode, Vivado synthesis:

○ Implements Multiply-Add and Multiply-Accumulate macros.

○ Takes into account DSP block resources availability in the targeted device.

○ Uses all available DSP resources.

○ Attempts to maximize circuit performance by leveraging all the pipelining capabilities of
DSP blocks.

○ Scans for opportunities to absorb registers into a Multiply-Add or Multiply-Accumulate
macro.

Use the KEEP attribute to restrict absorption of Registers into DSP blocks. For example, to
exclude a register present on an operand of the Multiplier from absorption into the DSP block,
apply KEEP on the output of the register. For more information about the KEEP attribute, see
KEEP.

Download the coding example files from Coding Examples.

Complex Multiplier Examples
The following examples show complex multiplier examples in VHDL and Verilog. The coding
example files also include a complex multiplier with accumulation example that uses three DSP
blocks for the AMD UltraScale™ architecture.

Complex Multiplier Verilog Example
Fully pipelined complex multiplier using three DSP blocks.

Filename: cmult.v

//
// Complex Multiplier (pr+i.pi) = (ar+i.ai)*(br+i.bi)
// file: cmult.v

module cmult # (parameter AWIDTH = 16, BWIDTH = 18)
(
input clk,
input signed [AWIDTH-1:0] ar, ai,
input signed [BWIDTH-1:0] br, bi,

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 101Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=101

output signed [AWIDTH+BWIDTH:0] pr, pi
);

reg signed [AWIDTH-1:0] ai_d, ai_dd, ai_ddd, ai_dddd ;
reg signed [AWIDTH-1:0] ar_d, ar_dd, ar_ddd, ar_dddd ;
reg signed [BWIDTH-1:0] bi_d, bi_dd, bi_ddd, br_d, br_dd, br_ddd ;
reg signed [AWIDTH:0] addcommon ;
reg signed [BWIDTH:0] addr, addi ;
reg signed [AWIDTH+BWIDTH:0] mult0, multr, multi, pr_int, pi_int ;
reg signed [AWIDTH+BWIDTH:0] common, commonr1, commonr2 ;

always @(posedge clk)
begin
ar_d <= ar;
ar_dd <= ar_d;
ai_d <= ai;
ai_dd <= ai_d;
br_d <= br;
br_dd <= br_d;
br_ddd <= br_dd;
bi_d <= bi;
bi_dd <= bi_d;
bi_ddd <= bi_dd;
end

// Common factor (ar ai) x bi, shared for the calculations of the real and
imaginary final products
//
always @(posedge clk)
begin
addcommon <= ar_d - ai_d;
mult0 <= addcommon * bi_dd;
common <= mult0;
end

// Real product
//
always @(posedge clk)
begin
ar_ddd <= ar_dd;
ar_dddd <= ar_ddd;
addr <= br_ddd - bi_ddd;
multr <= addr * ar_dddd;
commonr1 <= common;
pr_int <= multr + commonr1;
end

// Imaginary product
//
always @(posedge clk)
begin
ai_ddd <= ai_dd;
ai_dddd <= ai_ddd;
addi <= br_ddd + bi_ddd;
multi <= addi * ai_dddd;
commonr2 <= common;
pi_int <= multi + commonr2;
end

assign pr = pr_int;
assign pi = pi_int;

endmodule // cmult

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 102Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=102

Complex Multiplier Examples (VHDL)
Fully pipelined complex multiplier using three DSP blocks.

Filename: cmult.vhd

-- Complex Multiplier (pr+i.pi) = (ar+i.ai)*(br+i.bi)
--
--
-- cumult.vhd
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity cmult is
generic(AWIDTH : natural := 16;
BWIDTH : natural := 16);
port(clk : in std_logic;
ar, ai : in std_logic_vector(AWIDTH - 1 downto 0);
br, bi : in std_logic_vector(BWIDTH - 1 downto 0);
pr, pi : out std_logic_vector(AWIDTH + BWIDTH downto 0));
end cmult;

architecture rtl of cmult is
signal ai_d, ai_dd, ai_ddd, ai_dddd : signed(AWIDTH - 1 downto 0);
signal ar_d, ar_dd, ar_ddd, ar_dddd : signed(AWIDTH - 1 downto 0);
signal bi_d, bi_dd, bi_ddd, br_d, br_dd, br_ddd : signed(BWIDTH - 1 downto
0);
signal addcommon : signed(AWIDTH downto 0);
signal addr, addi : signed(BWIDTH downto 0);
signal mult0, multr, multi, pr_int, pi_int : signed(AWIDTH + BWIDTH downto
0);
signal common, commonr1, commonr2 : signed(AWIDTH + BWIDTH downto 0);

begin
process(clk)
begin
if rising_edge(clk) then
ar_d <= signed(ar);
ar_dd <= signed(ar_d);
ai_d <= signed(ai);
ai_dd <= signed(ai_d);
br_d <= signed(br);
br_dd <= signed(br_d);
br_ddd <= signed(br_dd);
bi_d <= signed(bi);
bi_dd <= signed(bi_d);
bi_ddd <= signed(bi_dd);
end if;
end process;

-- Common factor (ar - ai) x bi, shared for the calculations
-- of the real and imaginary final products.
--
process(clk)
begin
if rising_edge(clk) then
addcommon <= resize(ar_d, AWIDTH + 1) - resize(ai_d, AWIDTH + 1);
mult0 <= addcommon * bi_dd;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 103Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=103

common <= mult0;
end if;
end process;

-- Real product
--
process(clk)
begin
if rising_edge(clk) then
ar_ddd <= ar_dd;
ar_dddd <= ar_ddd;
addr <= resize(br_ddd, BWIDTH + 1) - resize(bi_ddd, BWIDTH + 1);
multr <= addr * ar_dddd;
commonr1 <= common;
pr_int <= multr + commonr1;
end if;
end process;

-- Imaginary product
--
process(clk)
begin
if rising_edge(clk) then
ai_ddd <= ai_dd;
ai_dddd <= ai_ddd;
addi <= resize(br_ddd, BWIDTH + 1) + resize(bi_ddd, BWIDTH + 1);
multi <= addi * ai_dddd;
commonr2 <= common;
pi_int <= multi + commonr2;
end if;
end process;

--
-- VHDL type conversion for output
--
pr <= std_logic_vector(pr_int);
pi <= std_logic_vector(pi_int);

end rtl;

Pre-Adders in the DSP Block
When coding for inference and targeting the DSP block, it is recommended to use signed
arithmetic and it is a requirement to have one extra bit of width for the pre-adder result so that it
can be packed into the DSP block.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 104Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=104

Pre-Adder Dynamically Configured Followed by
Multiplier and Post-Adder (Verilog)
Filename: dynpreaddmultadd.v

// Pre-add/subtract select with Dynamic control
// dynpreaddmultadd.v
module dynpreaddmultadd # (parameter SIZEIN = 16)
(
input clk, ce, rst, subadd,
input signed [SIZEIN-1:0] a, b, c, d,
output signed [2*SIZEIN:0] dynpreaddmultadd_out
);

// Declare registers for intermediate values
reg signed [SIZEIN-1:0] a_reg, b_reg, c_reg;
reg signed [SIZEIN:0] add_reg;
reg signed [2*SIZEIN:0] d_reg, m_reg, p_reg;

always @(posedge clk)
begin
if (rst)
begin
a_reg <= 0;
b_reg <= 0;
c_reg <= 0;
d_reg <= 0;
add_reg <= 0;
m_reg <= 0;
p_reg <= 0;
end
else if (ce)
begin
a_reg <= a;
b_reg <= b;
c_reg <= c;
d_reg <= d;
if (subadd)
add_reg <= a_reg - b_reg;
else
add_reg <= a_reg + b_reg;
m_reg <= add_reg * c_reg;
p_reg <= m_reg + d_reg;
end
end

// Output accumulation result
assign dynpreaddmultadd_out = p_reg;

endmodule // dynpreaddmultadd

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 105Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=105

Pre-Adder Dynamically Configured Followed by
Multiplier and Post-Adder (VHDL)
Filename: dynpreaddmultadd.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity dynpreaddmultadd is
generic(
AWIDTH : natural := 12;
BWIDTH : natural := 16;
CWIDTH : natural := 17
);
port(
clk : in std_logic;
subadd : in std_logic;
ain : in std_logic_vector(AWIDTH - 1 downto 0);
bin : in std_logic_vector(BWIDTH - 1 downto 0);
cin : in std_logic_vector(CWIDTH - 1 downto 0);
din : in std_logic_vector(BWIDTH + CWIDTH downto 0);
pout : out std_logic_vector(BWIDTH + CWIDTH downto 0)
);
end dynpreaddmultadd;

architecture rtl of dynpreaddmultadd is
signal a : signed(AWIDTH - 1 downto 0);
signal b : signed(BWIDTH - 1 downto 0);
signal c : signed(CWIDTH - 1 downto 0);
signal add : signed(BWIDTH downto 0);
signal d, mult, p : signed(BWIDTH + CWIDTH downto 0);

begin
process(clk)
begin
if rising_edge(clk) then
a <= signed(ain);
b <= signed(bin);
c <= signed(cin);
d <= signed(din);
if subadd = '1' then
add <= resize(a, BWIDTH + 1) - resize(b, BWIDTH + 1);
else
add <= resize(a, BWIDTH + 1) + resize(b, BWIDTH + 1);
end if;
mult <= add * c;
p <= mult + d;
end if;
end process;

--
-- Type conversion for output
--
pout <= std_logic_vector(p);

end rtl;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 106Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=106

Using the Squarer in the UltraScale DSP Block
The UltraScale DSP block (DSP48E2) primitive can compute the square of an input or the output
of the pre-adder.

Download the coding example files from Coding Examples .

The following are examples of the square of a difference; this can be used to efficiently replace
calculations on absolute values of differences.

It fits into a single DSP block and runs at full speed. The coding example files mentioned
previously also include an accumulator of the square of differences which also fits into a single
DSP block for the UltraScale architecture.

Square of a Difference (Verilog)
Filename: squarediffmult.v

// Squarer support for DSP block (DSP48E2) with
// pre-adder configured
// as subtractor
// File: squarediffmult.v

module squarediffmult # (parameter SIZEIN = 16)
(
input clk, ce, rst,
input signed [SIZEIN-1:0] a, b,
output signed [2*SIZEIN+1:0] square_out
);

// Declare registers for intermediate values
reg signed [SIZEIN-1:0] a_reg, b_reg;
reg signed [SIZEIN:0] diff_reg;
reg signed [2*SIZEIN+1:0] m_reg, p_reg;

always @(posedge clk)
begin
if (rst)
begin
a_reg <= 0;
b_reg <= 0;
diff_reg <= 0;
m_reg <= 0;
p_reg <= 0;
end
else
if (ce)
begin
a_reg <= a;
b_reg <= b;
diff_reg <= a_reg - b_reg;
m_reg <= diff_reg * diff_reg;
p_reg <= m_reg;
end

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 107Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=107

end

// Output result
assign square_out = p_reg;

endmodule // squarediffmult

Square of a Difference (VHDL)
Filename: squarediffmult.vhd

-- Squarer support for DSP block (DSP48E2) with pre-adder
-- configured
-- as subtractor
-- File: squarediffmult.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity squarediffmult is
generic(
SIZEIN : natural := 16
);
port(
clk, ce, rst : in std_logic;
ain, bin : in std_logic_vector(SIZEIN - 1 downto 0);
square_out : out std_logic_vector(2 * SIZEIN + 1 downto 0)
);
end squarediffmult;

architecture rtl of squarediffmult is

-- Declare intermediate values
signal a_reg, b_reg : signed(SIZEIN - 1 downto 0);
signal diff_reg : signed(SIZEIN downto 0);
signal m_reg, p_reg : signed(2 * SIZEIN + 1 downto 0);

begin
process(clk)
begin
if rising_edge(clk) then
if rst = '1' then
a_reg <= (others => '0');
b_reg <= (others => '0');
diff_reg <= (others => '0');
m_reg <= (others => '0');
p_reg <= (others => '0');
else
a_reg <= signed(ain);
b_reg <= signed(bin);
diff_reg <= resize(a_reg, SIZEIN + 1) - resize(b_reg, SIZEIN + 1);
m_reg <= diff_reg * diff_reg;
p_reg <= m_reg;
end if;
end if;
end process;

--

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 108Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=108

-- Type conversion for output
--
square_out <= std_logic_vector(p_reg);

end rtl;

FIR Filters
Vivado synthesis infers cascades of multiply-add to compose FIR filters directly from RTL.

There are several possible implementations of such filters; one example is the systolic filter
described in the 7 Series DSP48E1 Slice User Guide (UG479) and shown in the 8-Tap Even
Symmetric Systolic FIR (Verilog).

Download the coding example files from Coding Examples .

8-Tap Even Symmetric Systolic FIR (Verilog)
Filename: sfir_even_symetric_systolic_top.v

// sfir_even_symmetric_systolic_top.v
// FIR Symmetric Systolic Filter, Top module is
sfir_even_symmetric_systolic_top

// sfir_shifter - sub module which is used in top level
(* dont_touch = "yes" *)
module sfir_shifter #(parameter dsize = 16, nbtap = 4)
(input clk, [dsize-1:0] datain, output [dsize-1:0] dataout);

(* srl_style = "srl_register" *) reg [dsize-1:0] tmp [0:2*nbtap-1];
integer i;

always @(posedge clk)
begin
tmp[0] <= datain;
for (i=0; i<=2*nbtap-2; i=i+1)
tmp[i+1] <= tmp[i];
end

assign dataout = tmp[2*nbtap-1];

endmodule

// sfir_even_symmetric_systolic_element - sub module which is used in top
module sfir_even_symmetric_systolic_element #(parameter dsize = 16)
(input clk, input signed [dsize-1:0] coeffin, datain, datazin, input signed
[2*dsize-1:0] cascin,
output signed [dsize-1:0] cascdata, output reg signed [2*dsize-1:0]
cascout);

reg signed [dsize-1:0] coeff;
reg signed [dsize-1:0] data;
reg signed [dsize-1:0] dataz;
reg signed [dsize-1:0] datatwo;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 109Send Feedback

https://docs.amd.com/go/en-US/ug479_7Series_DSP48E1
https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=109

reg signed [dsize:0] preadd;
reg signed [2*dsize-1:0] product;

assign cascdata = datatwo;

always @(posedge clk)
begin
coeff <= coeffin;
data <= datain;
datatwo <= data;
dataz <= datazin;
preadd <= datatwo + dataz;
product <= preadd * coeff;
cascout <= product + cascin;
end

endmodule

module sfir_even_symmetric_systolic_top #(parameter nbtap = 4, dsize = 16,
psize = 2*dsize)
(input clk, input signed [dsize-1:0] datain, output signed [2*dsize-1:0]
firout);

wire signed [dsize-1:0] h [nbtap-1:0];
wire signed [dsize-1:0] arraydata [nbtap-1:0];
wire signed [psize-1:0] arrayprod [nbtap-1:0];

wire signed [dsize-1:0] shifterout;
reg signed [dsize-1:0] dataz [nbtap-1:0];

assign h[0] = 7;
assign h[1] = 14;
assign h[2] = -138;
assign h[3] = 129;

assign firout = arrayprod[nbtap-1]; // Connect last product to output

sfir_shifter #(dsize, nbtap) shifter_inst0 (clk, datain, shifterout);

generate
genvar I;
for (I=0; I<nbtap; I=I+1)
if (I==0)
sfir_even_symmetric_systolic_element #(dsize) fte_inst0 (clk, h[I], datain,
shifterout, {32{1'b0}}, arraydata[I], arrayprod[I]);
else
sfir_even_symmetric_systolic_element #(dsize) fte_inst (clk, h[I],
arraydata[I-1], shifterout, arrayprod[I-1], arraydata[I], arrayprod[I]);
endgenerate

endmodule // sfir_even_symmetric_systolic_top

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 110Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=110

8-Tap Even Symmetric Systolic FIR (VHDL)
Filename: sfir_even_symetric_systolic_top.vhd

--
-- FIR filter top
-- File: sfir_even_symmetric_systolic_top.vhd

-- FIR filter shifter
-- submodule used in top (sfir_even_symmetric_systolic_top)
library ieee;
use ieee.std_logic_1164.all;

entity sfir_shifter is
generic(
DSIZE : natural := 16;
NBTAP : natural := 4
);
port(
clk : in std_logic;
datain : in std_logic_vector(DSIZE - 1 downto 0);
dataout : out std_logic_vector(DSIZE - 1 downto 0)
);
end sfir_shifter;

architecture rtl of sfir_shifter is

-- Declare signals
--
type CHAIN is array (0 to 2 * NBTAP - 1) of std_logic_vector(DSIZE - 1
downto 0);
signal tmp : CHAIN;

begin
process(clk)
begin
if rising_edge(clk) then
tmp(0) <= datain;
looptmp : for i in 0 to 2 * NBTAP - 2 loop
tmp(i + 1) <= tmp(i);
end loop;
end if;
end process;

dataout <= tmp(2 * NBTAP - 1);

end rtl;

--
-- FIR filter engine (multiply with pre-add and post-add)
-- submodule used in top (sfir_even_symmetric_systolic_top)
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sfir_even_symmetric_systolic_element is
generic(DSIZE : natural := 16);
port(clk : in std_logic;
coeffin, datain, datazin : in std_logic_vector(DSIZE - 1 downto 0);
cascin : in std_logic_vector(2 * DSIZE downto 0);

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 111Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=111

cascdata : out std_logic_vector(DSIZE - 1 downto 0);
cascout : out std_logic_vector(2 * DSIZE downto 0));
end sfir_even_symmetric_systolic_element;

architecture rtl of sfir_even_symmetric_systolic_element is

-- Declare signals
--
signal coeff, data, dataz, datatwo : signed(DSIZE - 1 downto 0);
signal preadd : signed(DSIZE downto 0);
signal product, cascouttmp : signed(2 * DSIZE downto 0);

begin
process(clk)
begin
if rising_edge(clk) then
coeff <= signed(coeffin);
data <= signed(datain);
datatwo <= data;
dataz <= signed(datazin);
preadd <= resize(datatwo, DSIZE + 1) + resize(dataz, DSIZE + 1);
product <= preadd * coeff;
cascouttmp <= product + signed(cascin);
end if;
end process;

-- Type conversion for output
--
cascout <= std_logic_vector(cascouttmp);
cascdata <= std_logic_vector(datatwo);

end rtl;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity sfir_even_symmetric_systolic_top is
generic(NBTAP : natural := 4;
DSIZE : natural := 16;
PSIZE : natural := 33);
port(clk : in std_logic;
datain : in std_logic_vector(DSIZE - 1 downto 0);
firout : out std_logic_vector(PSIZE - 1 downto 0));
end sfir_even_symmetric_systolic_top;

architecture rtl of sfir_even_symmetric_systolic_top is

-- Declare signals
--
type DTAB is array (0 to NBTAP - 1) of std_logic_vector(DSIZE - 1 downto 0);
type HTAB is array (0 to NBTAP - 1) of std_logic_vector(0 to DSIZE - 1);
type PTAB is array (0 to NBTAP - 1) of std_logic_vector(PSIZE - 1 downto 0);

signal arraydata, dataz : DTAB;
signal arrayprod : PTAB;
signal shifterout : std_logic_vector(DSIZE - 1 downto 0);

-- Initialize coefficients and a "zero" for the first filter element
--
constant h : HTAB := ((std_logic_vector(TO_SIGNED(63, DSIZE))),
(std_logic_vector(TO_SIGNED(18, DSIZE))),
(std_logic_vector(TO_SIGNED(-100, DSIZE))),

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 112Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=112

(std_logic_vector(TO_SIGNED(1, DSIZE))));
constant zero_psize : std_logic_vector(PSIZE - 1 downto 0) := (others =>
'0');

begin

-- Connect last product to output
--
firout <= arrayprod(nbtap - 1);

-- Shifter
--
shift_u0 : entity work.sfir_shifter
generic map(DSIZE, NBTAP)
port map(clk, datain, shifterout);

-- Connect the arithmetic building blocks of the FIR
--
gen : for I in 0 to NBTAP - 1 generate
begin
g0 : if I = 0 generate
element_u0 : entity work.sfir_even_symmetric_systolic_element
generic map(DSIZE)
port map(clk, h(I), datain, shifterout, zero_psize, arraydata(I),
arrayprod(I));
end generate g0;
gi : if I /= 0 generate
element_ui : entity work.sfir_even_symmetric_systolic_element
generic map(DSIZE)
port map(clk, h(I), arraydata(I - 1), shifterout, arrayprod(I - 1),
arraydata(I), arrayprod(I));
end generate gi;
end generate gen;

end rtl;

Convergent Rounding (LSB Correction
Technique)

The DSP block primitive leverages a pattern detect circuitry to compute convergent rounding
(either to even, or to odd).

The following are examples of the convergent rounding inference, which infers at the block full
performance, and also infers a 2-input AND gate (1 LUT) to implement the LSB correction.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 113Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=113

Rounding to Even (Verilog)
Filename: convergentRoundingEven.v

// Convergent rounding(Even) Example which makes use of pattern detect
// File: convergentRoundingEven.v
module convergentRoundingEven (
input clk,
input [23:0] a,
input [15:0] b,
output reg signed [23:0] zlast
);

reg signed [23:0] areg;
reg signed [15:0] breg;
reg signed [39:0] z1;

reg pattern_detect;
wire [15:0] pattern = 16'b0000000000000000;
wire [39:0] c = 40'b0000000000000000000000000111111111111111; // 15 ones

wire signed [39:0] multadd;
wire signed [15:0] zero;
reg signed [39:0] multadd_reg;

// Convergent Rounding: LSB Correction Technique
// ---
// For static convergent rounding, the pattern detector can be used
// to detect the midpoint case. For example, in an 8-bit round, if
// the decimal place is set at 4, the C input should be set to
// 0000.0111. Round to even rounding should use CARRYIN = "1" and
// check for PATTERN "XXXX.0000" and replace the units place with 0
// if the pattern is matched. See UG193 for more details.

assign multadd = z1 + c + 1'b1;

always @(posedge clk)
begin
areg <= a;
breg <= b;
z1 <= areg * breg;
pattern_detect <= multadd[15:0] == pattern ? 1'b1 : 1'b0;
multadd_reg <= multadd;
end

// Unit bit replaced with 0 if pattern is detected
always @(posedge clk)
zlast <= pattern_detect ? {multadd_reg[39:17],1'b0} : multadd_reg[39:16];

endmodule // convergentRoundingEven

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 114Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=114

Rounding to Even (VHDL)
Filename: convergentRoundingEven.vhd

-- Convergent rounding(Even) Example which makes use of pattern detect
-- File: convergentRoundingEven.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity convergentRoundingEven is
port (clk : in std_logic;
a : in std_logic_vector (23 downto 0);
b : in std_logic_vector (15 downto 0);
zlast : out std_logic_vector (23 downto 0));
end convergentRoundingEven;

architecture beh of convergentRoundingEven is

signal ar : signed(a'range);
signal br : signed(b'range);
signal z1 : signed(a'length + b'length - 1 downto 0);

signal multaddr : signed(a'length + b'length - 1 downto 0);
signal multadd : signed(a'length + b'length - 1 downto 0);
signal pattern_detect : boolean;

constant pattern : signed(15 downto 0) := (others => '0');
constant c : signed := "0000000000000000000000000111111111111111";

-- Convergent Rounding: LSB Correction Technique
-- ---
-- For static convergent rounding, the pattern detector can be used
-- to detect the midpoint case. For example, in an 8-bit round, if
-- the decimal place is set at 4, the C input should be set to
-- 0000.0111. Round to even rounding should use CARRYIN = "1" and
-- check for PATTERN "XXXX.0000" and replace the units place with 0
-- if the pattern is matched. See UG193 for more details.

begin

multadd <= z1 + c + 1;

process(clk)
begin
if rising_edge(clk) then
ar <= signed(a);
br <= signed(b);
z1 <= ar * br;
multaddr <= multadd;
if multadd(15 downto 0) = pattern then
pattern_detect <= true;
else
pattern_detect <= false;
end if;
end if;
end process;

-- Unit bit replaced with 0 if pattern is detected
process(clk)
begin

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 115Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=115

if rising_edge(clk) then
if pattern_detect = true then
zlast <= std_logic_vector(multaddr(39 downto 17)) & "0";
else
zlast <= std_logic_vector(multaddr(39 downto 16));
end if;
end if;
end process;

end beh;

Rounding to Odd (Verilog)
Filename: convergentRoundingOdd.v

// Convergent rounding(Odd) Example which makes use of pattern detect
// File: convergentRoundingOdd.v
module convergentRoundingOdd (
input clk,
input [23:0] a,
input [15:0] b,
output reg signed [23:0] zlast
);

reg signed [23:0] areg;
reg signed [15:0] breg;
reg signed [39:0] z1;

reg pattern_detect;
wire [15:0] pattern = 16'b1111111111111111;
wire [39:0] c = 40'b0000000000000000000000000111111111111111; // 15 ones

wire signed [39:0] multadd;
wire signed [15:0] zero;
reg signed [39:0] multadd_reg;

// Convergent Rounding: LSB Correction Technique
// ---
// For static convergent rounding, the pattern detector can be
// used to detect the midpoint case. For example, in an 8-bit
// round, if the decimal place is set at 4, the C input should
// be set to 0000.0111. Round to odd rounding should use
// CARRYIN = "0" and check for PATTERN "XXXX.1111" and then
// replace the units place bit with 1 if the pattern is
// matched. See UG193 for details

assign multadd = z1 + c;

always @(posedge clk)
begin
areg <= a;
breg <= b;
z1 <= areg * breg;
pattern_detect <= multadd[15:0] == pattern ? 1'b1 : 1'b0;
multadd_reg <= multadd;
end

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 116Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=116

always @(posedge clk)
zlast <= pattern_detect ? {multadd_reg[39:17],1'b1} : multadd_reg[39:16];

endmodule // convergentRoundingOdd

Rounding to Odd (VHDL)
Filename: convergentRoundingOdd.vhd

-- Convergent rounding(Odd) Example which makes use of pattern detect
-- File: convergentRoundingOdd.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity convergentRoundingOdd is
port (clk : in std_logic;
a : in std_logic_vector (23 downto 0);
b : in std_logic_vector (15 downto 0);
zlast : out std_logic_vector (23 downto 0));
end convergentRoundingOdd;

architecture beh of convergentRoundingOdd is

signal ar : signed(a'range);
signal br : signed(b'range);
signal z1 : signed(a'length + b'length - 1 downto 0);

signal multadd, multaddr : signed(a'length + b'length - 1 downto 0);
signal pattern_detect : boolean;

constant pattern : signed(15 downto 0) := (others => '1');
constant c : signed := "0000000000000000000000000111111111111111";

-- Convergent Rounding: LSB Correction Technique
-- ---
-- For static convergent rounding, the pattern detector can be
-- used to detect the midpoint case. For example, in an 8-bit
-- round, if the decimal place is set at 4, the C input should
-- be set to 0000.0111. Round to odd rounding should use
-- CARRYIN = "0" and check for PATTERN "XXXX.1111" and then
-- replace the units place bit with 1 if the pattern is
-- matched. See UG193 for details

begin

multadd <= z1 + c;

process(clk)
begin
if rising_edge(clk) then
ar <= signed(a);
br <= signed(b);
z1 <= ar * br;
multaddr <= multadd;
if multadd(15 downto 0) = pattern then
pattern_detect <= true;
else
pattern_detect <= false;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 117Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=117

end if;
end if;
end process;

process(clk)
begin
if rising_edge(clk) then
if pattern_detect = true then
zlast <= std_logic_vector(multaddr(39 downto 17)) & "1";
else
zlast <= std_logic_vector(multaddr(39 downto 16));
end if;
end if;
end process;

end beh;

RAM HDL Coding Techniques
Vivado synthesis can interpret various RAM coding styles, and maps them into distributed RAMs
or block RAMs. This action does the following:

• Makes it unnecessary to manually instantiate RAM primitives

• Saves time

• Keeps HDL source code portable and scalable

Download the coding example files from Coding Examples.

Choosing Between Distributed RAM and Dedicated
Block RAM
Data is written synchronously into the RAM for both types. The primary difference between
distributed RAM and dedicated block RAM lies in the way data is read from the RAM. See the
following table.

Table 5: Distributed RAM versus Dedicated Block RAM

Action Distributed RAM Dedicated Block RAM
Write Synchronous Synchronous

Read Asynchronous Synchronous

Whether to use distributed RAM or dedicated block RAM can depend upon the characteristics
of the RAM described in the HDL source code, the availability of block RAM resources, and
whether you have forced a specific implementation style using RAM_STYLE attribute.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 118Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=118

Memory Inference Capabilities
Memory inference capabilities include the following:

• Support for any size and data width. Vivado synthesis maps the memory description to one or
several RAM primitives

• Single-port, simple-dual port, true dual port

• Up to two write ports

• Multiple read ports

Provided that only one write port is described, Vivado synthesis can identify RAM descriptions
with two or more read ports that access the RAM contents at addresses different from the write
address.

• Write enable

• RAM enable (block RAM)

• Data output reset (block RAM)

• Optional output register (block RAM)

• Byte write enable (block RAM)

• Each RAM port can be controlled by its distinct clock, port enable, write enable, and data
output reset

• Initial contents specification

• Vivado synthesis can use parity bits as regular data bits to accommodate the described data
widths

Note: For more information on parity bits see the user guide for the device you are targeting.

UltraRAM Coding Templates
UltraRAM is described in "Chapter 2, UltraRAM Resources" of the UltraScale Architecture Memory
Resources User Guide (UG573) as follows:

UltraRAM is a single-clocked, two port, synchronous memory available in AMD UltraScale+™
devices. Because UltraRAM is compatible with the columnar architecture, multiple UltraRAMs
can be instantiated and directly cascaded in an UltraRAM column for the entire height of
the device. A column in a single clock region contains 16 UltraRAM blocks. Devices with
UltraRAM include multiple UltraRAM columns distributed in the device. Most of the devices
in the UltraScale+ family include UltraRAM blocks. For the available quantity of UltraRAM in
specific device families, see the UltraScale Architecture and Product Data Sheet: Overview (DS890).

The following files are included in the Coding Examples:

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 119Send Feedback

https://docs.amd.com/go/en-US/ug573-ultrascale-memory-resources
https://docs.amd.com/go/en-US/ds890-ultrascale-overview
https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=119

• xilinx_ultraram_single_port_no_change.v

• xilinx_ultraram_single_port_no_change.vhd

• xilinx_ultraram_single_port_read_first.v

• xilinx_ultraram_single_port_read_first.vhd

• xilinx_ultraram_single_port_write_first.v

• xilinx_ultraram_single_port_write_first.vhd

The Vivado tool includes templates of UltraRAM VHDL and Verilog code. The following figure
shows the template files.

Figure 19: UltraRAM Coding Templates

See the UltraScale Architecture Memory Resources User Guide (UG573) for more information.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 120Send Feedback

https://docs.amd.com/go/en-US/ug573-ultrascale-memory-resources
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=120

Inferring UltraRAM in Vivado Synthesis
Overview of the UltraRAM Primitive
UltraRAM is a new dedicated memory primitive available in the UltraScale+ devices from AMD.
This is a large memory that is designed to be cascaded for very large RAM blocks. For more
information, see the UltraScale Architecture Memory Resources User Guide (UG573).

Description of the UltraRAM Primitive
The UltraRAM primitive is a dual port memory with a single clock. A single primitive is configured
as 4 K x 72. The UltraRAM has two ports, which can access all 4 K of the RAM. This allows
for a single port, simple dual port, and true dual-port behavior. There are also multiple pipeline
registers for each port of the primitive. The UltraRAM has one clock, global enable, an output
register reset, a write enable, and byte write enable support for control signals.

Differences between UltraRAM and Block RAM
There are a few notable differences between UltraRAM and block RAM to consider, as follows:

• The UltraRAM only has one clock, so while true dual port operation is supported, both ports
are synchronous to each other.

• The aspect ratio of the UltraRAM is not configurable like block RAM, it is always configured as
4 K x 72.

• The resets on the output registers can only be reset to 0.

• The write modes (read_first, write_first, no_change) do not exist in this primitive.
The regular UltraRAM behaves like no_change; however, if you describe read_first or
write_first in RTL, the Vivado synthesis creates the correct logic.

• Finally, the INIT for RAM does not exist, the UltraRAM powers up in a 0 condition.

Using UltraRAM Inference
There are three ways of getting UltraRAM primitives, as follows:

• Direct instantiation: Provides you the most control but is the hardest to perform.

• XPM flow: Allows you to specify the type of RAM you want along with the behavior, but gives
no access to the RTL.

• Inference RAM: Is in the middle of the two, relatively easy, and gives more control to the user
on how the RAM is created.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 121Send Feedback

https://docs.amd.com/go/en-US/ug573-ultrascale-memory-resources
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=121

Attributes for Controlling UltraRAM
There are two attributes needed to control UltraRAM in Vivado synthesis: RAM_STYLE and
CASCADE_HEIGHT.

RAM_STYLE

The RAM_STYLE attribute has a value called ultra. By default, Vivado synthesis uses a heuristic
to determine what type of RAM to infer, URAM, block RAM or LUTRAM. If you want to force the
RAM into an UltraRAM, you can use the RAM_STYLE attribute to tell Vivado synthesis to infer
the URAM primitives.

More information is available in RAM_STYLE.

RAM_STYLE Verilog Example

(* ram_style = "ultra" *) reg [data_size-1:0] myram [2**addr_size-1:0];

RAM_STYLE VHDL Example

attribute ram_style : string;
attribute ram_style of myram : signal is "ultra";

CASCADE_HEIGHT

When cascading multiple UltraRAMs (URAMs) together to create a larger RAM, Vivado synthesis
limits the height of the chain to eight to provide flexibility to the place and route tool. To change
this limit, you can use the CASCADE_HEIGHT attribute to change the default behavior.

Note: This option is only applicable to UltraScale architecture block RAMs and URAMs.

CASCADE_HEIGHT Verilog Example

(* cascade_height = 16 *) reg [data_size-1:0] myram [2**addr_size-1:0];

CASCADE_HEIGHT VHDL Example

attribute cascade_height : integer;
attribute cascade_height of my_ram signal is 16;

In addition to the attributes that only affect the specific RAMs on which they are put, there is
also a global setting which affects all RAMs in the design.

The Synthesis Settings menu has the -max_uram_cascade_height setting. The default value
is -1 which means that the Vivado synthesis tool determines the best course of action, but
this can be overridden by other values. In case of a conflict between the global setting and a
CASCADE_HEIGHT attribute, the attribute is used for that specific RAM.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 122Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=122

Inference Capabilities
The Vivado Synthesis tool can do many types of memories using the UltraRAM primitives. For
examples, see the Coding Guidelines.

• In single port memory, the same port that reads the memory also writes to it. All three of the
write modes for the block RAM are supported, but it should be noted that the UltraRAM itself
acts like a NO_CHANGE memory. If WRITE_FIRST or READ_FIRST behavior is described in
the RTL, the UltraRAM created is set in simple dual-port mode.

• In a simple dual port memory, one port reads from the RAM while another writes to it. Vivado
synthesis can infer these memories into UltraRAM.

TIP: One stipulation is that both ports must have the same clock.

• In True Dual Port mode, both ports can read from and write to the memory. In this mode, only
the NO_CHANGE mode is supported.

CAUTION! Care should also be taken when simulating the true dual port RAM. In the previous versions
of block RAM, there was address collision that was taken care of by the simulation models; with the
UltraRAM, it is different. In the UltraRAM, port A always happens before port B. If Port A has a write and
Port B is a read from that address, the memory is written to and read from, but if Port A has the read and
Port B has the write, the old value is seen during the read.

CAUTION! Be sure to never read and write to the same address during the same clock cycle on a true
dual-port memory because the RTL and post-synthesis simulations could be different.

For both the simple dual-port memory and the true dual-port memory, the clocks have to be the
same for both ports.

In addition to the different styles of RAMs, there are also a few other features of the UltraRAM
that can be inferred. The RAM has a global enable signal that precedes the write enable. It has
the standard write enable, and byte write enable support. The data output also has a reset like
the previous block RAM; however, in this case, there is no SRVAL that can be set. Only resets of
0 are supported.

Pipelining the RAM
The UltraRAM (URAM) supports pipelining registers into the RAM. This becomes especially
useful when multiple UltraRAMs are used to create a very large RAM. To fully pipeline the RAM,
you must add extra registers to the RAM output in RTL. To calculate the number of pipeline
registers to use, add together the number of rows and columns in the RAM matrix.

Note: The tool does not create the pipeline registers for you; they must be in the RTL code for Vivado
synthesis to make use of them.

The synthesis log file has a section about URAMs and how many rows and columns are used to
create the RAM matrix. You can use this section to add pipeline registers in the RTL.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 123Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=123

To calculate the number of rows and columns of the matrix yourself, remember that the
UltraRAM is configured as a 4 K x 72.

To calculate the number of rows, take your address space of the RAM in RTL and divide by 4 K. If
this number is higher than the number specified by CASCADE_HEIGHT, remove the extra RAMs,
and start them on a new column in the log.

Creating Pipeline Example 1: 8K x 72

In this example, 8 K divided by 4 K is two, so there are 2 rows. If the CASCADE_HEIGHT is set
higher than 2, it is a 2 x 1 matrix. There should be three pipeline stages added to the output of
the RAM (2 + 1).

Creating Pipeline Example 2 : 8K x 80

In this example, 8 K divided by 4 K is two, so there are two rows. The data space does not matter
for this calculation, so the matrix would be two rows and 1 column resulting in three pipeline
registers again.

Note: The whole matrix is reproduced to get the extra 8 bits of data space needed to create the RAM, but
that does not matter to the calculation of pipeline registers.

Creating Pipeline Example 3: 16K x 70 CASCADE_HEIGHT Set to 3

In this example, 16 K divided by 4 K is four; however, because the CASCADE_HEIGHT is 3, this
would be a 3 x 2 matrix. This would result in 5 pipeline registers that can be used.

RAM HDL Coding Guidelines
Download the coding example files from Coding Examples .

Block RAM Read/Write Synchronization Modes
You can configure block RAM resources to provide the following synchronization modes for a
given read/write port:

• Read-first: Old content is read before new content is loaded.

• Write-first: New content is immediately made available for reading Write-first is also known
as read-through.

• No-change: Data output does not change as new content is loaded into RAM.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 124Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=124

Vivado synthesis provides inference support for all of these synchronization modes. You can
describe a different synchronization mode for each port of the RAM.

Distributed RAM Examples
The following sections provide VHDL and Verilog coding examples for distributed RAM.

Dual-Port RAM with Asynchronous Read Coding Verilog Example

Filename: rams_dist.v

// Dual-Port RAM with Asynchronous Read (Distributed RAM)
// File: rams_dist.v

module rams_dist (clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [5:0] a;
input [5:0] dpra;
input [15:0] di;
output [15:0] spo;
output [15:0] dpo;
reg [15:0] ram [63:0];

always @(posedge clk)
begin
if (we)
ram[a] <= di;
end

assign spo = ram[a];
assign dpo = ram[dpra];

endmodule

Single-Port RAM with Asynchronous Read Coding Example (VHDL)

Filename: rams_dist.vhd

-- Single-Port RAM with Asynchronous Read (Distributed RAM)
-- File: rams_dist.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_dist is
port(
clk : in std_logic;
we : in std_logic;
a : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0)
);

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 125Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=125

end rams_dist;

architecture syn of rams_dist is
type ram_type is array (63 downto 0) of std_logic_vector(15 downto 0);
signal RAM : ram_type;
begin
process(clk)
begin
if (clk'event and clk = '1') then
if (we = '1') then
RAM(to_integer(unsigned(a))) <= di;
end if;
end if;
end process;

do <= RAM(to_integer(unsigned(a)));

end syn;

Single-Port Block RAMs
The following sections provide VHDL and Verilog coding examples for Single-Port Block RAM.

Single-Port Block RAM with Resettable Data Output (Verilog)

Filename: rams_sp_rf_rst.v

// Block RAM with Resettable Data Output
// File: rams_sp_rf_rst.v

module rams_sp_rf_rst (clk, en, we, rst, addr, di, dout);
input clk;
input en;
input we;
input rst;
input [9:0] addr;
input [15:0] di;
output [15:0] dout;

reg [15:0] ram [1023:0];
reg [15:0] dout;

always @(posedge clk)
begin
if (en) //optional enable
begin
if (we) //write enable
ram[addr] <= di;
if (rst) //optional reset
dout <= 0;
else
dout <= ram[addr];
end
end

endmodule

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 126Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=126

Single Port Block RAM with Resettable Data Output (VHDL)

Filename: rams_sp_rf_rst.vhd

-- Block RAM with Resettable Data Output
-- File: rams_sp_rf_rst.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_sp_rf_rst is
port(
clk : in std_logic;
en : in std_logic;
we : in std_logic;
rst : in std_logic;
addr : in std_logic_vector(9 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0)
);
end rams_sp_rf_rst;

architecture syn of rams_sp_rf_rst is
type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
signal ram : ram_type;
begin
process(clk)
begin
if clk'event and clk = '1' then
if en = '1' then -- optional enable
if we = '1' then -- write enable
ram(to_integer(unsigned(addr))) <= di;
end if;
if rst = '1' then -- optional reset
do <= (others => '0');
else
do <= ram(to_integer(unsigned(addr)));
end if;
end if;
end if;
end process;

end syn;

Single-Port Block RAM Write-First Mode (Verilog)

Filename: rams_sp_wf.v

// Single-Port Block RAM Write-First Mode (recommended template)
// File: rams_sp_wf.v
module rams_sp_wf (clk, we, en, addr, di, dout);
input clk;
input we;
input en;
input [9:0] addr;
input [15:0] di;
output [15:0] dout;
reg [15:0] RAM [1023:0];

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 127Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=127

reg [15:0] dout;

always @(posedge clk)
begin
if (en)
begin
if (we)
begin
RAM[addr] <= di;
dout <= di;
end
else
dout <= RAM[addr];
end
end
endmodule

Single-Port Block RAM Write-First Mode (VHDL)

Filename: rams_sp_wf.vhd

-- Single-Port Block RAM Write-First Mode (recommended template)
--
-- File: rams_sp_wf.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_sp_wf is
port(
clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(9 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0)
);
end rams_sp_wf;

architecture syn of rams_sp_wf is
type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
signal RAM : ram_type;
begin
process(clk)
begin
if clk'event and clk = '1' then
if en = '1' then
if we = '1' then
RAM(to_integer(unsigned(addr))) <= di;
do <= di;
else
do <= RAM(to_integer(unsigned(addr)));
end if;
end if;
end if;
end process;

end syn;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 128Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=128

Single-Port RAM with Read First (VHDL)

Filename: rams_sp_rf.vhd

-- Single-Port Block RAM Read-First Mode
-- rams_sp_rf.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_sp_rf is
port(
clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(9 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0)
);
end rams_sp_rf;

architecture syn of rams_sp_rf is
type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
signal RAM : ram_type;
begin
process(clk)
begin
if clk'event and clk = '1' then
if en = '1' then
if we = '1' then
RAM(to_integer(unsigned(addr))) <= di;
end if;
do <= RAM(to_integer(unsigned(addr)));
end if;
end if;
end process;

end syn;

Single-Port Block RAM No-Change Mode (Verilog)

Filename: rams_sp_nc.v

// Single-Port Block RAM No-Change Mode
// File: rams_sp_nc.v

module rams_sp_nc (clk, we, en, addr, di, dout);

input clk;
input we;
input en;
input [9:0] addr;
input [15:0] di;
output [15:0] dout;

reg [15:0] RAM [1023:0];
reg [15:0] dout;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 129Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=129

always @(posedge clk)
begin
if (en)
begin
if (we)
RAM[addr] <= di;
else
dout <= RAM[addr];
end
end
endmodule

Single-Port Block RAM No-Change Mode (VHDL)

Filename: rams_sp_nc.vhd

-- Single-Port Block RAM No-Change Mode
-- File: rams_sp_nc.vhd
--

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_sp_nc is
port(
clk : in std_logic;
we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(9 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0)
);
end rams_sp_nc;

architecture syn of rams_sp_nc is
type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
signal RAM : ram_type;
begin
process(clk)
begin
if clk'event and clk = '1' then
if en = '1' then
if we = '1' then
RAM(to_integer(unsigned(addr))) <= di;
else
do <= RAM(to_integer(unsigned(addr)));
end if;
end if;
end if;
end process;

end syn;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 130Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=130

Simple Dual-Port Block RAM Examples
The following sections provide VHDL and Verilog coding examples for Simple Dual-Port Block
RAM.

Simple Dual-Port Block RAM with Single Clock (Verilog)

Filename: simple_dual_one_clock.v

// Simple Dual-Port Block RAM with One Clock
// File: simple_dual_one_clock.v

module simple_dual_one_clock (clk,ena,enb,wea,addra,addrb,dia,dob);

input clk,ena,enb,wea;
input [9:0] addra,addrb;
input [15:0] dia;
output [15:0] dob;
reg [15:0] ram [1023:0];
reg [15:0] doa,dob;

always @(posedge clk) begin
if (ena) begin
if (wea)
ram[addra] <= dia;
end
end

always @(posedge clk) begin
if (enb)
dob <= ram[addrb];
end

endmodule

Simple Dual-Port Block RAM with Single Clock (VHDL)

Filename: simple_dual_one_clock.vhd

-- Simple Dual-Port Block RAM with One Clock
-- Correct Modelization with a Shared Variable
-- File:simple_dual_one_clock.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity simple_dual_one_clock is
port(
clk : in std_logic;
ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
addra : in std_logic_vector(9 downto 0);
addrb : in std_logic_vector(9 downto 0);
dia : in std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0)

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 131Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=131

);
end simple_dual_one_clock;

architecture syn of simple_dual_one_clock is
type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
shared variable RAM : ram_type;
begin
process(clk)
begin
if clk'event and clk = '1' then
if ena = '1' then
if wea = '1' then
RAM(conv_integer(addra)) := dia;
end if;
end if;
end if;
end process;

process(clk)
begin
if clk'event and clk = '1' then
if enb = '1' then
dob <= RAM(conv_integer(addrb));
end if;
end if;
end process;

end syn;

Simple Dual-Port Block RAM with Dual Clocks (Verilog)

Filename: simple_dual_two_clocks.v

// Simple Dual-Port Block RAM with Two Clocks
// File: simple_dual_two_clocks.v

module simple_dual_two_clocks (clka,clkb,ena,enb,wea,addra,addrb,dia,dob);

input clka,clkb,ena,enb,wea;
input [9:0] addra,addrb;
input [15:0] dia;
output [15:0] dob;
reg [15:0] ram [1023:0];
reg [15:0] dob;

always @(posedge clka)
begin
if (ena)
begin
if (wea)
ram[addra] <= dia;
end
end

always @(posedge clkb)
begin
if (enb)
begin

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 132Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=132

dob <= ram[addrb];
end
end

endmodule

Simple Dual-Port Block RAM with Dual Clocks (VHDL)

Filename: simple_dual_two_clocks.vhd

-- Simple Dual-Port Block RAM with Two Clocks
-- Correct Modelization with a Shared Variable
-- File: simple_dual_two_clocks.vhd
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity simple_dual_two_clocks is
port(
clka : in std_logic;
clkb : in std_logic;
ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
addra : in std_logic_vector(9 downto 0);
addrb : in std_logic_vector(9 downto 0);
dia : in std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0)
);
end simple_dual_two_clocks;

architecture syn of simple_dual_two_clocks is
type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
shared variable RAM : ram_type;
begin
process(clka)
begin
if clka'event and clka = '1' then
if ena = '1' then
if wea = '1' then
RAM(conv_integer(addra)) := dia;
end if;
end if;
end if;
end process;

process(clkb)
begin
if clkb'event and clkb = '1' then
if enb = '1' then
dob <= RAM(conv_integer(addrb));
end if;
end if;
end process;

end syn;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 133Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=133

True Dual-Port Block RAM Examples
The following sections provide VHDL and Verilog coding examples for True Dual-Port Block
RAM.

Dual-Port Block RAM with Two Write Ports in Read First Mode
Verilog Example

Filename: ram_tdp_rf_rf.v

// Dual-Port Block RAM with Two Write Ports
// File: rams_tdp_rf_rf.v

module rams_tdp_rf_rf
(clka,clkb,ena,enb,wea,web,addra,addrb,dia,dib,doa,dob);

input clka,clkb,ena,enb,wea,web;
input [9:0] addra,addrb;
input [15:0] dia,dib;
output [15:0] doa,dob;
reg [15:0] ram [1023:0];
reg [15:0] doa,dob;

always @(posedge clka)
begin
if (ena)
begin
if (wea)
ram[addra] <= dia;
doa <= ram[addra];
end
end

always @(posedge clkb)
begin
if (enb)
begin
if (web)
ram[addrb] <= dib;
dob <= ram[addrb];
end
end

endmodule

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 134Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=134

Dual-Port Block RAM with Two Write Ports in Read-First Mode
(VHDL)

Filename: ram_tdp_rf_rf.vhd

-- Dual-Port Block RAM with Two Write Ports
-- Correct Modelization with a Shared Variable
-- File: rams_tdp_rf_rf.vhd

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_tdp_rf_rf is
port(
clka : in std_logic;
clkb : in std_logic;
ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
web : in std_logic;
addra : in std_logic_vector(9 downto 0);
addrb : in std_logic_vector(9 downto 0);
dia : in std_logic_vector(15 downto 0);
dib : in std_logic_vector(15 downto 0);
doa : out std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0)
);
end rams_tdp_rf_rf;

architecture syn of rams_tdp_rf_rf is
type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
shared variable RAM : ram_type;
begin
process(CLKA)
begin
if CLKA’event and CLKA = ‘1’ then
if ENA = ‘1’ then
DOA <= RAM(to_integer(unsigned(ADDRA)));
if WEA = ‘1’ then
RAM(to_integer(unsigned(ADDRA))) := DIA;
end if;
end if;
end if;
end process;

process(CLKB)
begin
if CLKB’event and CLKB = ‘1’ then
if ENB = ‘1’ then
DOB <= RAM(to_integer(unsigned(ADDRB)));
if WEB = ‘1’ then
RAM(to_integer(unsigned(ADDRB))) := DIB;
end if;
end if;
end if;
end process;

end syn;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 135Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=135

Block RAM with Optional Output Registers (Verilog)

Filename: rams_pipeline.v

// Block RAM with Optional Output Registers
// File: rams_pipeline

module rams_pipeline (clk1, clk2, we, en1, en2, addr1, addr2, di, res1,
res2);
input clk1;
input clk2;
input we, en1, en2;
input [9:0] addr1;
input [9:0] addr2;
input [15:0] di;
output [15:0] res1;
output [15:0] res2;
reg [15:0] res1;
reg [15:0] res2;
reg [15:0] RAM [1023:0];
reg [15:0] do1;
reg [15:0] do2;

always @(posedge clk1)
begin
if (we == 1'b1)
RAM[addr1] <= di;
do1 <= RAM[addr1];
end

always @(posedge clk2)
begin
do2 <= RAM[addr2];
end

always @(posedge clk1)
begin
if (en1 == 1'b1)
res1 <= do1;
end

always @(posedge clk2)
begin
if (en2 == 1'b1)
res2 <= do2;
end
endmodule

Block RAM with Optional Output Registers (VHDL)

Filename: rams_pipeline.vhd

-- Block RAM with Optional Output Registers
-- File: rams_pipeline.vhd
library IEEE;
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use ieee.numeric_std.all;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 136Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=136

entity rams_pipeline is
port(
clk1, clk2 : in std_logic;
we, en1, en2 : in std_logic;
addr1 : in std_logic_vector(9 downto 0);
addr2 : in std_logic_vector(9 downto 0);
di : in std_logic_vector(15 downto 0);
res1 : out std_logic_vector(15 downto 0);
res2 : out std_logic_vector(15 downto 0)
);
end rams_pipeline;

architecture beh of rams_pipeline is
type ram_type is array (1023 downto 0) of std_logic_vector(15 downto 0);
signal ram : ram_type;
signal do1 : std_logic_vector(15 downto 0);
signal do2 : std_logic_vector(15 downto 0);
begin
process(clk1)
begin
if rising_edge(clk1) then
if we = '1' then
ram(to_integer(unsigned(addr1))) <= di;
end if;
do1 <= ram(to_integer(unsigned(addr1)));
end if;
end process;

process(clk2)
begin
if rising_edge(clk2) then
do2 <= ram(to_integer(unsigned(addr2)));
end if;
end process;

process(clk1)
begin
if rising_edge(clk1) then
if en1 = '1' then
res1 <= do1;
end if;
end if;
end process;

process(clk2)
begin
if rising_edge(clk2) then
if en2 = '1' then
res2 <= do2;
end if;
end if;
end process;

end beh;

Byte Write Enable (Block RAM)
AMD supports byte write enable in block RAM. Use byte write enable in block RAM to:

• Exercise advanced control over writing data into RAM

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 137Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=137

• Separately specify the writeable portions of 8 bits of an addressed memory

From the standpoint of HDL modeling and inference, the concept is best described as a column-
based write:

• The RAM is seen as a collection of equal size columns

• During a write cycle, you separately control writing into each of these columns

Vivado synthesis inference lets you take advantage of the block RAM byte write enable feature.
The described RAM is implemented on block RAM resources, using the byte write enable
capability, provided that the following requirements are met:

• Write columns of equal widths

• Allowed write column widths: 8-bit, 9-bit, 16-bit, 18-bit (multiple of 8-bit or 9-bit)

For other write column widths, such as 5-bit or 12-bit (non multiple of 8-bit or 9-bit), Vivado
synthesis uses separate RAMs for each column:

• Number of write columns: any

• Supported read-write synchronizations: read-first, write-first, no-change

Byte Write Enable—True Dual Port with Byte-Wide Write Enable
(Verilog)

Filename: bytewrite_tdp_ram_rf.v

// True-Dual-Port BRAM with Byte-wide Write Enable
// Read-First mode
// bytewrite_tdp_ram_rf.v
//

module bytewrite_tdp_ram_rf
#(
//--
parameter NUM_COL = 4,
parameter COL_WIDTH = 8,
parameter ADDR_WIDTH = 10,
// Addr Width in bits : 2 *ADDR_WIDTH = RAM Depth
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
//--
) (
input clkA,
input enaA,
input [NUM_COL-1:0] weA,
input [ADDR_WIDTH-1:0] addrA,
input [DATA_WIDTH-1:0] dinA,
output reg [DATA_WIDTH-1:0] doutA,

input clkB,
input enaB,
input [NUM_COL-1:0] weB,
input [ADDR_WIDTH-1:0] addrB,
input [DATA_WIDTH-1:0] dinB,

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 138Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=138

output reg [DATA_WIDTH-1:0] doutB
);

// Core Memory
reg [DATA_WIDTH-1:0] ram_block [(2**ADDR_WIDTH)-1:0];

integer i;
// Port-A Operation
always @ (posedge clkA) begin
if(enaA) begin
for(i=0;i<NUM_COL;i=i+1) begin
if(weA[i]) begin
ram_block[addrA][i*COL_WIDTH +: COL_WIDTH] <= dinA[i*COL_WIDTH +:
COL_WIDTH];
end
end
doutA <= ram_block[addrA];
end
end

// Port-B Operation:
always @ (posedge clkB) begin
if(enaB) begin
for(i=0;i<NUM_COL;i=i+1) begin
if(weB[i]) begin
ram_block[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +:
COL_WIDTH];
end
end

doutB <= ram_block[addrB];
end
end

endmodule // bytewrite_tdp_ram_rf

Byte Write Enable—True Dual Port READ_FIRST Mode (VHDL)

Filename: bytewrite_tdp_ram_rf.vhd

-- True-Dual-Port BRAM with Byte-wide Write Enable
-- Read First mode
--
-- bytewrite_tdp_ram_rf.vhd
--
-- READ_FIRST ByteWide WriteEnable Block RAM Template

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_tdp_ram_rf is
generic(
SIZE : integer := 1024;
ADDR_WIDTH : integer := 10;
COL_WIDTH : integer := 9;
NB_COL : integer := 4
);

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 139Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=139

port(
clka : in std_logic;
ena : in std_logic;
wea : in std_logic_vector(NB_COL - 1 downto 0);
addra : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
dia : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
doa : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
clkb : in std_logic;
enb : in std_logic;
web : in std_logic_vector(NB_COL - 1 downto 0);
addrb : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
dib : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
dob : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0)
);

end bytewrite_tdp_ram_rf;

architecture byte_wr_ram_rf of bytewrite_tdp_ram_rf is
type ram_type is array (0 to SIZE - 1) of std_logic_vector(NB_COL *
COL_WIDTH - 1 downto 0);
shared variable RAM : ram_type := (others => (others => '0'));

begin

------- Port A -------
process(clka)
begin
if rising_edge(clka) then
if ena = '1' then
doa <= RAM(conv_integer(addra));
for i in 0 to NB_COL - 1 loop
if wea(i) = '1' then
RAM(conv_integer(addra))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) :=
dia((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
end if;
end loop;
end if;
end if;
end process;

------- Port B -------
process(clkb)
begin
if rising_edge(clkb) then
if enb = '1' then
dob <= RAM(conv_integer(addrb));
for i in 0 to NB_COL - 1 loop
if web(i) = '1' then
RAM(conv_integer(addrb))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) :=
dib((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
end if;
end loop;
end if;
end if;
end process;
end byte_wr_ram_rf;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 140Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=140

Byte Write Enable—WRITE_FIRST Mode (VHDL)

Filename: bytewrite_tdp_ram_wf.vhd

-- True-Dual-Port BRAM with Byte-wide Write Enable
-- Write First mode
--
-- bytewrite_tdp_ram_wf.vhd
-- WRITE_FIRST ByteWide WriteEnable Block RAM Template

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_tdp_ram_wf is
generic(
SIZE : integer := 1024;
ADDR_WIDTH : integer := 10;
COL_WIDTH : integer := 9;
NB_COL : integer := 4
);

port(
clka : in std_logic;
ena : in std_logic;
wea : in std_logic_vector(NB_COL - 1 downto 0);
addra : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
dia : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
doa : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
clkb : in std_logic;
enb : in std_logic;
web : in std_logic_vector(NB_COL - 1 downto 0);
addrb : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
dib : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
dob : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0)
);

end bytewrite_tdp_ram_wf;

architecture byte_wr_ram_wf of bytewrite_tdp_ram_wf is
type ram_type is array (0 to SIZE - 1) of std_logic_vector(NB_COL *
COL_WIDTH - 1 downto 0);
shared variable RAM : ram_type := (others => (others => '0'));

begin

------- Port A -------
process(clka)
begin
if rising_edge(clka) then
if ena = '1' then
for i in 0 to NB_COL - 1 loop
if wea(i) = '1' then
RAM(conv_integer(addra))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) :=
dia((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
end if;
end loop;
doa <= RAM(conv_integer(addra));
end if;
end if;

end process;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 141Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=141

------- Port B -------
process(clkb)
begin
if rising_edge(clkb) then
if enb = '1' then
for i in 0 to NB_COL - 1 loop
if web(i) = '1' then
RAM(conv_integer(addrb))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) :=
dib((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
end if;
end loop;
dob <= RAM(conv_integer(addrb));
end if;
end if;
end process;
end byte_wr_ram_wf;

Byte-Wide Write Enable—NO_CHANGE Mode (Verilog)

Filename: bytewrite_tdp_ram_nc.v

//
// True-Dual-Port BRAM with Byte-wide Write Enable
// No-Change mode
//
// bytewrite_tdp_ram_nc.v
//
// ByteWide Write Enable, - NO_CHANGE mode template - Vivado recomended
module bytewrite_tdp_ram_nc
#(
//---
parameter NUM_COL = 4,
parameter COL_WIDTH = 8,
parameter ADDR_WIDTH = 10, // Addr Width in bits : 2**ADDR_WIDTH = RAM Depth
parameter DATA_WIDTH = NUM_COL*COL_WIDTH // Data Width in bits
//---
) (
input clkA,
input enaA,
input [NUM_COL-1:0] weA,
input [ADDR_WIDTH-1:0] addrA,
input [DATA_WIDTH-1:0] dinA,
output reg [DATA_WIDTH-1:0] doutA,

input clkB,
input enaB,
input [NUM_COL-1:0] weB,
input [ADDR_WIDTH-1:0] addrB,
input [DATA_WIDTH-1:0] dinB,
output reg [DATA_WIDTH-1:0] doutB
);

// Core Memory
reg [DATA_WIDTH-1:0] ram_block [(2**ADDR_WIDTH)-1:0];

// Port-A Operation
generate
genvar i;
for(i=0;i<NUM_COL;i=i+1) begin

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 142Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=142

always @ (posedge clkA) begin
if(enaA) begin
if(weA[i]) begin
ram_block[addrA][i*COL_WIDTH +: COL_WIDTH] <= dinA[i*COL_WIDTH +:
COL_WIDTH];
end
end
end
end
endgenerate

always @ (posedge clkA) begin
if(enaA) begin
if (~|weA)
doutA <= ram_block[addrA];
end
end

// Port-B Operation:
generate
for(i=0;i<NUM_COL;i=i+1) begin
always @ (posedge clkB) begin
if(enaB) begin
if(weB[i]) begin
ram_block[addrB][i*COL_WIDTH +: COL_WIDTH] <= dinB[i*COL_WIDTH +:
COL_WIDTH];
end
end
end
end
endgenerate

always @ (posedge clkB) begin
if(enaB) begin
if (~|weB)
doutB <= ram_block[addrB];
end
end

endmodule // bytewrite_tdp_ram_nc

Byte-Wide Write Enable—NO_CHANGE Mode (VHDL)

Filename: bytewrite_tdp_ram_nc.vhd

--
-- True-Dual-Port BRAM with Byte-wide Write Enable
-- No change mode
--
-- bytewrite_tdp_ram_nc.vhd
--
-- NO_CHANGE ByteWide WriteEnable Block RAM Template

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity bytewrite_tdp_ram_nc is
generic(
SIZE : integer := 1024;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 143Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=143

ADDR_WIDTH : integer := 10;
COL_WIDTH : integer := 9;
NB_COL : integer := 4
);

port(
clka : in std_logic;
ena : in std_logic;
wea : in std_logic_vector(NB_COL - 1 downto 0);
addra : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
dia : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
doa : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
clkb : in std_logic;
enb : in std_logic;
web : in std_logic_vector(NB_COL - 1 downto 0);
addrb : in std_logic_vector(ADDR_WIDTH - 1 downto 0);
dib : in std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0);
dob : out std_logic_vector(NB_COL * COL_WIDTH - 1 downto 0)
);

end bytewrite_tdp_ram_nc;

architecture byte_wr_ram_nc of bytewrite_tdp_ram_nc is
type ram_type is array (0 to SIZE - 1) of std_logic_vector(NB_COL *
COL_WIDTH - 1 downto 0);
shared variable RAM : ram_type := (others => (others => '0'));

begin

------- Port A -------
process(clka)
begin
if rising_edge(clka) then
if ena = '1' then
if (wea = (wea'range => '0')) then
doa <= RAM(conv_integer(addra));
end if;
for i in 0 to NB_COL - 1 loop
if wea(i) = '1' then
RAM(conv_integer(addra))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) :=
dia((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
end if;
end loop;
end if;
end if;
end process;

------- Port B -------
process(clkb)
begin
if rising_edge(clkb) then
if enb = '1' then
if (web = (web'range => '0')) then
dob <= RAM(conv_integer(addrb));
end if;
for i in 0 to NB_COL - 1 loop
if web(i) = '1' then
RAM(conv_integer(addrb))((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH) :=
dib((i + 1) * COL_WIDTH - 1 downto i * COL_WIDTH);
end if;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 144Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=144

end loop;
end if;
end if;
end process;
end byte_wr_ram_nc;

Asymmetric RAMs
The following sections provide VHDL and Verilog coding examples for asymmetric RAMs.

Note: Asymmetric RAMs with byte-write enables are not supported with RTL inference. Please use the
XPM flow if this is needed.

Simple Dual-Port Asymmetric RAM When Read is Wider than Write
(VHDL)

Filename: asym_ram_sdp_read_wider.vhd

-- Asymmetric port RAM
-- Read Wider than Write
-- asym_ram_sdp_read_wider.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asym_ram_sdp_read_wider is
generic(
WIDTHA : integer := 4;
SIZEA : integer := 1024;
ADDRWIDTHA : integer := 10;
WIDTHB : integer := 16;
SIZEB : integer := 256;
ADDRWIDTHB : integer := 8
);

port(
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA - 1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB - 1 downto 0);
diA : in std_logic_vector(WIDTHA - 1 downto 0);
doB : out std_logic_vector(WIDTHB - 1 downto 0)
);

end asym_ram_sdp_read_wider;

architecture behavioral of asym_ram_sdp_read_wider is
function max(L, R : INTEGER) return INTEGER is
begin
if L > R then
return L;
else
return R;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 145Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=145

end if;
end;

function min(L, R : INTEGER) return INTEGER is
begin
if L < R then
return L;
else
return R;
end if;
end;

function log2(val : INTEGER) return natural is
variable res : natural;
begin
for i in 0 to 31 loop
if (val <= (2 ** i)) then
res := i;
exit;
end if;
end loop;
return res;
end function Log2;

constant minWIDTH : integer := min(WIDTHA, WIDTHB);
constant maxWIDTH : integer := max(WIDTHA, WIDTHB);
constant maxSIZE : integer := max(SIZEA, SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

-- An asymmetric RAM is modeled in a similar way as a symmetric RAM, with an
-- array of array object. Its aspect ratio corresponds to the port with the
-- lower data width (larger depth)
type ramType is array (0 to maxSIZE - 1) of std_logic_vector(minWIDTH - 1
downto 0);

signal my_ram : ramType := (others => (others => '0'));

signal readB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');
signal regA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
signal regB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');

begin

-- Write process
process(clkA)
begin
if rising_edge(clkA) then
if enA = '1' then
if weA = '1' then
my_ram(conv_integer(addrA)) <= diA;
end if;
end if;
end if;
end process;

-- Read process
process(clkB)
begin
if rising_edge(clkB) then
for i in 0 to RATIO - 1 loop
if enB = '1' then
readB((i + 1) * minWIDTH - 1 downto i * minWIDTH) <=
my_ram(conv_integer(addrB & conv_std_logic_vector(i, log2(RATIO))));

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 146Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=146

end if;
end loop;
regB <= readB;
end if;
end process;

doB <= regB;

end behavioral;

Dual-Port Asymmetric RAM When Read is Wider than Write (Verilog)

Filename: asym_ram_sdp_read_wider.v

// Asymmetric port RAM
// Read Wider than Write. Read Statement in loop
//asym_ram_sdp_read_wider.v

module asym_ram_sdp_read_wider (clkA, clkB, enaA, weA, enaB, addrA, addrB,
diA, doB);
parameter WIDTHA = 4;
parameter SIZEA = 1024;
parameter ADDRWIDTHA = 10;

parameter WIDTHB = 16;
parameter SIZEB = 256;
parameter ADDRWIDTHB = 8;
input clkA;
input clkB;
input weA;
input enaA, enaB;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output [WIDTHB-1:0] doB;
`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;
begin
if (value < 2)
log2 = value;
else
begin
shifted = value-1;
for (res=0; shifted>0; res=res+1)
shifted = shifted>>1;
log2 = res;
end
end
endfunction

localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);

localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 147Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=147

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [WIDTHB-1:0] readB;

always @(posedge clkA)
begin
if (enaA) begin
if (weA)
RAM[addrA] <= diA;
end
end

always @(posedge clkB)
begin : ramread
integer i;
reg [log2RATIO-1:0] lsbaddr;
if (enaB) begin
for (i = 0; i < RATIO; i = i+1) begin
lsbaddr = i;
readB[(i+1)*minWIDTH-1 -: minWIDTH] <= RAM[{addrB, lsbaddr}];
end
end
end
assign doB = readB;

endmodule

Simple Dual-Port Asymmetric RAM When Write is Wider than Read
(Verilog)

Filename: asym_ram_sdp_write_wider.v

// Asymmetric port RAM
// Write wider than Read. Write Statement in a loop.
// asym_ram_sdp_write_wider.v

module asym_ram_sdp_write_wider (clkA, clkB, weA, enaA, enaB, addrA, addrB,
diA, doB);
parameter WIDTHB = 4;
parameter SIZEB = 1024;
parameter ADDRWIDTHB = 10;

parameter WIDTHA = 16;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
input clkA;
input clkB;
input weA;
input enaA, enaB;
input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
output [WIDTHB-1:0] doB;
`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 148Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=148

input integer value;
reg [31:0] shifted;
integer res;
begin
if (value < 2)
log2 = value;
else
begin
shifted = value-1;
for (res=0; shifted>0; res=res+1)
shifted = shifted>>1;
log2 = res;
end
end
endfunction

localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);

localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [WIDTHB-1:0] readB;

always @(posedge clkB) begin
if (enaB) begin
readB <= RAM[addrB];
end
end
assign doB = readB;

always @(posedge clkA)
begin : ramwrite
integer i;
reg [log2RATIO-1:0] lsbaddr;
for (i=0; i< RATIO; i= i+ 1) begin : write1
lsbaddr = i;
if (enaA) begin
if (weA)
RAM[{addrA, lsbaddr}] <= diA[(i+1)*minWIDTH-1 -: minWIDTH];
end
end
end

endmodule

Simple Dual Port Asymmetric RAM When Write Wider than Read
(VHDL)

Filename: asym_ram_sdp_write_wider.vhd

-- Asymmetric port RAM
-- Write Wider than Read
-- asym_ram_sdp_write_wider.vhd

library ieee;
use ieee.std_logic_1164.all;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 149Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=149

use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asym_ram_sdp_write_wider is
generic(
WIDTHA : integer := 4;
SIZEA : integer := 1024;
ADDRWIDTHA : integer := 10;
WIDTHB : integer := 16;
SIZEB : integer := 256;
ADDRWIDTHB : integer := 8
);

port(
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA - 1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB - 1 downto 0);
diB : in std_logic_vector(WIDTHB - 1 downto 0);
doA : out std_logic_vector(WIDTHA - 1 downto 0)
);

end asym_ram_sdp_write_wider;

architecture behavioral of asym_ram_sdp_write_wider is
function max(L, R : INTEGER) return INTEGER is
begin
if L > R then
return L;
else
return R;
end if;
end;

function min(L, R : INTEGER) return INTEGER is
begin
if L < R then
return L;
else
return R;
end if;
end;

function log2(val : INTEGER) return natural is
variable res : natural;
begin
for i in 0 to 31 loop
if (val <= (2 ** i)) then
res := i;
exit;
end if;
end loop;
return res;
end function Log2;

constant minWIDTH : integer := min(WIDTHA, WIDTHB);
constant maxWIDTH : integer := max(WIDTHA, WIDTHB);
constant maxSIZE : integer := max(SIZEA, SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 150Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=150

-- An asymmetric RAM is modeled in a similar way as a symmetric RAM, with an
-- array of array object. Its aspect ratio corresponds to the port with the
-- lower data width (larger depth)
type ramType is array (0 to maxSIZE - 1) of std_logic_vector(minWIDTH - 1
downto 0);

signal my_ram : ramType := (others => (others => '0'));

signal readA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
signal readB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');
signal regA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
signal regB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');

begin

-- read process
process(clkA)
begin
if rising_edge(clkA) then
if enA = '1' then
readA <= my_ram(conv_integer(addrA));
end if;
regA <= readA;
end if;
end process;

-- Write process
process(clkB)
begin
if rising_edge(clkB) then
for i in 0 to RATIO - 1 loop
if enB = '1' then
if weB = '1' then
my_ram(conv_integer(addrB & conv_std_logic_vector(i, log2(RATIO)))) <=
diB((i + 1) * minWIDTH - 1 downto i * minWIDTH);
end if;
end if;
end loop;
regB <= readB;
end if;
end process;

doA <= regA;

end behavioral;

True Dual Port Asymmetric RAM Read First (Verilog)

Filename: asym_ram_tdp_read_first.v

// Asymetric RAM - TDP
// READ_FIRST MODE.
// asym_ram_tdp_read_first.v

module asym_ram_tdp_read_first (clkA, clkB, enaA, weA, enaB, weB, addrA,
addrB, diA, doA, diB, doB);
parameter WIDTHB = 4;
parameter SIZEB = 1024;
parameter ADDRWIDTHB = 10;
parameter WIDTHA = 16;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 151Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=151

parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
input clkA;
input clkB;
input weA, weB;
input enaA, enaB;

input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
input [WIDTHB-1:0] diB;

output [WIDTHA-1:0] doA;
output [WIDTHB-1:0] doB;

`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;
begin
if (value < 2)
log2 = value;
else
begin
shifted = value-1;
for (res=0; shifted>0; res=res+1)
shifted = shifted>>1;
log2 = res;
end
end
endfunction

localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);

localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [WIDTHA-1:0] readA;
reg [WIDTHB-1:0] readB;

always @(posedge clkB)
begin
if (enaB) begin
readB <= RAM[addrB] ;
if (weB)
RAM[addrB] <= diB;
end
end

always @(posedge clkA)
begin : portA
integer i;
reg [log2RATIO-1:0] lsbaddr ;
for (i=0; i< RATIO; i= i+ 1) begin
lsbaddr = i;
if (enaA) begin

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 152Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=152

readA[(i+1)*minWIDTH -1 -: minWIDTH] <= RAM[{addrA, lsbaddr}];

if (weA)
RAM[{addrA, lsbaddr}] <= diA[(i+1)*minWIDTH-1 -: minWIDTH];
end
end
end

assign doA = readA;
assign doB = readB;

endmodule

True Dual Port Asymmetric RAM Read First (VHDL)

Filename: asym_ram_tdp_read_first_first.vhd

-- asymmetric port RAM
-- True Dual port read first
-- asym_ram_tdp_read_first_first.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asym_ram_tdp_read_first is
generic(
WIDTHA : integer := 4;
SIZEA : integer := 1024;
ADDRWIDTHA : integer := 10;
WIDTHB : integer := 16;
SIZEB : integer := 256;
ADDRWIDTHB : integer := 8
);

port(
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA - 1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB - 1 downto 0);
diA : in std_logic_vector(WIDTHA - 1 downto 0);
diB : in std_logic_vector(WIDTHB - 1 downto 0);
doA : out std_logic_vector(WIDTHA - 1 downto 0);
doB : out std_logic_vector(WIDTHB - 1 downto 0)
);

end asym_ram_tdp_read_first;

architecture behavioral of asym_ram_tdp_read_first is
function max(L, R : INTEGER) return INTEGER is
begin
if L > R then
return L;
else
return R;
end if;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 153Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=153

end;

function min(L, R : INTEGER) return INTEGER is
begin
if L < R then
return L;
else
return R;
end if;
end;

function log2(val : INTEGER) return natural is
variable res : natural;
begin
for i in 0 to 31 loop
if (val <= (2 ** i)) then
res := i;
exit;
end if;
end loop;
return res;
end function Log2;

constant minWIDTH : integer := min(WIDTHA, WIDTHB);
constant maxWIDTH : integer := max(WIDTHA, WIDTHB);
constant maxSIZE : integer := max(SIZEA, SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

-- An asymmetric RAM is modeled in a similar way as a symmetric RAM, with an
-- array of array object. Its aspect ratio corresponds to the port with the
-- lower data width (larger depth)
type ramType is array (0 to maxSIZE - 1) of std_logic_vector(minWIDTH - 1
downto 0);

signal my_ram : ramType := (others => (others => '0'));

signal readA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
signal readB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');
signal regA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
signal regB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');

begin
process(clkA)
begin
if rising_edge(clkA) then
if enA = '1' then
readA <= my_ram(conv_integer(addrA));
if weA = '1' then
my_ram(conv_integer(addrA)) <= diA;
end if;
end if;
regA <= readA;
end if;
end process;

process(clkB)
begin
if rising_edge(clkB) then
for i in 0 to RATIO - 1 loop
if enB = '1' then
readB((i + 1) * minWIDTH - 1 downto i * minWIDTH) <=
my_ram(conv_integer(addrB & conv_std_logic_vector(i, log2(RATIO))));
if weB = '1' then

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 154Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=154

my_ram(conv_integer(addrB & conv_std_logic_vector(i, log2(RATIO)))) <=
diB((i + 1) * minWIDTH - 1 downto i * minWIDTH);
end if;
end if;
end loop;
regB <= readB;
end if;
end process;

doA <= regA;
doB <= regB;

end behavioral;

True Dual Port Asymmetric RAM Write First (Verilog)

Filename: asym_ram_tdp_write_first.v

// Asymmetric port RAM - TDP
// WRITE_FIRST MODE.
// asym_ram_tdp_write_first.v

module asym_ram_tdp_write_first (clkA, clkB, enaA, weA, enaB, weB, addrA,
addrB, diA, doA, diB, doB);
parameter WIDTHB = 4;
parameter SIZEB = 1024;
parameter ADDRWIDTHB = 10;
parameter WIDTHA = 16;
parameter SIZEA = 256;
parameter ADDRWIDTHA = 8;
input clkA;
input clkB;
input weA, weB;
input enaA, enaB;

input [ADDRWIDTHA-1:0] addrA;
input [ADDRWIDTHB-1:0] addrB;
input [WIDTHA-1:0] diA;
input [WIDTHB-1:0] diB;

output [WIDTHA-1:0] doA;
output [WIDTHB-1:0] doB;

`define max(a,b) {(a) > (b) ? (a) : (b)}
`define min(a,b) {(a) < (b) ? (a) : (b)}

function integer log2;
input integer value;
reg [31:0] shifted;
integer res;
begin
if (value < 2)
log2 = value;
else
begin
shifted = value-1;
for (res=0; shifted>0; res=res+1)
shifted = shifted>>1;
log2 = res;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 155Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=155

end
end
endfunction

localparam maxSIZE = `max(SIZEA, SIZEB);
localparam maxWIDTH = `max(WIDTHA, WIDTHB);
localparam minWIDTH = `min(WIDTHA, WIDTHB);

localparam RATIO = maxWIDTH / minWIDTH;
localparam log2RATIO = log2(RATIO);

reg [minWIDTH-1:0] RAM [0:maxSIZE-1];
reg [WIDTHA-1:0] readA;
reg [WIDTHB-1:0] readB;

always @(posedge clkB)
begin
if (enaB) begin
if (weB)
RAM[addrB] = diB;
readB = RAM[addrB] ;
end
end

always @(posedge clkA)
begin : portA
integer i;
reg [log2RATIO-1:0] lsbaddr ;
for (i=0; i< RATIO; i= i+ 1) begin
lsbaddr = i;
if (enaA) begin

if (weA)
RAM[{addrA, lsbaddr}] = diA[(i+1)*minWIDTH-1 -: minWIDTH];

readA[(i+1)*minWIDTH -1 -: minWIDTH] = RAM[{addrA, lsbaddr}];
end
end
end

assign doA = readA;
assign doB = readB;

endmodule

True Dual Port Asymmetric RAM Write First (VHDL)

Filename: asym_ram_tdp_write_first.vhd

--Asymmetric RAM
--True Dual Port write first mode.
--asym_ram_tdp_write_first.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

entity asym_ram_tdp_write_first is
generic(

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 156Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=156

WIDTHA : integer := 4;
SIZEA : integer := 1024;
ADDRWIDTHA : integer := 10;
WIDTHB : integer := 16;
SIZEB : integer := 256;
ADDRWIDTHB : integer := 8
);

port(
clkA : in std_logic;
clkB : in std_logic;
enA : in std_logic;
enB : in std_logic;
weA : in std_logic;
weB : in std_logic;
addrA : in std_logic_vector(ADDRWIDTHA - 1 downto 0);
addrB : in std_logic_vector(ADDRWIDTHB - 1 downto 0);
diA : in std_logic_vector(WIDTHA - 1 downto 0);
diB : in std_logic_vector(WIDTHB - 1 downto 0);
doA : out std_logic_vector(WIDTHA - 1 downto 0);
doB : out std_logic_vector(WIDTHB - 1 downto 0)
);

end asym_ram_tdp_write_first;

architecture behavioral of asym_ram_tdp_write_first is
function max(L, R : INTEGER) return INTEGER is
begin
if L > R then
return L;
else
return R;
end if;
end;

function min(L, R : INTEGER) return INTEGER is
begin
if L < R then
return L;
else
return R;
end if;
end;

function log2(val : INTEGER) return natural is
variable res : natural;
begin
for i in 0 to 31 loop
if (val <= (2 ** i)) then
res := i;
exit;
end if;
end loop;
return res;
end function Log2;

constant minWIDTH : integer := min(WIDTHA, WIDTHB);
constant maxWIDTH : integer := max(WIDTHA, WIDTHB);
constant maxSIZE : integer := max(SIZEA, SIZEB);
constant RATIO : integer := maxWIDTH / minWIDTH;

-- An asymmetric RAM is modeled in a similar way as a symmetric RAM, with an
-- array of array object. Its aspect ratio corresponds to the port with the

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 157Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=157

-- lower data width (larger depth)
type ramType is array (0 to maxSIZE - 1) of std_logic_vector(minWIDTH - 1
downto 0);

signal my_ram : ramType := (others => (others => '0'));

signal readA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
signal readB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');
signal regA : std_logic_vector(WIDTHA - 1 downto 0) := (others => '0');
signal regB : std_logic_vector(WIDTHB - 1 downto 0) := (others => '0');

begin
process(clkA)
begin
if rising_edge(clkA) then
if enA = '1' then
if weA = '1' then
my_ram(conv_integer(addrA)) <= diA;
readA <= diA;
else
readA <= my_ram(conv_integer(addrA));
end if;
end if;
regA <= readA;
end if;
end process;

process(clkB)
begin
if rising_edge(clkB) then
for i in 0 to RATIO - 1 loop
if enB = '1' then
if weB = '1' then
my_ram(conv_integer(addrB & conv_std_logic_vector(i, log2(RATIO)))) <=
diB((i + 1) * minWIDTH - 1 downto i * minWIDTH);
end if;
-- The read statement below is placed after the write statement -- on
purpose
-- to ensure write-first synchronization through the variable
-- mechanism
readB((i + 1) * minWIDTH - 1 downto i * minWIDTH) <=
my_ram(conv_integer(addrB & conv_std_logic_vector(i, log2(RATIO))));
end if;
end loop;
regB <= readB;
end if;
end process;

doA <= regA;
doB <= regB;

end behavioral;

Initializing RAM Contents
RAM can be initialized in following ways:

• Specifying RAM Initial Contents in the HDL Source Code

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 158Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=158

• Specifying RAM Initial Contents in an External Data File

Specifying RAM Initial Contents in the HDL Source
Code
Use the signal default value mechanism to describe initial RAM contents directly in the HDL
source code.

VHDL Coding Examples

type ram_type is array (0 to 31) of std_logic_vector(19 downto 0);
signal RAM : ram_type :=
(
X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A", X"00300",
X"08602", X"02310", X"0203B", X"08300", X"04002", X"08201", X"00500",
X"04001", X"02500", X"00340", X"00241", X"04002", X"08300", X"08201",
X"00500", X"08101", X"00602", X"04003", X"0241E", X"00301", X"00102",
X"02122", X"02021", X"0030D", X"08201"
);

All bit positions are initialized to the same value:

type ram_type is array (0 to 127) of std_logic_vector (15 downto 0);
signal RAM : ram_type := (others => (others => '0'));

Verilog Coding Example

All addressable words are initialized to the same value.

reg [DATA_WIDTH-1:0] ram [DEPTH-1:0];
integer i;
initial for (i=0; i<DEPTH; i=i+1) ram[i] = 0;
end

Specifying RAM Initial Contents in an External Data
File
Use the file read function in the HDL source code to load the RAM initial contents from an
external data file.

• The external data file is an ASCII text file with any name.

• Each line in the external data file describes the initial content at an address position in the
RAM.

• There must be as many lines in the external data file as there are rows in the RAM array. An
insufficient number of lines is flagged.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 159Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=159

• The addressable position related to a given line is defined by the direction of the primary
range of the signal modeling the RAM.

• You can represent RAM content in either binary or hexadecimal. You cannot mix both.

• The external data file cannot contain any other content, such as comments.

The following external data file initializes an 8 x 32-bit RAM with binary values:

00001110110000011001111011000110
00101011001011010101001000100011
01110100010100011000011100001111
01000001010000100101001110010100
00001001101001111111101000101011
00101101001011111110101010100111
11101111000100111000111101101101
10001111010010011001000011101111
00000001100011100011110010011111
11011111001110101011111001001010
11100111010100111110110011001010
11000100001001101100111100101001
10001011100101011111111111100001
11110101110110010000010110111010
01001011000000111001010110101110
11100001111111001010111010011110
01101111011010010100001101110001
01010100011011111000011000100100
11110000111101101111001100001011
10101101001111010100100100011100
01011100001010111111101110101110
01011101000100100111010010110101
11110111000100000101011101101101
11100111110001111010101100001101
01110100000011101111111000011111
00010011110101111000111001011101
01101110001111100011010101101111
10111100000000010011101011011011
11000001001101001101111100010000
00011111110010110110011111010101
01100100100000011100100101110000
10001000000100111011001010001111
11001000100011101001010001100001
10000000100111010011100111100011
11011111010010100010101010000111
10000000110111101000111110111011
10110011010111101111000110011001
00010111100001001010110111011100
10011100101110101111011010110011
01010011101101010001110110011010
01111011011100010101000101000001
10001000000110010110111001101010
11101000001101010000111001010110
11100011111100000111110101110101
01001010000000001111111101101111
00100011000011001000000010001111
10011000111010110001001011100100
11111111111011110101000101000111
11000011000101000011100110100000
01101101001011111010100011101001
10000111101100101001110011010111
11010110100100101110110010100100
01001111111001101101011111001011

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 160Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=160

11011001001101110110000100110111
10110110110111100101110011100110
10011100111001000010111111010110
00000000001011011111001010110010
10100110011010000010001000011011
11001010111111001001110001110101
00100001100010000111000101001000
00111100101111110001101101111010
11000010001010000000010100100001
11000001000110001101000101001110
10010011010100010001100100100111

Verilog Code Example

reg [31:0] ram [0:63];

initial begin
$readmemb("rams_20c.data", ram, 0, 63);
end

VHDL Code Example

Load the data as follows:

type RamType is array(0 to 7) of bit_vector(31 downto 0);
impure function InitRamFromFile (RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;
begin
for I in RamType'range loop
readline (RamFile, RamFileLine);
read (RamFileLine, RAM(I));
end loop;
return RAM;
end function;
signal RAM : RamType := InitRamFromFile("rams_20c.data");

Initializing Block RAM (Verilog)

Filename: rams_sp_rom.v

// Initializing Block RAM (Single-Port Block RAM)
// File: rams_sp_rom
module rams_sp_rom (clk, we, addr, di, dout);
input clk;
input we;
input [5:0] addr;
input [19:0] di;
output [19:0] dout;

reg [19:0] ram [63:0];
reg [19:0] dout;

initial
begin

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 161Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=161

ram[63] = 20'h0200A; ram[62] = 20'h00300; ram[61] = 20'h08101;
ram[60] = 20'h04000; ram[59] = 20'h08601; ram[58] = 20'h0233A;
ram[57] = 20'h00300; ram[56] = 20'h08602; ram[55] = 20'h02310;
ram[54] = 20'h0203B; ram[53] = 20'h08300; ram[52] = 20'h04002;
ram[51] = 20'h08201; ram[50] = 20'h00500; ram[49] = 20'h04001;
ram[48] = 20'h02500; ram[47] = 20'h00340; ram[46] = 20'h00241;
ram[45] = 20'h04002; ram[44] = 20'h08300; ram[43] = 20'h08201;
ram[42] = 20'h00500; ram[41] = 20'h08101; ram[40] = 20'h00602;
ram[39] = 20'h04003; ram[38] = 20'h0241E; ram[37] = 20'h00301;
ram[36] = 20'h00102; ram[35] = 20'h02122; ram[34] = 20'h02021;
ram[33] = 20'h00301; ram[32] = 20'h00102; ram[31] = 20'h02222;
ram[30] = 20'h04001; ram[29] = 20'h00342; ram[28] = 20'h0232B;
ram[27] = 20'h00900; ram[26] = 20'h00302; ram[25] = 20'h00102;
ram[24] = 20'h04002; ram[23] = 20'h00900; ram[22] = 20'h08201;
ram[21] = 20'h02023; ram[20] = 20'h00303; ram[19] = 20'h02433;
ram[18] = 20'h00301; ram[17] = 20'h04004; ram[16] = 20'h00301;
ram[15] = 20'h00102; ram[14] = 20'h02137; ram[13] = 20'h02036;
ram[12] = 20'h00301; ram[11] = 20'h00102; ram[10] = 20'h02237;
ram[9] = 20'h04004; ram[8] = 20'h00304; ram[7] = 20'h04040;
ram[6] = 20'h02500; ram[5] = 20'h02500; ram[4] = 20'h02500;
ram[3] = 20'h0030D; ram[2] = 20'h02341; ram[1] = 20'h08201;
ram[0] = 20'h0400D;
end

always @(posedge clk)
begin
if (we)
ram[addr] <= di;
dout <= ram[addr];
end

endmodule

Initializing Block RAM (VHDL)

Filename: rams_sp_rom.vhd

-- Initializing Block RAM (Single-Port Block RAM)
-- File: rams_sp_rom.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity rams_sp_rom is
port(
clk : in std_logic;
we : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(19 downto 0);
do : out std_logic_vector(19 downto 0)
);
end rams_sp_rom;

architecture syn of rams_sp_rom is
type ram_type is array (63 downto 0) of std_logic_vector(19 downto 0);
signal RAM : ram_type := (X"0200A", X"00300", X"08101", X"04000", X"08601",
X"0233A",
X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500", X"08101", X"00602",
X"04003", X"0241E", X"00301", X"00102", X"02122", X"02021",

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 162Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=162

X"00301", X"00102", X"02222", X"04001", X"00342", X"0232B",
X"00900", X"00302", X"00102", X"04002", X"00900", X"08201",
X"02023", X"00303", X"02433", X"00301", X"04004", X"00301",
X"00102", X"02137", X"02036", X"00301", X"00102", X"02237",
X"04004", X"00304", X"04040", X"02500", X"02500", X"02500",
X"0030D", X"02341", X"08201", X"0400D");

begin
process(clk)
begin
if rising_edge(clk) then
if we = '1' then
RAM(to_integer(unsigned(addr))) <= di;
end if;
do <= RAM(to_integer(unsigned(addr)));
end if;
end process;

end syn;

Initializing Block RAM From an External Data File (Verilog)

Filename: rams_init_file.v

// Initializing Block RAM from external data file
// Binary data
// File: rams_init_file.v

module rams_init_file (clk, we, addr, din, dout);
input clk;
input we;
input [5:0] addr;
input [31:0] din;
output [31:0] dout;

reg [31:0] ram [0:63];
reg [31:0] dout;

initial begin
$readmemb("rams_init_file.data",ram);
end

always @(posedge clk)
begin
if (we)
ram[addr] <= din;
dout <= ram[addr];
end
endmodule

Note: The external file initializing the RAM needs to be in bit vector form. External files in integer or hex
format do not work.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 163Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=163

Initializing Block RAM From an External Data File (VHDL)

Filename: rams_init_file.vhd

-- Initializing Block RAM from external data file
-- File: rams_init_file.vhd

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use std.textio.all;

entity rams_init_file is
port(
clk : in std_logic;
we : in std_logic;
addr : in std_logic_vector(5 downto 0);
din : in std_logic_vector(31 downto 0);
dout : out std_logic_vector(31 downto 0)
);
end rams_init_file;

architecture syn of rams_init_file is
type RamType is array (0 to 63) of bit_vector(31 downto 0);

impure function InitRamFromFile(RamFileName : in string) return RamType is
FILE RamFile : text is in RamFileName;
variable RamFileLine : line;
variable RAM : RamType;
begin
for I in RamType'range loop
readline(RamFile, RamFileLine);
read(RamFileLine, RAM(I));
end loop;
return RAM;
end function;

signal RAM : RamType := InitRamFromFile("rams_init_file.data");
begin
process(clk)
begin
if clk'event and clk = '1' then
if we = '1' then
RAM(to_integer(unsigned(addr))) <= to_bitvector(din);
end if;
dout <= to_stdlogicvector(RAM(to_integer(unsigned(addr))));
end if;
end process;

end syn;

Note:

The external file initializing the RAM needs to be in bit vector form. External files in integer or hex format
do not work.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 164Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=164

3D RAM Inference
RAMs Using 3D Arrays
The following examples show inference of RAMs using 3D arrays.

3D RAM Inference Single Port (Verilog)

filename: rams_sp_3d.sv

// 3-D Ram Inference Example (Single port)
// File:rams_sp_3d.sv
module rams_sp_3d #(
parameter NUM_RAMS = 2,
A_WID = 10,
D_WID = 32
)
(
input clk,
input [NUM_RAMS-1:0] we,
input [NUM_RAMS-1:0] ena,
input [A_WID-1:0] addr [NUM_RAMS-1:0],
input [D_WID-1:0] din [NUM_RAMS-1:0],
output reg [D_WID-1:0] dout [NUM_RAMS-1:0]
);

reg [D_WID-1:0] mem [NUM_RAMS-1:0][2**A_WID-1:0];
genvar i;

generate
for(i=0;i<NUM_RAMS;i=i+1)
begin:u
always @ (posedge clk)
begin
if (ena[i]) begin
if(we[i])
begin
mem[i][addr[i]] <= din[i];
end
dout[i] <= mem[i][addr[i]];
end
end
end
endgenerate

endmodule

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 165Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=165

3D RAM Inference Single Port (VHDL)

Filename: ram_sp_3d.vhd

-- 3-D Ram Inference Example (Single port)
-- Compile this file in VHDL2008 mode
-- File:rams_sp_3d.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
type myarray_t is array(integer range<>) of std_logic_vector;
type mem_t is array(integer range<>) of myarray_t;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_sp_3d is generic (
NUM_RAMS : integer := 2;
A_WID : integer := 10;
D_WID : integer := 32
);
port (
clk : in std_logic;
we : in std_logic_vector(NUM_RAMS-1 downto 0);
ena : in std_logic_vector(NUM_RAMS-1 downto 0);
addr : in myarray_t(NUM_RAMS-1 downto 0)(A_WID-1 downto 0);
din : in myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0);
dout : out myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0)
);
end rams_sp_3d;

architecture arch of rams_sp_3d is
signal mem : mem_t(NUM_RAMS-1 downto 0)(2**A_WID-1 downto 0)(D_WID-1 downto
0);
begin
process(clk)
begin
if(clk’event and clk=’1’) then
for i in 0 to NUM_RAMS-1 loop
if(ena(i) = ‘1’) then
if(we(i) = ‘1’) then
mem(i)(to_integer(unsigned(addr(i)))) <= din(i);
end if;
dout(i) <= mem(i)(to_integer(unsigned(addr(i))));
end if;
end loop;
end if;
end process;

end arch;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 166Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=166

3D RAM Inference Simple Dual Port (Verilog)

Filename: rams_sdp_3d.sv

// 3-D Ram Inference Example (Simple Dual port)
// File:rams_sdp_3d.sv
module rams_sdp_3d #(
parameter NUM_RAMS = 2,
A_WID = 10,
D_WID = 32
)
(
input clka,
input clkb,
input [NUM_RAMS-1:0] wea,
input [NUM_RAMS-1:0] ena,
input [NUM_RAMS-1:0] enb,
input [A_WID-1:0] addra [NUM_RAMS-1:0],
input [A_WID-1:0] addrb [NUM_RAMS-1:0],
input [D_WID-1:0] dina [NUM_RAMS-1:0],
output reg [D_WID-1:0] doutb [NUM_RAMS-1:0]
);

reg [D_WID-1:0] mem [NUM_RAMS-1:0][2**A_WID-1:0];
// PORT_A
genvar i;
generate
for(i=0;i<NUM_RAMS;i=i+1)
begin:port_a_ops
always @ (posedge clka)
begin
if (ena[i]) begin
if(wea[i])
begin
mem[i][addra[i]] <= dina[i];
end
end
end
end
endgenerate

//PORT_B
generate
for(i=0;i<NUM_RAMS;i=i+1)
begin:port_b_ops
always @ (posedge clkb)
begin
if (enb[i])
doutb[i] <= mem[i][addrb[i]];
end
end
endgenerate

endmodule

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 167Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=167

3D RAM Inference - Simple Dual Port (VHDL)

filename: rams_sdp_3d.vhd

-- 3-D Ram Inference Example (Simple Dual port)
-- Compile this file in VHDL2008 mode
-- File:rams_sdp_3d.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
type myarray_t is array(integer range<>) of std_logic_vector;
type mem_t is array(integer range<>) of myarray_t;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_sdp_3d is generic (
NUM_RAMS : integer := 2;
A_WID : integer := 10;
D_WID : integer := 32
);
port (
clka : in std_logic;
clkb : in std_logic;
wea : in std_logic_vector(NUM_RAMS-1 downto 0);
ena : in std_logic_vector(NUM_RAMS-1 downto 0);
enb : in std_logic_vector(NUM_RAMS-1 downto 0);
addra : in myarray_t(NUM_RAMS-1 downto 0)(A_WID-1 downto 0);
addrb : in myarray_t(NUM_RAMS-1 downto 0)(A_WID-1 downto 0);
dina : in myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0);
doutb : out myarray_t(NUM_RAMS-1 downto 0)(D_WID-1 downto 0)
);
end rams_sdp_3d;

architecture arch of rams_sdp_3d is
signal mem : mem_t(NUM_RAMS-1 downto 0)(2**A_WID-1 downto 0)(D_WID-1 downto
0);
begin
process(clka)
begin
if(clka'event and clka='1') then
for i in 0 to NUM_RAMS-1 loop
if(ena(i) = '1') then
if(wea(i) = '1') then
mem(i)(to_integer(unsigned(addra(i)))) <= dina(i);
end if;
end if;
end loop;
end if;
end process;

process(clkb)
begin
if(clkb'event and clkb='1') then
for i in 0 to NUM_RAMS-1 loop
if(enb(i) = '1') then
doutb(i) <= mem(i)(to_integer(unsigned(addrb(i))));
end if;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 168Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=168

end loop;
end if;
end process;

end arch;

3D RAM Inference True Dual Port (Verilog)

Filename: rams_tdp_3d.sv

// 3-D Ram Inference Example (True Dual port)
// File:rams_tdp_3d.sv
module rams_tdp_3d #(
parameter NUM_RAMS = 2,
A_WID = 10,
D_WID = 32
)
(
input clka,
input clkb,
input [NUM_RAMS-1:0] wea,
input [NUM_RAMS-1:0] web,
input [NUM_RAMS-1:0] ena,
input [NUM_RAMS-1:0] enb,
input [A_WID-1:0] addra [NUM_RAMS-1:0],
input [A_WID-1:0] addrb [NUM_RAMS-1:0],
input [D_WID-1:0] dina [NUM_RAMS-1:0],
input [D_WID-1:0] dinb [NUM_RAMS-1:0],
output reg [D_WID-1:0] douta [NUM_RAMS-1:0],
output reg [D_WID-1:0] doutb [NUM_RAMS-1:0]
);

reg [D_WID-1:0] mem [NUM_RAMS-1:0][2**A_WID-1:0];
// PORT_A
genvar i;
generate
for(i=0;i<NUM_RAMS;i=i+1)
begin:port_a_ops
always @ (posedge clka)
begin
if (ena[i]) begin
if(wea[i])
begin
mem[i][addra[i]] <= dina[i];
end
douta[i] <= mem[i][addra[i]];
end
end
end
endgenerate

//PORT_B
generate
for(i=0;i<NUM_RAMS;i=i+1)
begin:port_b_ops
always @ (posedge clkb)
begin
if (enb[i]) begin
if(web[i])
begin
mem[i][addrb[i]] <= dinb[i];

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 169Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=169

end
doutb[i] <= mem[i][addrb[i]];
end
end
end
endgenerate

endmodule

RAM Inference Using Structures and Records
The following examples show inference of RAMs using Structures and Records.

RAM Inference Single Port Structure (Verilog)

Filename: rams_sp_struct.sv

// RAM Inference using Struct in SV(Simple Dual port)
// File:rams_sdp_struct.sv
typedef struct packed {
logic [3:0] addr;
logic [27:0] data;
} Packet;

module rams_sdp_struct #(
parameter A_WID = 10,
D_WID = 32
)
(
input clk,
input we,
input ena,
input [A_WID-1:0] raddr, waddr,
input Packet din,
output Packet dout
);

Packet mem [2**A_WID-1:0];

always @ (posedge clk)
begin
if (ena) begin
if(we)
mem[waddr] <= din;
end
end

always @ (posedge clk)
begin
if (ena) begin
dout <= mem[raddr];
end
end
endmodule

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 170Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=170

RAM Inference Single Port Structure (VHDL)

Filename: rams_sp_record.vhd

-- Ram Inference Example using Records (Single port)
-- File:rams_sp_record.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
type Packet is record
addr : std_logic_vector(3 downto 0);
data : std_logic_vector(27 downto 0);
end record Packet;
type mem_t is array(integer range<>) of Packet;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_sp_record is generic (
A_WID : integer := 10;
D_WID : integer := 32
);
port (
clk : in std_logic;
we : in std_logic;
ena : in std_logic;
addr : in std_logic_vector(A_WID-1 downto 0);
din : in Packet;
dout : out Packet
);
end rams_sp_record;

architecture arch of rams_sp_record is
signal mem : mem_t(2**A_WID-1 downto 0);
begin
process(clk)
begin
if(clk'event and clk='1') then
if(ena = '1') then
if(we = '1') then
mem(to_integer(unsigned(addr))) <= din;
end if;
dout <= mem(to_integer(unsigned(addr)));
end if;
end if;
end process;

end arch;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 171Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=171

RAM Inference - Simple Dual Port Structure (SystemVerilog)

Filename: rams_sdp_struct.sv

// RAM Inference using Struct in SV(Simple Dual port)
// File:rams_sdp_struct.sv
typedef struct packed {
logic [3:0] addr;
logic [27:0] data;
} Packet;

module rams_sdp_struct #(
parameter A_WID = 10,
D_WID = 32
)
(
input clk,
input we,
input ena,
input [A_WID-1:0] raddr, waddr,
input Packet din,
output Packet dout
);

Packet mem [2**A_WID-1:0];

always @ (posedge clk)
begin
if (ena) begin
if(we)
mem[waddr] <= din;
end
end

always @ (posedge clk)
begin
if (ena) begin
dout <= mem[raddr];
end
end
endmodule

RAM Inference - Simple Dual Port Record (VHDL)

Filename: rams_sdp_record.vhd

-- Ram Inference Example using Records (Simple Dual port)
-- File:rams_sdp_record.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
type Packet is record
addr : std_logic_vector(3 downto 0);
data : std_logic_vector(27 downto 0);
end record Packet;
type mem_t is array(integer range<>) of Packet;
end package;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 172Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=172

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_sdp_record is generic (
A_WID : integer := 10;
D_WID : integer := 32
);
port (
clk : in std_logic;
we : in std_logic;
ena : in std_logic;
raddr : in std_logic_vector(A_WID-1 downto 0);
waddr : in std_logic_vector(A_WID-1 downto 0);
din : in Packet;
dout : out Packet
);
end rams_sdp_record;

architecture arch of rams_sdp_record is
signal mem : mem_t(2**A_WID-1 downto 0);
begin
process(clk)
begin
if(clk'event and clk='1') then
if(ena = '1') then
if(we = '1') then
mem(to_integer(unsigned(waddr))) <= din;
end if;
end if;
end if;
end process;

process(clk)
begin
if(clk'event and clk='1') then
if(ena = '1') then
dout <= mem(to_integer(unsigned(raddr)));
end if;
end if;
end process;

end arch;

RAM Inference True Dual Port Structure (SystemVerilog)

Filename: rams_tdp_struct.sv

// RAM Inference using Struct in SV(True Dual port)
// File:rams_tdp_struct.sv
typedef struct packed {
logic [3:0] addr;
logic [27:0] data;
} Packet;

module rams_tdp_struct #(
parameter A_WID = 10,
D_WID = 32
)
(

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 173Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=173

input clka,
input clkb,
input wea,
input web,
input ena,
input enb,
input [A_WID-1:0] addra,
input [A_WID-1:0] addrb,
input Packet dina, dinb,
output Packet douta, doutb
);

Packet mem [2**A_WID-1:0];

always @ (posedge clka)
begin
if (ena)
begin
douta <= mem[addra];
if(wea)
mem[addra] <= dina;
end
end

always @ (posedge clkb)
begin
if (enb)
begin
doutb <= mem[addrb];
if(web)
mem[addrb] <= dinb;
end
end

endmodule

RAM Inference True Dual Port Record (VHDL)

Filename: rams_tdp_record.vhd

-- Ram Inference Example using Records (True Dual port)
-- File:rams_tdp_record.vhd

library ieee;
use ieee.std_logic_1164.all;
package mypack is
type Packet is record
addr : std_logic_vector(3 downto 0);
data : std_logic_vector(27 downto 0);
end record Packet;
type mem_t is array(integer range<>) of Packet;
end package;

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mypack.all;
entity rams_tdp_record is generic (
A_WID : integer := 10;
D_WID : integer := 32
);

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 174Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=174

port (
clka : in std_logic;
clkb : in std_logic;
wea : in std_logic;
web : in std_logic;
ena : in std_logic;
enb : in std_logic;
addra : in std_logic_vector(A_WID-1 downto 0);
addrb : in std_logic_vector(A_WID-1 downto 0);
dina : in Packet;
dinb : in Packet;
douta : out Packet;
doutb : out Packet
);
end rams_tdp_record;

architecture arch of rams_tdp_record is
signal mem : mem_t(2**A_WID-1 downto 0);
begin

process(clka)
begin
if(clka'event and clka='1') then
if(ena = '1') then
douta <= mem(to_integer(unsigned(addra)));
if(wea = '1') then
mem(to_integer(unsigned(addra))) <= dina;
end if;
end if;
end if;
end process;

process(clkb)
begin
if(clkb'event and clkb='1') then
if(enb = '1') then
doutb <= mem(to_integer(unsigned(addrb)));
if(web = '1') then
mem(to_integer(unsigned(addrb))) <= dinb;
end if;
end if;
end if;
end process;

end arch;

Black Boxes
A design can contain EDIF files generated by:

• Synthesis tools

• Schematic text editors

• Any other design entry mechanism

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 175Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=175

These modules must be instantiated to be connected to the rest of the design. Use BLACK_BOX
instantiation in the HDL source code.

Vivado synthesis lets you apply specific constraints to these BLACK_BOX instantiations. After
you make a design a BLACK_BOX, each instance of that design is a BLACK_BOX. Download the
coding example files from Coding Examples.

Black Box Verilog Example
Filename: black_box_1.v

// Black Box
// black_box_1.v
//
(* black_box *) module black_box1 (in1, in2, dout);
input in1, in2;
output dout;
endmodule

module black_box_1 (DI_1, DI_2, DOUT);
input DI_1, DI_2;
output DOUT;

black_box1 U1 (
.in1(DI_1),
.in2(DI_2),
.dout(DOUT)
);

endmodule

Black Box VHDL Example
Filename: black_box_1.vhd

-- Black Box
-- black_box_1.vhd
library ieee;
use ieee.std_logic_1164.all;

entity black_box_1 is
port(DI_1, DI_2 : in std_logic;
DOUT : out std_logic);
end black_box_1;
architecture rtl of black_box_1 is
component black_box1
port(I1 : in std_logic;
I2 : in std_logic;
O : out std_logic);
end component;

attribute black_box : string;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 176Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=176

attribute black_box of black_box1 : component is "yes";

begin
U1 : black_box1 port map(I1 => DI_1, I2 => DI_2, O => DOUT);
end rtl;

FSM Components
Vivado Synthesis Features
• Specific inference capabilities for synchronous Finite State Machine (FSM) components.

• Built-in FSM encoding strategies to accommodate your optimization goals.

• FSM extraction is enabled by default.

• Use -fsm_extraction off to disable FSM extraction.

FSM Description
Vivado synthesis supports specification of Finite State Machine (FSM) in both Moore and Mealy
form. An FSM consists of the following:

• A state register

• A next state function

• An outputs function

FSM Diagrams
The following diagram shows an FSM representation that incorporates Mealy and Moore
machines.

Figure 20: FSM Representation Incorporating Mealy and Moore Machines Diagram

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 177Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=177

The following diagram shows an FSM diagram with three processes.

Figure 21: FSM with Three Processes Diagram

FSM Registers
• Specify a reset or power-up state for Vivado synthesis to identify a Finite State Machine

(FSM) or set the value of FSM_ENCODING to "none".

• The State Register can be asynchronously or synchronously reset to a particular state.

Note: Use synchronous reset logic over asynchronous reset logic for an FSM.

Auto State Encoding
When FSM_ENCODING is set to "auto", the Vivado synthesis attempts to select the best-suited
encoding method for a given FSM.

One-Hot State Encoding

One-Hot State encoding has the following attributes:

• Is the default encoding scheme for a state machine, up to 32 states.

• Is usually a good choice for optimizing speed or reducing power dissipation.

• Assigns a distinct bit of code to each FSM state.

• Implements the State Register with one flip-flop for each state.

• In a given clock cycle during operation, only one bit of the State Register is asserted.

• Only two bits toggle during a transition between two states.

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 178Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=178

Gray State Encoding

Gray State encoding has the following attributes:

• Guarantees that only one bit switches between two consecutive states.

• Is appropriate for controllers exhibiting long paths without branching.

• Minimizes hazards and glitches.

• Can be used to minimize power dissipation.

Johnson State Encoding

Johnson State encoding is beneficial when using state machines containing long paths with no
branching (as in Gray State Encoding).

Sequential State Encoding

Sequential State encoding has the following attributes:

• Identifies long paths

• Applies successive radix two codes to the states on these paths.

• Minimizes next state equations.

FSM Example (Verilog)

Filename: fsm_1.v

// State Machine with single sequential block
//fsm_1.v
module fsm_1(clk,reset,flag,sm_out);
input clk,reset,flag;
output reg sm_out;

parameter s1 = 3'b000;
parameter s2 = 3'b001;
parameter s3 = 3'b010;
parameter s4 = 3'b011;
parameter s5 = 3'b111;

reg [2:0] state;

always@(posedge clk)
begin
if(reset)
begin
state <= s1;
sm_out <= 1'b1;
end
else
begin
case(state)

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 179Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=179

s1: if(flag)
begin
state <= s2;
sm_out <= 1'b1;
end
else
begin
state <= s3;
sm_out <= 1'b0;
end
s2: begin state <= s4; sm_out <= 1'b0; end
s3: begin state <= s4; sm_out <= 1'b0; end
s4: begin state <= s5; sm_out <= 1'b1; end
s5: begin state <= s1; sm_out <= 1'b1; end
endcase
end
end
endmodule

FSM Example with Single Sequential Block (VHDL)

Filename: fsm_1.vhd

-- State Machine with single sequential block
-- File: fsm_1.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity fsm_1 is
port(
clk, reset, flag : IN std_logic;
sm_out : OUT std_logic
);
end entity;

architecture behavioral of fsm_1 is
type state_type is (s1, s2, s3, s4, s5);
signal state : state_type;
begin
process(clk)
begin
if rising_edge(clk) then
if (reset = '1') then
state <= s1;
sm_out <= '1';

else
case state is
when s1 => if flag = '1' then
state <= s2;
sm_out <= '1';

else
state <= s3;
sm_out <= '0';

end if;
when s2 => state <= s4;
sm_out <= '0';
when s3 => state <= s4;
sm_out <= '0';

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 180Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=180

when s4 => state <= s5;
sm_out <= '1';
when s5 => state <= s1;
sm_out <= '1';
end case;
end if;
end if;
end process;

end behavioral;

FSM Reporting
The Vivado synthesis flags INFO messages in the log file, giving information about Finite State
Machine (FSM) components and their encoding. The following are example messages:

INFO: [Synth 8-802] inferred FSM for state register 'state_reg' in module
'fsm_test'
INFO: [Synth 8-3354] encoded FSM with state register 'state_reg' using
encoding 'sequential' in module 'fsm_test'

ROM HDL Coding Techniques
Read-only memory (ROM) closely resembles random access memory (RAM) with respect to HDL
modeling and implementation. Use the ROM_STYLE attribute to implement a properly-registered
ROM on block RAM resources. See ROM_STYLE for more information.

ROM Using Block RAM Resources (Verilog)
Filename: rams_sp_rom_1.v

// ROMs Using Block RAM Resources.
// File: rams_sp_rom_1.v
//
module rams_sp_rom_1 (clk, en, addr, dout);
input clk;
input en;
input [5:0] addr;
output [19:0] dout;

(*rom_style = "block" *) reg [19:0] data;

always @(posedge clk)
begin
if (en)
case(addr)
6'b000000: data <= 20'h0200A; 6'b100000: data <= 20'h02222;
6'b000001: data <= 20'h00300; 6'b100001: data <= 20'h04001;
6'b000010: data <= 20'h08101; 6'b100010: data <= 20'h00342;
6'b000011: data <= 20'h04000; 6'b100011: data <= 20'h0232B;
6'b000100: data <= 20'h08601; 6'b100100: data <= 20'h00900;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 181Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=181

6'b000101: data <= 20'h0233A; 6'b100101: data <= 20'h00302;
6'b000110: data <= 20'h00300; 6'b100110: data <= 20'h00102;
6'b000111: data <= 20'h08602; 6'b100111: data <= 20'h04002;
6'b001000: data <= 20'h02310; 6'b101000: data <= 20'h00900;
6'b001001: data <= 20'h0203B; 6'b101001: data <= 20'h08201;
6'b001010: data <= 20'h08300; 6'b101010: data <= 20'h02023;
6'b001011: data <= 20'h04002; 6'b101011: data <= 20'h00303;
6'b001100: data <= 20'h08201; 6'b101100: data <= 20'h02433;
6'b001101: data <= 20'h00500; 6'b101101: data <= 20'h00301;
6'b001110: data <= 20'h04001; 6'b101110: data <= 20'h04004;
6'b001111: data <= 20'h02500; 6'b101111: data <= 20'h00301;
6'b010000: data <= 20'h00340; 6'b110000: data <= 20'h00102;
6'b010001: data <= 20'h00241; 6'b110001: data <= 20'h02137;
6'b010010: data <= 20'h04002; 6'b110010: data <= 20'h02036;
6'b010011: data <= 20'h08300; 6'b110011: data <= 20'h00301;
6'b010100: data <= 20'h08201; 6'b110100: data <= 20'h00102;
6'b010101: data <= 20'h00500; 6'b110101: data <= 20'h02237;
6'b010110: data <= 20'h08101; 6'b110110: data <= 20'h04004;
6'b010111: data <= 20'h00602; 6'b110111: data <= 20'h00304;
6'b011000: data <= 20'h04003; 6'b111000: data <= 20'h04040;
6'b011001: data <= 20'h0241E; 6'b111001: data <= 20'h02500;
6'b011010: data <= 20'h00301; 6'b111010: data <= 20'h02500;
6'b011011: data <= 20'h00102; 6'b111011: data <= 20'h02500;
6'b011100: data <= 20'h02122; 6'b111100: data <= 20'h0030D;
6'b011101: data <= 20'h02021; 6'b111101: data <= 20'h02341;
6'b011110: data <= 20'h00301; 6'b111110: data <= 20'h08201;
6'b011111: data <= 20'h00102; 6'b111111: data <= 20'h0400D;
endcase
end

assign dout = data;

endmodule

ROM Inference on an Array (VHDL)
Filename: roms_1.vhd

-- ROM Inference on array
-- File: roms_1.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity roms_1 is
port(
clk : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
data : out std_logic_vector(19 downto 0)
);
end roms_1;

architecture behavioral of roms_1 is
type rom_type is array (63 downto 0) of std_logic_vector(19 downto 0);
signal ROM : rom_type := (X"0200A", X"00300", X"08101", X"04000", X"08601",
X"0233A",
X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", X"04001", X"02500", X"00340", X"00241",
X"04002", X"08300", X"08201", X"00500" X"08101", X"00602", X"04003",

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 182Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=182

X"0241E", X"00301", X"00102", X"02122", X"02021", X"00301",
X"00102", X"02222", X"04001", X"00342", X"0232B", X"00900", X"00302",
X"00102", X"04002", X"00900", X"08201", X"02023", X"00303", X"02433",
X"00301", X"04004" X"00301",X"00102", X"02137", X"02036", X"00301",
X"00102", X"02237",X"04004", X"00304", X"04040", X"02500", X"02500",
X"02500",X"0030D", X"02341", X"08201", X"0400D");
attribute rom_style : string;
attribute rom_style of ROM : signal is "block";

begin
process(clk)
begin
if rising_edge(clk) then
if (en = '1') then
data <= ROM(conv_integer(addr));
end if;
end if;
end process;

end behavioral;

Chapter 5: HDL Coding Techniques

UG901 (v2025.1) June 11, 2025
Synthesis 183Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=183

Chapter 6

VHDL Support

Introduction
This chapter describes the supported VHDL language constructs in AMD Vivado™ synthesis and
notes any exceptions to support. VHDL compactly describes complicated logic, and lets you:

• Describe the structure of a system: how the system is decomposed into subsystems, and how
those subsystems are interconnected.

• Specify the function of a system using familiar language forms.

• Simulate a system design before it is implemented and programmed in hardware.

• Produce a detailed, device-dependent version of a design to be synthesized from a more
abstract specification.

For more information, see the IEEE VHDL Language Reference Manual (LRM).

Supported and Unsupported VHDL Data Types
Some VHDL data types are part of predefined packages. For information on where they are
compiled, and how to load them, see VHDL Predefined Packages.

The type is defined in the IEEE std_logic_1164 package.

Unsupported Data Types
VHDL supports the real type defined in the standard package for calculations only, such as the
calculation of generics values.

IMPORTANT! You cannot define a synthesizable object of type real.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 184Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=184

VHDL Data Types

VHDL Predefined Enumerated Types

Vivado synthesis supports the following predefined VHDL enumerated types.

Table 6: VHDL Enumerated Type Summary

Enumerated Type Defined In Allowed Values
bit standard package • 0 (logic zero)

• 1 (logic 1)

boolean standard package • false
• true

std_logic IEEE std_logic_1164 package See std_logic Allowed Values.

std_logic Allowed Values

Table 7: std_logic Allowed Values

Value Meaning What Vivado synthesis does
U initialized Not accepted by Vivado synthesis

X unknown Treated as do not care

0 low Treated as logic zero.

1 high Treated as logic one

Z high impedance Treated as high impedance

W weak unknown Not accepted by Vivado synthesis

L weak low Treated identically to 0

H weak high Treated identically to 1

- don’t care Treated as do not care

Supported Overloaded Enumerated Types

Table 8: Supported Overloaded Enumerated Types

Type Defined In IEEE
Package SubType Of Contains Values

std_ulogic std_logic_1164 N/A Same values as std_logic
Does not contain predefined
resolution functions

X01 std_logic_1164 std_ulogic X, 0, 1

X01Z std_logic_1164 std_ulogic X, 0, 1, Z

UX01 std_logic_1164 std_ulogic U, X, 0, 1

UX01Z std_logic_1164 std_ulogic U, X, 0, Z

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 185Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=185

VHDL User-Defined Enumerated Types

You can create your own enumerated types. User-defined enumerated types usually describe the
states of a finite state machine (FSM).

User-Defined Enumerated Types Coding Example (VHDL)

type STATES is (START, IDLE, STATE1, STATE2, STATE3) ;

Supported VHDL Types
Table 9: Supported VHDL Bit Vector Types

Type Defined In Package Models
bit_vector Standard Vector of bit elements

std_logic_vector IEEE std_logic_1164 Vector of std_logic elements

Table 10: Supported VHDL Overloaded Types

Type Defined In IEEE Package
std_ulogic_vector std_logic_1164

unsigned numeric_std

signed numeric_std

unsigned std_logic_arith (Synopsys)

signed std_logic_arith (Synopsys)

VHDL Integer Types
The integer type is a predefined VHDL type. Vivado synthesis implements an integer on 32 bits
by default. For a more compact implementation, define the exact range of applicable values,
where type MSB is range 8 to 15.

You can also take advantage of the predefined natural and positive types, overloading the integer
type.

VHDL Multi-Dimensional Array Types
Vivado synthesis supports VHDL multi-dimensional array types.

RECOMMENDED: Although there is no restriction on the number of dimensions, describe no more than
three dimensions.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 186Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=186

Objects of multi-dimensional array type can be passed to functions and used in component
instantiations. Objects of multi-dimensional array type that you can describe are signals,
constants, and variables.

Fully Constrained Array Type Coding Example
An array type must be fully constrained in all dimensions.

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB12 is array (11 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB12;

Array Declared as a Matrix Coding Example
You can declare an array as a matrix.

subtype TAB13 is array (7 downto 0,4 downto 0) of STD_LOGIC_VECTOR (8
downto 0);

Multi-Dimensional Array Signals and Variables
Coding Examples
1. Make the following declarations:

subtype WORD8 is STD_LOGIC_VECTOR (7 downto 0);
type TAB05 is array (4 downto 0) of WORD8;
type TAB03 is array (2 downto 0) of TAB05;
signal WORD_A : WORD8;
signal TAB_A, TAB_B : TAB05;
signal TAB_C, TAB_D : TAB03;
constant CNST_A : TAB03 := (
("00000000","01000001","01000010","10000011","00001100"),
("00100000","00100001","00101010","10100011","00101100"),
("01000010","01000010","01000100","01000111","01000100"));

2. You can now specify:

• A multi-dimensional array signal or variable:

TAB_A <= TAB_B; TAB_C <= TAB_D; TAB_C <= CNST_A;

• An index of one array:

TAB_A (5) <= WORD_A; TAB_C (1) <= TAB_A;

• Indexes of the maximum number of dimensions:

TAB_A (5) (0) <= '1'; TAB_C (2) (5) (0) <= '0'

• A slice of the first array

TAB_A (4 downto 1) <= TAB_B (3 downto 0);

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 187Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=187

• An index of a higher level array and a slice of a lower level array:

TAB_C (2) (5) (3 downto 0) <= TAB_B (3) (4 downto 1); TAB_D (0) (4) (2
downto 0)
\\ <= CNST_A (5 downto 3)

3. Add the following declaration:

subtype MATRIX15 is array(4 downto 0, 2 downto 0) of
STD_LOGIC_VECTOR (7 downto 0);
signal MATRIX_A : MATRIX15;

4. You can now specify:

• A multi-dimensional array signal or variable:

MATRIXA <= CNST_A

• An index of one row of the array:

MATRIXA (5) <= TAB_A;

• Indexes of the maximum number of dimensions

MATRIXA (5,0) (0) <= '1';

Note: Indexes can be variable.

VHDL Record Types Code Example
• A field of a record type can also be of type Record.

• Constants can be record types.

• Record types cannot contain attributes.

• Vivado synthesis supports aggregate assignments to record signals. The following code
snippet is an example:

type mytype is record field1 : std_logic; field2 : std_logic_vector (3
downto 0);
end record;

VHDL Objects
VHDL objects include: Signals, Variables, Constants, and Operators.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 188Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=188

Signals
Declare a VHDL signal in:

• An architecture declarative part: Use the VHDL signal anywhere within that architecture.

• A block: Use the VHDL signal within that block.

Assign the VHDL signal with the <= signal assignment operator.

signal sig1 : std_logic;
sig1 <= '1';

Variables
A VHDL variable is:

• Declared in a process or a subprogram.

• Used within that process or subprogram.

• Assigned with the := assignment operator.

variable var1 : std_logic_vector (7 downto 0); var1 := "01010011";

Constants
You can declare a VHDL constant in any declarative region. The constant is used within that
region. You cannot change the constant values after they are declared.

signal sig1 : std_logic_vector(5 downto 0);constant init0 :
std_logic_vector (5 downto 0) := "010111";sig1 <= init0;

Operators
Vivado synthesis supports VHDL operators.

Shift Operator Examples

Table 11: Shift Operator Examples

Operator Example Logically Equivalent To
SLL (Shift Left Logic) sig1 <= A(4 downto 0) sll 2 sig1 <= A(2 downto 0) & “00";

SRL (Shift Right Logic) sig1 <= A(4 downto 0) srl 2 sig1 <= “00" & A(4 downto 2);

SLA (Shift Left Arithmetic) sig1 <= A(4 downto 0) sla 2 sig1 <= A(2 downto 0) & A(0) & A(0);

SRA (Shift Right Arithmetic) sig1 <= A(4 downto 0) sra 2 sig1 <= <= A(4) & A(4) & A(4 downto 2);

ROL (Rotate Left) sig1 <= A(4 downto 0) rol 2 sig1 <= A(2 downto 0) & A(4 downto 3);

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 189Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=189

Table 11: Shift Operator Examples (cont'd)

Operator Example Logically Equivalent To
ROR (Rotate Right) A(4 downto 0) ror 2 sig1 <= A(1 downto 0) & A(4 downto 2);

VHDL Entity and Architecture Descriptions
VHDL Circuit Descriptions
A VHDL circuit description (design unit) consists of the following:

• Entity declaration: Provides the external view of the circuit. Describes objects visible from the
outside, including the circuit interface, such as the I/O ports and generics.

• Architecture: Provides the internal view of the circuit, and describes the circuit behavior or
structure.

VHDL Entity Declarations
The I/O ports of the circuit are declared in the entity. Each port has a:

• name

• mode (in, out, inout, buffer)

• type

Constrained and Unconstrained Ports
When defining a port, the port:

• Can be constrained or unconstrained.

• Are usually constrained.

• Can be left unconstrained in the entity declaration.

○ If ports are left unconstrained, their width is defined at instantiation when the connection
is made between formal ports and actual signals.

○ Unconstrained ports allow you to create different instantiations of the same entity, defining
different port widths.

RECOMMENDED: Do not use unconstrained ports. Define ports that are constrained through generics.
Apply different values of those generics at instantiation. Do not have an unconstrained port on the
top-level entity.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 190Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=190

Array types of more than one-dimension are not accepted as ports. The entity declaration can
also declare VHDL generics.

Buffer Port Mode
RECOMMENDED: Do not use buffer port mode.

VHDL allows buffer port mode when a signal is used both internally, and as an output port when
there is only one internal driver. Buffer ports are a potential source of errors during synthesis,
and complicate validation of post-synthesis results through simulation.

NOT RECOMMENDED Coding Example WITH Buffer Port Mode

entity alu is
port(
CLK : in STD_LOGIC;
A : inSTD_LOGIC_VECTOR(3 downto 0);
B : inSTD_LOGIC_VECTOR(3 downto 0);
C : buffer STD_LOGIC_VECTOR(3 downto 0));
end alu;

architecture behavioral of alu is
begin
process begin
if rising_edge(CLK) then
C <= UNSIGNED(A) + UNSIGNED(B) UNSIGNED(C);
end if;
end process;
end behavioral;

Dropping Buffer Port Mode

RECOMMENDED: Drop buffer port mode.

In the previous coding example, signal C was modeled with a buffer mode, and is used both
internally and as an output port. Every level of hierarchy that can be connected to C must also be
declared as a buffer.

To drop buffer mode:

1. Insert a dummy signal.

2. Declare port C as an output.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 191Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=191

RECOMMENDED Coding Example WITHOUT Buffer Port Mode

entity alu is
port(
CLK : in STD_LOGIC;
A : in STD_LOGIC_VECTOR(3 downto 0);
B : in STD_LOGIC_VECTOR(3 downto 0);
C : out STD_LOGIC_VECTOR(3 downto 0));
end alu;
architecture behavioral of alu is
-- dummy signal
signal C_INT : STD_LOGIC_VECTOR(3 downto 0);
begin
C <= C_INT;
process begin
if rising_edge(CLK) then
C_INT <= A and B and C_INT;
end if;
end process;
end behavioral;

VHDL Architecture Declarations
You can declare internal signals in the architecture. Each internal signal has a name and a type.

VHDL Architecture Declaration Coding Example

library IEEE;
use IEEE.std_logic_1164.all;

entity EXAMPLE is
port (
A,B,C : in std_logic;
D,E : out std_logic);
end EXAMPLE;

architecture ARCHI of EXAMPLE is
signal T : std_logic;
begin
...
end ARCHI;

VHDL Component Instantiation
Component instantiation allows you to instantiate one design unit (component) inside another
design unit to create a hierarchically structured design description.

To perform component instantiation:

1. Create the design unit (entity and architecture) modeling the functionality to be instantiated.

2. Declare the component to be instantiated in the declarative region of the parent design unit
architecture.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 192Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=192

3. Instantiate and connect this component in the architecture body of the parent design unit.

4. Map (connect) formal ports of the component to actual signals and ports of the parent design
unit.

Elements of Component Instantiation Statement

Vivado synthesis supports unconstrained vectors in component declarations. The main elements
of a component instantiation statement are:

• Label: Identifies the instance.

• Association list: Introduced by the reserved port map keyword and ties formal ports of the
component to actual signals or ports of the parent design unit. An optional association list
is introduced by the reserved generic map keyword and provides actual values to formal
generics defined in the component.

Component Instantiation (VHDL)

Filename: instantiation_simple.vhd

This coding example shows the structural description of a half-Adder composed of four nand2
components.

--
-- A simple component instantiation example
-- Involves a component declaration and the component instantiation itself
--
-- instantiation_simple.vhd
--
entity sub is
generic(
WIDTH : integer := 4
);
port(
A, B : in BIT_VECTOR(WIDTH - 1 downto 0);
O : out BIT_VECTOR(2 * WIDTH - 1 downto 0)
);
end sub;

architecture archi of sub is
begin
O <= A & B;
end ARCHI;

entity instantiation_simple is
generic(
WIDTH : integer := 2);
port(
X, Y : in BIT_VECTOR(WIDTH - 1 downto 0);
Z : out BIT_VECTOR(2 * WIDTH - 1 downto 0));
end instantiation_simple;

architecture ARCHI of instantiation_simple is
component sub -- component declaration
generic(

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 193Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=193

WIDTH : integer := 2);
port(
A, B : in BIT_VECTOR(WIDTH - 1 downto 0);
O : out BIT_VECTOR(2 * WIDTH - 1 downto 0));
end component;

begin
inst_sub : sub -- component instantiation
generic map(
WIDTH => WIDTH
)
port map(
A => X,
B => Y,
O => Z
);

end ARCHI;

Recursive Component Instantiation
Vivado synthesis supports recursive component instantiation.

Recursive Component Instantiation Example (VHDL)

Filename: instantiation_recursive.vhd

--
-- Recursive component instantiation
--
-- instantiation_recursive.vhd
--
library ieee;
use ieee.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;

entity instantiation_recursive is
generic(
sh_st : integer := 4
);
port(
CLK : in std_logic;
DI : in std_logic;
DO : out std_logic
);
end entity instantiation_recursive;

architecture recursive of instantiation_recursive is
component instantiation_recursive
generic(
sh_st : integer);
port(
CLK : in std_logic;
DI : in std_logic;
DO : out std_logic);
end component;
signal tmp : std_logic;
begin

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 194Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=194

GEN_FD_LAST : if sh_st = 1 generate
inst_fd : FD port map(D => DI, C => CLK, Q => DO);
end generate;
GEN_FD_INTERM : if sh_st /= 1 generate
inst_fd : FD port map(D => DI, C => CLK, Q => tmp);
inst_sstage : instantiation_recursive
generic map(sh_st => sh_st - 1)
port map(DI => tmp, CLK => CLK, DO => DO);
end generate;
end recursive;

VHDL Component Configuration
A component configuration explicitly links a component with the appropriate model.

• A model is an entity and architecture pair.

• Vivado synthesis supports component configuration in the declarative part of the architecture.
The following is an example:

for instantiation_list : component_name use
LibName.entity_Name(Architecture_Name);

The following statement indicates that:

• All NAND2 components use the design unit consisting of entity NAND2 and architecture
ARCHI.

• The design unit is compiled in the work library.

For all : NAND2 use entity work.NAND2(ARCHI);

The value of the top module name (-top) option in the synth_design command is the
configuration name instead of the top-level entity name.

VHDL GENERICS
VHDL GENERICs have the following properties:

• Are equivalent to Verilog parameters.

• Help you create scalable design modelizations.

• Let you write compact, factorized VHDL code.

• Let you parameterize functionality such as bus size, and the number of repetitive elements in
the design unit.

For the same functionality that must be instantiated multiple times, but with different bus sizes,
you need describe only one design unit with generics. See the GENERIC Parameters Example.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 195Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=195

Declaring Generics

You can declare generic parameters in the entity declaration part. Supported generics types are:
integer, boolean, string, and real.

GENERIC Parameters Example

Filename: generics_1.vhd

-- VHDL generic parameters example
--
-- generics_1.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity addern is
generic(
width : integer := 8
);
port(
A, B : in std_logic_vector(width - 1 downto 0);
Y : out std_logic_vector(width - 1 downto 0)
);
end addern;

architecture bhv of addern is
begin
Y <= A + B;
end bhv;

Library IEEE;
use IEEE.std_logic_1164.all;

entity generics_1 is
port(
X, Y, Z : in std_logic_vector(12 downto 0);
A, B : in std_logic_vector(4 downto 0);
S : out std_logic_vector(17 downto 0));
end generics_1;

architecture bhv of generics_1 is
component addern
generic(width : integer := 8);
port(
A, B : in std_logic_vector(width - 1 downto 0);
Y : out std_logic_vector(width - 1 downto 0));
end component;
for all : addern use entity work.addern(bhv);

signal C1 : std_logic_vector(12 downto 0);
signal C2, C3 : std_logic_vector(17 downto 0);
begin
U1 : addern generic map(width => 13) port map(X, Y, C1);
C2 <= C1 & A;
C3 <= Z & B;
U2 : addern generic map(width => 18) port map(C2, C3, S);
end bhv;

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 196Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=196

Note:

When overriding generic values during instantiation, splitting up different array elements is not supported.

For example, if there is a generic my_gen defined as an array, as follows, it does not work:

my_gen(1) => x,
my_gen(0) => y

Instead, it should be set as follows:

my_gen => (x,y)

VHDL Combinatorial Circuits
Combinatorial logic is described using concurrent signal assignments that you specify in the body
of an architecture. You can describe as many concurrent signal assignments as are necessary; the
order of appearance of the concurrent signal assignments in the architecture is irrelevant.

VHDL Concurrent Signal Assignments
Concurrent signal assignments are concurrently active and re-evaluated when any signal on the
right side of the assignment changes value. The re-evaluated result is assigned to the signal on
the left-hand side.

Supported types of concurrent signal assignments are: Simple Signal Assignment Example, and
Concurrent Selection Assignment Example (VHDL).

Simple Signal Assignment Example
T <= A and B;

Concurrent Selection Assignment Example (VHDL)
Filename: concurrent_selected_asssignment.vhd

-- Concurrent selection assignment in VHDL
--
-- concurrent_selected_assignment.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity concurrent_selected_assignment is
generic(
width : integer := 8);

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 197Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=197

port(
a, b, c, d : in std_logic_vector(width - 1 downto 0);
sel : in std_logic_vector(1 downto 0);
T : out std_logic_vector(width - 1 downto 0));
end concurrent_selected_assignment;

architecture bhv of concurrent_selected_assignment is
begin
with sel select T <=
a when "00",
b when "01",
c when "10",
d when others;
end bhv;

Generate Statements
Generate statements include:

• for-generate statements

• if-generate statements

Using for-generate Statements
The for-generate statements describe repetitive structures.

Example of for-generate Statement (VHDL)

Filename: for-generate.vhd

In this coding example, the for-generate statement describes the calculation of the result and
carries out for each bit position of this 8-bit adder.

--
-- A for-generate example
--
-- for_generate.vhd
--
entity for_generate is
port(
A, B : in BIT_VECTOR(0 to 7);
CIN : in BIT;
SUM : out BIT_VECTOR(0 to 7);
COUT : out BIT
);
end for_generate;

architecture archi of for_generate is
signal C : BIT_VECTOR(0 to 8);
begin
C(0) <= CIN;

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 198Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=198

COUT <= C(8);
LOOP_ADD : for I in 0 to 7 generate
SUM(I) <= A(I) xor B(I) xor C(I);
C(I + 1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));
end generate;
end archi;

Using if-generate Statements
An if-generate statement activates specific parts of the HDL source code based on a test
result, and is supported for static (non-dynamic) conditions.

For example, when a generic indicates which device family is being targeted, the if-generate
statement tests the value of the generic against a specific device family and activates a section of
the HDL source code written specifically for that device family.

Example of for-generate Nested in an if-generate Statement (VHDL)

Filename: if_for_generate.vhd

In this coding example, a generic N-bit adder with a width ranging between 4 and 32 is described
with an if-generate and a for-generate statement.

-- A for-generate nested in a if-generate
--
-- if_for_generate.vhd
--
entity if_for_generate is
generic(
N : INTEGER := 8
);
port(
A, B : in BIT_VECTOR(N downto 0);
CIN : in BIT;
SUM : out BIT_VECTOR(N downto 0);
COUT : out BIT
);
end if_for_generate;

architecture archi of if_for_generate is
signal C : BIT_VECTOR(N + 1 downto 0);
begin
IF_N : if (N >= 4 and N <= 32) generate
C(0) <= CIN;
COUT <= C(N + 1);
LOOP_ADD : for I in 0 to N generate
SUM(I) <= A(I) xor B(I) xor C(I);
C(I + 1) <= (A(I) and B(I)) or (A(I) and C(I)) or (B(I) and C(I));
end generate;
end generate;
end archi;

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 199Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=199

Combinatorial Processes
You can model VHDL combinatorial logic with a process, which explicitly assigns signals a new
value every time the process is executed.

IMPORTANT! No signals should implicitly retain its current value, and a process can contain local
variables.

Memory Elements
Hardware inferred from a combinatorial process does not involve any memory elements.

A memory element process is combinatorial when all assigned signals in a process are always
explicitly assigned in all possible paths within a process block.

A signal that is not explicitly assigned in all branches of an if or case statement typically leads to a
Latch inference.

IMPORTANT! If Vivado synthesis infers unexpected Latches, review the HDL source code for a signal that
is not explicitly assigned.

Sensitivity List
A combinatorial process has a sensitivity list. The sensitivity list appears within parentheses after
the PROCESS keyword. A process is activated if an event (value change) appears on one of the
sensitivity list signals. For a combinatorial process, this sensitivity list must contain:

• All signals in conditions (for example, if and case).

• All signals on the right-hand side of an assignment.

Missing Signals
Signals might be missing from the sensitivity list. If one or more signals is missing from the
sensitivity list:

• The synthesis results can differ from the initial design specification.

• Vivado synthesis issues a warning message.

• Vivado synthesis adds the missing signals to the sensitivity list.

IMPORTANT! To avoid problems during simulation, explicitly add all missing signals in the HDL source
code and re-run synthesis.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 200Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=200

Variable and Signal Assignments
Vivado synthesis supports VHDL variable and signal assignments. A process can contain local
variables, which are declared and used within a process and generally not visible outside the
process.

Signal Assignment in a Process Example
Filename: signal_in_process.vhd

-- Signal assignment in a process
-- signal_in_process.vhd

entity signal_in_process is
port(
A, B : in BIT;
S : out BIT
);
end signal_in_process;

architecture archi of signal_in_process is
begin
process(A, B)
begin
S <= '0';
if ((A and B) = '1') then
S <= '1';
end if;
end process;
end archi;

Variable and Signal Assignment in a Process Example
(VHDL)
Filename: variable_in_process.vhd

-- Variable and signal assignment in a process
-- variable_in_process.vhd
--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity variable_in_process is
port(
A, B : in std_logic_vector(3 downto 0);
ADD_SUB : in std_logic;
S : out std_logic_vector(3 downto 0)
);
end variable_in_process;

architecture archi of variable_in_process is
begin

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 201Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=201

process(A, B, ADD_SUB)
variable AUX : std_logic_vector(3 downto 0);
begin
if ADD_SUB = '1' then
AUX := A + B;
else
AUX := A - B;
end if;
S <= AUX;
end process;
end archi;

Using if-else Statements
The if-else and if-elsif-else statements use TRUE and FALSE conditions to execute
statements.

• If the expression evaluates to TRUE, the if branch is executed.

• If the expression evaluates to FALSE, x, or z, the else branch is executed.

○ A block of multiple statements is executed in an if or else branch.

○ begin and end keywords are required.

○ if-else statements can be nested.

Example of if-else Statement (VHDL)

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is port (
a, b, c, d : in std_logic_vector (7 downto 0);
sel1, sel2 : in std_logic;
outmux : out std_logic_vector (7 downto 0));
end mux4;

architecture behavior of mux4 is begin
process (a, b, c, d, sel1, sel2)
begin
if (sel1 = '1') then
if (sel2 = '1') then
outmux <= a;

else outmux <= b;
else
end if;
if (sel2 = '1') then outmux <= c;
else
outmux <= d;
end if;
end if;
end process;
end behavior;

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 202Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=202

Using case Statements
A case statement:

• Performs a comparison to an expression to evaluate one of several parallel branches.

• Evaluates the branches in the order in which they are written.

• Executes the first branch that evaluates to TRUE.

If none of the branches match, a case statement executes the default branch.

Example of case Statement (VHDL)

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is port (
a, b, c, d : in std_logic_vector (7 downto 0);
sel : in std_logic_vector (1 downto 0);
outmux : out std_logic_vector (7 downto 0));
end mux4;

architecture behavior of mux4 is begin
process (a, b, c, d, sel)
begin
case sel is
when "00" => outmux <= a;
when "01" => outmux <= b;
when "10" => outmux <= c;
when others => outmux <= d; -- case statement must be complete
end case;
end process;
end behavior;

Using for-loop Statements
Vivado synthesis for-loop statements support:

• Constant bounds

• Stop test condition using the following operators: <, <=, >, and >=.

• Next step computations falling within one of the following specifications:

○ var = var + step

○ var = var - step

Where:

- var is the loop variable

- step is a constant value

• Next and exit statements

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 203Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=203

Example of for-loop Statement (VHDL)

Filename: for_loop.vhd

--
-- For-loop example
--
-- for_loop.vhd
--
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity for_loop is
port(
a : in std_logic_vector(7 downto 0);
Count : out std_logic_vector(2 downto 0)
);
end for_loop;

architecture behavior of for_loop is
begin
process(a)
variable Count_Aux : std_logic_vector(2 downto 0);
begin
Count_Aux := "000";
for i in a'range loop
if (a(i) = '0') then
Count_Aux := Count_Aux + 1;
end if;
end loop;
Count <= Count_Aux;
end process;
end behavior;

VHDL Sequential Logic
A VHDL process is sequential (as opposed to combinatorial) when some assigned signals are not
explicitly assigned in all paths within the process. The generated hardware has an internal state
or memory (Flip-Flops or Latches).

RECOMMENDED: Use a sensitivity-list based description style to describe sequential logic.

Describing sequential logic using a process with a sensitivity list includes:

• The clock signal

• Any optional signal controlling the sequential element asynchronously (asynchronous set/
reset)

• An if statement that models the clock event.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 204Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=204

Sequential Process With a Sensitivity List Syntax
process (<sensitivity list>)
begin
<asynchronous part>
<clock event>
<synchronous part>
end;

Asynchronous Control Logic Modelization
Modelization of any asynchronous control logic (asynchronous set/reset) is done before the clock
event statement.

Modelization of the synchronous logic (data, optional synchronous set/reset, optional clock
enable) is done in the if branch of the clock event.

Table 12: Asynchronous Control Logic Modelization Summary

Modelization Type Contains Performed
Asynchronous control logic Asynchronous set/reset Before the clock event statement

Synchronous logic Data
Optional synchronous set/reset
Optional clock enable

In the clock event if branch.

Clock Event Statements
Describe the clock event statement as:

• Rising edge clock:

if rising_edge (clk) then

• Falling edge clock:

if falling_edge (clk) then

Missing Signals
If any signals are missing from the sensitivity list, the synthesis results can differ from the
initial design specification. In this case, Vivado synthesis issues a warning message and adds the
missing signals to the sensitivity list.

IMPORTANT! To avoid problems during simulation, explicitly add all missing signals in the HDL source
code and re-run synthesis.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 205Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=205

VHDL Sequential Processes Without a Sensitivity List
Vivado synthesis allows the description of a sequential process using a wait statement. The
sequential process is described without a sensitivity list.

The wait statement is the first statement and the condition in the wait statement describes the
sequential logic clock.

IMPORTANT! The same sequential process cannot have both a sensitivity list and a wait statement, and
only one wait statement is allowed.

Sequential Process Using a Wait Statement Coding Example (VHDL)

process begin
wait until rising_edge(clk);
q <= d;
end process;

Describing a Clock Enable in the wait Statement Example (VHDL)

You can describe a clock enable (clken) in the wait statement together with the clock.

process begin
wait until rising_edge(clk) and clken = '1';
q <= d;
end process;

Describing a Clock Enable After the Wait Statement Example (VHDL)

You can describe the clock enable separately, as follows:

process begin
wait until rising_edge(clk);
if clken = '1' then
q <= d;
end if;
end process;

Describing Synchronous Control Logic

You can use the same coding method as was shown to describe a clock enable to describe
synchronous control logic, such as a synchronous reset or set.

IMPORTANT! You cannot describe a sequential element with asynchronous control logic using a process
without a sensitivity list. Only a process with a sensitivity list allows such functionality. Vivado synthesis
does not allow the description of a Latch based on a wait statement. For greater flexibility, describe
synchronous logic using a process with a sensitivity list.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 206Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=206

VHDL Initial Values and Operational Set/Reset
You can initialize registers when you declare them. The initialization value is a constant and can
be generated from a function call.

Initializing Registers Example One (VHDL)
This coding example specifies a power-up value in which the sequential element is initialized
when the circuit goes live and the circuit global reset is applied.

signal arb_onebit : std_logic := '0';
signal arb_priority : std_logic_vector(3 downto 0) := "1011";

Initializing Registers Example Two (VHDL)
Filename: initial_1.vhd

This coding example combines power-up initialization and operational reset.

--
-- Register initialization
-- Specifying initial contents at circuit powes-up
-- Specifying an operational set/reset
--
-- File: VHDL_Language_Support/initial/initial_1.vhd
--
library ieee;
use ieee.std_logic_1164.all;

entity initial_1 is
Port(
clk, rst : in std_logic;
din : in std_logic;
dout : out std_logic
);
end initial_1;

architecture behavioral of initial_1 is
signal arb_onebit : std_logic := '1'; -- power-up to vcc
begin
process(clk)
begin
if (rising_edge(clk)) then
if rst = '1' then -- local synchronous reset
arb_onebit <= '0';
else
arb_onebit <= din;
end if;
end if;

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 207Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=207

end process;

dout <= arb_onebit;

end behavioral;

VHDL Functions and Procedures
Use VHDL functions and procedures for blocks that are used multiple times in a design. The
content is similar to combinatorial process content

Declare functions and procedures in:

• The declarative part of an entity

• An architecture

• A package

A function or procedure consists of a declarative part and a body. The declarative part specifies:

• input parameters, which can be unconstrained to a given bound.

• output and inout parameters (procedures only)

IMPORTANT! Resolution functions are not supported except the function defined in the IEEE
std_logic_1164  package.

Function Declared Within a Package Example (VHDL)
Filename: function_package_1.vhd

Download the coding example files from Coding Examples .

This coding example declares an ADD function within a package. The ADD function is a single-bit
Adder and is called four times to create a 4-bit Adder. The following example uses a function:

-- Declaration of a function in a package
--
-- function_package_1.vhd
--
package PKG is
function ADD(A, B, CIN : BIT) return BIT_VECTOR;
end PKG;

package body PKG is
function ADD(A, B, CIN : BIT) return BIT_VECTOR is
variable S, COUT : BIT;
variable RESULT : BIT_VECTOR(1 downto 0);
begin
S := A xor B xor CIN;

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 208Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=208

COUT := (A and B) or (A and CIN) or (B and CIN);
RESULT := COUT & S;
return RESULT;
end ADD;
end PKG;

use work.PKG.all;

entity function_package_1 is
port(
A, B : in BIT_VECTOR(3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR(3 downto 0);
COUT : out BIT
);
end function_package_1;

architecture ARCHI of function_package_1 is
signal S0, S1, S2, S3 : BIT_VECTOR(1 downto 0);
begin
S0 <= ADD(A(0), B(0), CIN);
S1 <= ADD(A(1), B(1), S0(1));
S2 <= ADD(A(2), B(2), S1(1));
S3 <= ADD(A(3), B(3), S2(1));
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);
end ARCHI;

Procedure Declared Within a Package Example
(VHDL)
Filename: procedure_package_1.vhd

The following example uses a procedure within a package:

-- Declaration of a procedure in a package
--
-- Download: procedure_package_1.vhd
--
package PKG is
procedure ADD(
A, B, CIN : in BIT;
C : out BIT_VECTOR(1 downto 0));
end PKG;

package body PKG is
procedure ADD(
A, B, CIN : in BIT;
C : out BIT_VECTOR(1 downto 0)) is
variable S, COUT : BIT;
begin
S := A xor B xor CIN;
COUT := (A and B) or (A and CIN) or (B and CIN);
C := COUT & S;
end ADD;
end PKG;

use work.PKG.all;

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 209Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=209

entity procedure_package_1 is
port(
A, B : in BIT_VECTOR(3 downto 0);
CIN : in BIT;
S : out BIT_VECTOR(3 downto 0);
COUT : out BIT
);
end procedure_package_1;

architecture ARCHI of procedure_package_1 is
begin
process(A, B, CIN)
variable S0, S1, S2, S3 : BIT_VECTOR(1 downto 0);
begin
ADD(A(0), B(0), CIN, S0);
ADD(A(1), B(1), S0(1), S1);
ADD(A(2), B(2), S1(1), S2);
ADD(A(3), B(3), S2(1), S3);
S <= S3(0) & S2(0) & S1(0) & S0(0);
COUT <= S3(1);
end process;
end ARCHI;

Recursive Functions Example (VHDL)
Vivado synthesis supports recursive functions. This coding example models an n! function.

function my_func(x : integer) return integer is begin
if R > 1 then
return (R*my_func(R-1));
else
return R;
end if;
end function my_func;

VHDL Assert Statements
Assert statements are supported with the -assert synthesis option.

CAUTION! Care should be taken using asserts. Vivado can only support static asserts that do not create
or are created by behavior. For example, performing as assert on a value of a constant or an operator/
generic works; however, as an asset on the value of a signal inside an if statement does not work.

VHDL Predefined Packages
Vivado synthesis supports the VHDL predefined packages as defined in the STD and IEEE
standard libraries. The libraries are pre-compiled, and need not be user-compiled, and can be
directly included in the HDL source code.

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 210Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=210

VHDL Predefined Standard Packages
VHDL predefined standard packages that are by default included, define the following basic
VHDL types: bit, bit_vector, integer, natural, real, and boolean.

VHDL IEEE Packages
Vivado synthesis supports the some predefined VHDL IEEE packages, which are pre-compiled in
the IEEE library, and the following IEEE packages:

• numeric_bit

○ Unsigned and signed vector types based on bit.

○ Overloaded arithmetic operators, conversion functions, and extended functions for these
types.

• std_logic_1164

○ std_logic, std_ulogic, std_logic_vector, and std_ulogic_vector types.

○ Conversion functions based on these types.

• numeric_std

○ Unsigned and signed vector types based on std_logic.

○ Overloaded arithmetic operators, conversion functions, and extended functions for these
types. Equivalent to std_logic_arith.

• fixed_pkg

○ For fixed variable and pin types.

○ use ieee.fixed_pkg.all;

• float_pkg

○ For floating variable and pin types.

○ use ieee.float_pkg.all;

VHDL Legacy Packages
• std_logic_arith (Synopsys)

○ Unsigned and signed vector types based on std_logic.

○ Overloaded arithmetic operators, conversion functions, and extended functions for these
types.

• std_logic_unsigned (Synopsys)

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 211Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=211

○ Unsigned arithmetic operators for std_logic and std_logic_vector

• std_logic_signed (Synopsys)

○ Signed arithmetic operators for std_logic and std_logic_vector

• std_logic_misc (Synopsys)

○ Supplemental types, subtypes, constants, and functions for the std_logic_1164 package,
such as and_reduce and or_reduce.

VHDL Predefined IEEE Real Type and IEEE Math_Real
Packages
VHDL predefined IEEE real type and IEEE math_real packages are supported only for
calculations such as the calculation of generics values, and cannot be used to describe
synthesizable functionality.

VHDL Real Number Constants
The following table describes the VHDL real number constants.

Table 13: VHDL Real Number Constants

Constant Value Constant Value
math_e E math_log_of_2 ln2

math_1_over_e 1/e math_log_of_10 ln10

math_pi Π math_log2_of_e log2

math_2_pi 2π math_log10_of_e log10

math_1_over_pi 1/ π math_sqrt_2 √2

math_pi_over_2 π/2 math_1_oversqrt_2 1/√2

math_pi_over_3 π/3 math_sqrt_pi √π

math_pi_over_4 π/4 math_deg_to_rad 2π/360

math_3_pi_over_2 3π/2 math_rad_to_deg 360/2π

VHDL Real Number Functions
The following table describes VHDL real number functions:

Table 14: VHDL Real Number Functions

ceil(x) realmax(x,y) exp(x) cos(x) cosh(x)
floor(x) realmin(x,y) log(x) tan(x) tanh(x)

round(x) sqrt(x) log2(x) arcsin(x) arcsinh(x)

trunc(x) cbrt(x) log10(x) arctan(x) arccosh(x)

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 212Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=212

Table 14: VHDL Real Number Functions (cont'd)

ceil(x) realmax(x,y) exp(x) cos(x) cosh(x)
sign(x) **(n,y) log(x,y) arctan(y,x) arctanh(x)

mod(x,y) **(x,y) sin(x) sinh(x)

Defining Your Own VHDL Packages
You can define your own VHDL packages to specify:

• Types and subtypes

• Constants

• Functions and procedures

• Component declarations

Defining a VHDL package permits access to shared definitions and models from other parts of
your project and requires the following:

• Package declaration: Declares each of the previously listed elements.

• Package body: Describes the functions and procedures declared in the package declaration.

Package Declaration Syntax
package mypackage is
type mytype is record
first : integer;
second : integer;
end record;
constant myzero : mytype := (first => 0, second => 0);
function getfirst (x : mytype) return integer;
end mypackage;

package body mypackage is
function getfirst (x : mytype) return integer is
begin
return x.first;
end function;
end mypackage;

Accessing VHDL Packages
To access a VHDL package:

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 213Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=213

1. Use a library clause to include the library in which the package is compiled. For example:
library library_name;

2. Designate the package, or a specific definition contained in the package, with a use clause.
For example: use library_name.package_name.all.

3. Insert these lines immediately before the entity or architecture in which you use the package
definitions.

Because the work library is the default library, you can omit the library clause if the designated
package has been compiled into this library.

VHDL Constructs Support Status
Vivado synthesis supports VHDL design entities and configurations except as noted in the
following table.

Table 15: VHDL Constructs and Support Status

VHDL Construct Support Status
VHDL Entity Headers

Generics Supported

Ports Supported, including unconstrained ports

Entity Statement Part Unsupported

VHDL Packages Supported

VHDL Physical Types

TIME Supported, but only in functions for constant calculations.

REAL Supported, but only in functions for constant calculations.

VHDL Modes

Linkage Unsupported

VHDL Declarations

Type Supported for the following:
• Enumerated types
• Types with positive range having constant bounds
• Bit vector types
• Multi-dimensional arrays

VHDL Objects

Constant Declaration Supported except for deferred constant

Signal Declaration Supported except for register and bus type signals.

Attribute Declaration Supported for some attributes, otherwise skipped.

VHDL Specifications

HIGHLOW upported

LEFT Supported

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 214Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=214

Table 15: VHDL Constructs and Support Status (cont'd)

VHDL Construct Support Status
RIGHT Supported

RANGE Supported

REVERSE_RANGE Supported

LENGTH Supported

POS Supported

ASCENDING Supported

Configuration Supported only with the all clause for instances list.
• If no clause is added, Vivado synthesis looks for the entity
or architecture compiled in the default library.

Disconnection Unsupported

Underscores Object names can contain underscores in general (DATA_1),
but Vivado synthesis does not allow signal names with
leading underscores (_DATA_1).

VHDL Operators

Logical Operators: and, or, nand, nor, xor, xnor, not Supported

Relational Operators: =, /=, <, <=, >, >= Supported

& (concatenation) Supported

Adding Operators: +, - Supported

* Supported

/ Supported if the right operand is a constant power of 2, or if
both operands are constant.

Rem Supported if the right operand is a constant power of 2.

Mod Supported if the right operand is a constant power of 2.

Shift Operators: sll, srl, sla, sra, rol, ror Supported

Abs Supported

** Supported if the left operand is 2.

Sign: +, - Supported

VHDL Operands

Abstract Literals Only integer literals are supported.

Physical Literals Ignored

Enumeration Literals Supported

String Literals Supported

Bit String Literals Supported

Record Aggregates Supported

Array Aggregates Supported

Function Call Supported

Qualified Expressions Supported for accepted predefined attributes.

Types Conversions Supported

Allocators Unsupported

Static Expressions Supported

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 215Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=215

Table 15: VHDL Constructs and Support Status (cont'd)

VHDL Construct Support Status
Wait Statement

Wait on sensitivity_list until boolean_expression .
See VHDL Combinatorial Circuits.

Supported with one signal in the sensitivity list and in the
boolean expression.
Multiple wait statements are not supported.
wait statements for Latch descriptions are not supported.

Wait for time_expression .
See VHDL Combinatorial Circuits.

Unsupported

Assertion Statement Supported for static conditions only.

Signal Assignment Statement Supported.
Delay is ignored.

Variable Assignment Statement Supported

Procedure Call Statement Supported

If Statement Supported

Case Statement Supported

Loop Statements

Next Statements Supported

Exit Statements Supported

Return Statements Supported

Null Statements Supported

Concurrent Statements

Process Statement Supported

Concurrent Procedure Call Supported

Concurrent Assertion Statements Ignored

Concurrent Signal Assignments Supported, except after clause, transport or guarded
options, or waveforms.
UNAFFECTED is supported.

Component Instantiation Statements Supported

for-generate Statement supported for constant bounds only

if-generate Statement supported for static condition only

VHDL RESERVED Words
abs access after alias

all and architecture array

assert attribute begin block

body buffer bus case

component configuration constant disconnect

downto else elsif end

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 216Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=216

entity exit file for

function generate generic group

guarded if impure in

inertial inout is label

library linkage literal loop

map mod nand new

next nor not null

of on open or

others out package port

postponed procedure process pure

range record register reject

rem report return rol

ror select severity signal

shared sla sll sra

srl subtype then to

transport type unaffected units

until use variable wait

when while with xnor

Chapter 6: VHDL Support

UG901 (v2025.1) June 11, 2025
Synthesis 217Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=217

Chapter 7

VHDL-2008 Language Support

Introduction
AMD Vivado™ synthesis supports a synthesizable subset of the VHDL-2008 standard. The
following section describes the supported subset and the procedures to use it.

Setting up Vivado to use VHDL-2008
There are several ways to run VHDL-2008 files with Vivado. You can go to the Source File
Properties window and set Type: VHDL 2008 from the drop-down of available file types. The
Vivado tool sets the file type to VHDL-2008.

You can also set files to VHDL-2008 with the set_property command in the Tcl Console. The
syntax is as follows:

set_property FILE_TYPE {VHDL 2008} [get_files <file>.vhd]

Finally, in the Non-Project or Tcl flow, the command for reading in VHDL has VHDL-2008 as
follows:

read_vhdl -vhdl2008 <file>.vhd

If you want to read in more than one file, you can either use multiple read_vhdl commands or
multiple files with one command, as follows:

read_vhdl -vhdl2008 {a.vhd b.vhd c.vhd}

Supported VHDL-2008 Features
Vivado supports the following VHDL-2008 features.

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 218Send Feedback

https://docs.amd.com/access/sources/dita/topic?Doc_Version=2025.1%20English&url=ug835-vivado-tcl-commands&resourceid=set_property
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=218

Operators

Matching Relational Operators

VHDL-2008 now provides relational operators that return bit or std_logic types. In the previous
VHDL standard, the relational operators (=, <, >=…) returned boolean types. With the new types,
code that needed to be written as:

if x = y then
out1 <= '1';
else
out1 <= '0';
end if;

Can now be written as:

out1 <= x ?= y;

The following table lists the relational operators supported in Vivado.

Table 17: Supported Relational Operators

Operator Usage Description
?= x ?= y x equal to y

?/= x ?/= y x not equal to y

?< x ?< y x less than y

?<= x ?<= y x less than or equal to y

?> x ?> y x greater than y

?>= x ?>= y x greater than or equal to y

Maximum and Minimum Operators
The new maximum and minimum operators in VHDL-2008 take in two different values and
return the larger or smaller respectively. For example:

out1 <= maximum(const1, const2);

Shift Operators (rol, ror, sll, srl, sla, and sra)
The sla, and sra operators previously defined only bit and boolean elements. Now, the
VHDL-2008 standard defines them in the signed and unsigned libraries.

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 219Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=219

Unary Logical Reduction Operators
In the previous version of VHDL, operators such as and, nand, or, took two different values
and returned a bit or boolean value. For VHDL-2008, unary support has been added for these
operators. They return the logical function of the input. For example, the code:

out1 <= and("0101");

would AND the 4 bits together and return 0 . The logical functions have unary support are: and,
nand, or, nor, xor, and xnor.

Mixing Array and Scalar Logical Operators
Previously in VHDL, both of the operands of the logical operators needed to be the same size.

VHDL-2008 supports using logical operators when one of the operands is an array and one is a
scalar. For example, to AND one bit with all the bits of a vector, the following code was needed:

out1(3) <= in1(3) and in2;
out1(2) <= in1(2) and in2;
out1(1) <= in1(1) and in2;
out1(0) <= in1(0) and in2;

This can now be replaced with the following:

out1<= in1 and in2;

Statements

If-else- If and Case Generate

Previously in VHDL, if-generate statements took the form of the following:

if condition generate
--- statements
end generate;

An issue appears if you want to have different conditions; you would need to write multiple
generates and be very careful with the ordering of the generates. VHDL-2008 supports if-
else-if generate statements.

if condition generate
---statements
elsif condition2 generate
---statements
else generate
---statements
end generate;

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 220Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=220

In addition, VHDL-2008 also offers case-generate statements:

case expressions generate
when condition =>
statements
when condition2 =>
statements
end generate;

Sequential Assignments
VHDL-2008 allows sequential signal and variable assignment with conditional signals. For
example, a register with an enable would be written as the following:

process(clk) begin
if clk'event and clk='1' then
if enable then
my_reg <= my_input;
end if;
end if;
end process;

With VHDL-2008, this can now be written as the following:

process(clk) begin
if clk'event and clk='1' then
my_reg <= my_input when enable else my_reg;
end if;
end process;

Using case? Statements
With VHDL-2008, the case statement has a way to deal with explicit don’t care assignments.
When using case? , the tool now evaluates explicit don’t care terms, as in the following
example:

process(clk) begin
if clk'event and clk='1' then
case? my_reg is
when "01--" => out1 <= in1;
when "000-" => out1 <= in2;
when "1111" => out1 <= in3;
when others => out1 <= in4;
end case?;
end if;
end process;

Note: For this statement to work, the signal in question must be assigned an explicit don’t care.

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 221Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=221

Using select? Statements
Like the case, the select statement now has a way to deal with explicit don’t care
assignments. When using the select? statement, the tool now evaluates explicit don’t care
terms, for example:

process(clk) begin
if clk'event and clk='1' then
with my_reg select?
out1 <= in1 when "11--",
in2 when "000-",
in3 when "1111",
in4 when others;
end if;
end process;

Note: For this statement to work, the signal in question must be assigned an explicit don’t care.

Using Slices in Aggregates
VHDL-2008 allows you to form an array aggregate and assign it to multiple places all in one
statement.

For example if in1 where defined as

std_logic_vector(3 downto 0) :
(my_reg1, my_reg2, enable, reset) <= in1;

This example assigns all four signals to the individual bits of in1:

my_reg1 gets in1(3)

my_reg2 gets in1(2)

enable is in1(1)

reset is in1(0)

In addition, these signals can be assigned out of order, as shown in the following example:

(1=> enable, 0 => reset, 3 => my_reg1, 2 => my_reg2) <= in1;

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 222Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=222

Types

Unconstrained Element Types

Previously, in VHDL, types and subtypes had to be fully constrained in declaring the type. In
VHDL-2008, it is allowed to be unconstrained, and the constraining happens with the objects
that are of that type; consequently, types and subtypes are more versatile. For example:

subtype my_type is std_logic_vector;
signal my_reg1 : my_type (3 downto 0);
signal my_reg2 : my_type (4 downto 0);

In previous versions of VHDL, the preceding example was done with 2 subtypes. Now, in
VHDL-2008, this can be accomplished with one type. This can even be done for arrays, as shown
in the following example:

type my_type is array (natural range <>) of std_logic_vector;
signal : mytype(1 downto 0)(9 downto 0);

Using boolean_vector and integer_vector Array
Types
VHDL-2008 supports new predefined array types. Vivado supports boolean_vector and
integer_vector. These types are defined as follows:

type boolean_vector is array (natural range <>) of boolean
type integer_vector is array (natural range <>) of integer

Miscellaneous

Reading Output Ports

In previous versions of VHDL, it was illegal to use signals declared as out for anything other than
an output.

So if you wanted to assign a value to an output, and also use that same signal for other logic, you
would either have to declare a new signal and have that drive the output and the other logic, or
switch from an out to a buffer type.

VHDL-2008 lets you use output values, as shown in the following example:

entity test is port(
in1 : in std_logic;
clk : in std_logic;
out1, out2 : out std_logic);
end test;

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 223Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=223

And later in the architecture:

process(clk) begin
if clk'event an clk='1' then
out1 <= in1;
my_reg <= out1; -- THIS WOULD HAVE BEEN ILLEGAL in VHDL.
out2 <= my_reg;
end if;
end process;

Expressions in Port Maps

VHDL-2008 allows the use of functions and assignments within the port map of an instantiation.
One useful way this is used is in converting signals from one type to another, as shown in the
following example:

U0 : my_entity port map (clk => clk, in1 => to_integer(my_signal)...

In the previous case, the entity, my_entity had a port called in1 that was of type integer, but
in the upper-level, the signal, my_signal was of type std_logic_vector.

Previously in VHDL, you would have to create a new signal of type integer and do the
conversion outside of the instantiation, and assign that new signal to the port map.

In addition to type conversion, you can put logic into the port map, as shown in the following
example:

U0 : my_entity port map (clk => clk, enable => en1 and en2 ...

In this case, the lower-level has an enable signal. On the top level that enable is tied to the
AND of two other signals.

Previously in VHDL, this, like the previous example, would have needed a new signal and
assignment, but in VHDL-2008 can be accomplished in the port map of the instantiation.

Using the process (all) Statement

In VHDL, when listing items in the sensitivity list of a process statement for combinational logic,
it was up to the designer to make sure all the items read by the process statement were listed. If
any were missed, there would be Warning messages and possible latches inferred in the design.

With VHDL-2008, you can use the process(all) statement that looks for all the inputs to the
process and creates the logic.

process(all) begin
enable <= en1 and en2;
end process;

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 224Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=224

Referencing Generics in Generic Lists

VHDL-2008 allows generics to reference other generics, as shown in the following example:

entity my_entity is generic (
gen1 : integer;
gen2 : std_logic_vector(gen1 - 1 downto 0));

In previous versions of VHDL, having the length of gen2 be controlled by gen1 was illegal.

Generics in Packages

VHDL-2008 supports putting a generic in a package and being able to override that generic when
the package is declared. For example:

package my_pack is
generic(
length : integer);

subtype my_type is std_logic_vector(length-1 downto 0);
end package my_pack;

This declares a subtype of std_logic_vector but does not specify the length. The calling VHDL file
specifies what the length should be when the package is instantiated:

library ieee;
use leee.std_logic_1164.all;

package my_pack1 is new work.my_pack generic map (length => 5);
package my_pack2 is new work.my_pack generic map (length => 3);
use work.my_pack1.all;
use work.my_pack2.all;

library ieee;
use ieee.std_logic_1164.all;

entity test is port (
clk : in std_logic;
in1 : in work.my_pack1.my_type;
in2 : in work.my_pack2.my_type;
out1 : out work.my_pack1.my_type;
out2 : out work.my_pack2.my_type);
end test;

This code uses the same package to declare two different subtypes and be able to use them.

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 225Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=225

Generic Types in Entities

VHDL-2008 supports undefined types in the generic statement for an entity. For example:

entity my_entity is
generic (type my_type);

port (in1 : in std_logic;
out1 : out my_type);
end entity my_entity;

This would declare an entity with an undetermined type, and the RTL that instantiates my_entity
would look like:

my_inst1 : entity work.my_entity(beh) generic map (my_type => std_logic)
port map ...
my_inst2 : entity work.my_entity(beh) generic map (my_type =>
std_logic_vector(3 downto 0)) port map ...

The previous code instantiates my_entity twice, but in one case, out1 is a bit, and in the other
case, out1 is a 4-bit vector.

Functions in Generics

In VHDL-2008, you can declare undefined functions inside of entities. For example

entity bottom is
generic (
function my_func (a,b : unsigned) return unsigned);
port ...
......
end entity bottom;

Later in the architecture of the entity:

process(clk) is
begin
if rising_edge(clk) then
y <= my_func(a,b);
end if;
end process;

This uses the my_func function, inside of the entity, but it still has not defined what this function
actually accomplishes. That is defined as when the bottom is instantiated in an upper-level RTL.

inst_bot1 : bottom
generic map (
my_func => my_func1)
port map ...

This ties the function my_func1 that was declared in a VHDL file or a package file to the generic
function my_func. As long as my_func1 has two inputs called a and b that are both unsigned, it is
able to work.

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 226Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=226

Relaxed Return Rules for Function Return Values

In previous versions of VHDL, the return expression of a function needed be same type as was
declared in the functions return type of the function. In VHDL-2008, the rules are relaxed to
allow the return expression to be implicitly converted to the return type. For example:

subtype my_type1 is std_logic_vector(9 downto 0);
subtype my_type2 is std_logic_vector(4 downto 0);

function my_function (a,b : my_type2) return my_type1 is
begin
return (a&b);
end function;

Because concatenation is not static, this would return an error or warning in VHDL; however, it is
allowed with VHDL-2008.

Extensions to Globally Static and Locally Static Expressions

In VHDL, expressions in many types of places needed to be static. For example, using
concatenation would not have returned a static value and when used with an operator or
function that needed a static value resulting in an error. VHDL-2008 allows for more expressions,
like concatenation to return static values, thereby allowing for more flexibility.

Static Ranges and Integer Expressions in Range Bounds

In VHDL, it was possible to declare an object by using the range of another object. For example:

for I in my_signal'range...

This would require that the range of my_signal be fixed, but if my_signal was declared as an
unconstrained type, this would result in an error. VHDL-2008 now allows this by getting the
range at the time of elaboration.

Block Comments

In VHDL, comments “ -- “ were required for each line that had a comment. In VHDL-2008, there
is support for blocks of comments using the /* and */ lines.

process(clk) begin
if clk'event and clk='1' then
/* this
is
a block
comment */
out1 <= in1;
end if;
end process;

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 227Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=227

VHDL-2008 RESERVED Words
abs access after alias

all and architecture array

assert assume assume_+guarantee attribute

begin block body buffer

bus case component configuration

constant context cover default

disconnect downto else elsif

end entity exit fairness

file for force function

generate generic group guarded

if impure in inertial

inout is label library

linkage literal loop map

mod nand new next

nor not null of

on open or others

out package parameter port

postponed procedure process property

protected pure range record

register reject release rem

report restrict restrict_guarantee return

rol ror select sequence

severity signal shared sla

sll sra srl strong

subtype then to transport

type unaffected units until

use variable vmode vprop

vunit wait when while

with xnor xor

VHDL-2008 Constructs
VHDL 2008 Constructs Support Status

Unconstrained elements in arrays Supported

Matching equality/inequality operators Supported

Condition operator Supported

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 228Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=228

VHDL 2008 Constructs Support Status
Matching case statement Supported

Simplified sensitivity lists Supported

Extensions to the generate statement (elsif and else
constructs in if generate statements and support for case
generate statements)

Supported

Enhanced Bit-string literals Supported

Block comments Supported

Protected types Supported

Subprogram instantiation Declaration Supported

Package instantiation declaration Supported

Block statement Supported

External names Supported

Array aggregates Supported

Generic types Supported

Generic subprograms Supported

Chapter 7: VHDL-2008 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 229Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=229

Chapter 8

VHDL-2019 Language Support

Introduction
AMD Vivado™ synthesis supports a synthesizable subset of the VHDL-2019 standard. The
following section describes what is supported and how to use it.

Setting up Vivado to use VHDL-2019
There are a few ways to setup Vivado to compile VHDL files as VHDL-2019. The first is in
the IDE. Go to the Source file Properties window and set the Type to VHDL-2019 from the
drop-down of available file types.

Chapter 8: VHDL-2019 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 230Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=230

Figure 22: Source File Properties

You can also set files to VHDL-2019 with the set_property command in the Tcl Console. The
syntax is as follows:

set_property FILE_TYPE {VHDL 2019} [get_files <file.vhd>]

For the non-project or Tcl flow, the command for reading in VHDL-2019 is:

read_vhdl -vhdl2019 <file.vhd>

Chapter 8: VHDL-2019 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 231Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=231

If you want to read in more than one file, you can either use multiple read_vhdl commands or
multiple files with one command, as follows:

read_vhdl -vhdl2019 {a.vhd b.vhd c.vhd}

Supported VHDL-2019 Features
Vivado supports the following VHDL-2019 features.

Note: This is a relatively new language for Vivado. New features in this language will be added each release
and will be added to the documentation

Interfaces
VHDL-2019 Interfaces are implemented using the record and view keywords. The type record
is used to set up the interface, for example:

type data is record
 A : std_logic_vector(3 downto 0);
 B : std_logic_vector(3 downto 0);
 C : std_logic_vector(3 downto 0);
end record data;

Then the view acts like the SystemVerilog modport to indicate which signal act like inputs and
which act like outputs:

view TxView of data is
 A : in;
 B : in;
 C : out;
end view TxView;

Then these views can be used for the port declarations of the hierarchies:

entity my_ent is
Port (
 Int_1 : view TxView;
 Int_2 : view RxView
);
end entity my_ent;

Conditional Identifiers
Vivado synthesis supports conditional identifiers that can be used to control synthesis based on
the tool or the version.

Chapter 8: VHDL-2019 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 232Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=232

For example, the following code creates an extra output if the tool is a synthesis tool :

entity my_ent is port(
clk : in std_logic;
in1, in2 : in std_logic;
`if TOOL_TYPE = "SYNTHESIS" then
new_out : out std_logic;
`end if
out1 : out std_logic;

Vivado synthesis supports the following conditional identifiers.

Table 19: Conditional Identifiers

Identifier Value
VHDL_VERSION Same as in VHDL compile version

TOOL_TYPE “SYNTHESIS”

TOOL_VENDOR “AMD/XILINX”

TOOL_NAME “Vivado”

TOOL_EDITION “ML Editions”

TOOL_VERSION Current tool version

Note: The values for these identifiers are case sensitive.

64-bit Integers
For VHDL-2019, integer types are 64-bit instead of 32-bit. This is automatic and the RTL does
not need to be changed to take advantage of this.

Chapter 8: VHDL-2019 Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 233Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=233

Chapter 9

Verilog Language Support

Introduction
This chapter describes the AMD Vivado™ synthesis support for the Verilog Hardware Description
Language.

Coding examples are included in this chapter. Download the coding example files from Coding
Examples.

Verilog Design
Complex circuits are often designed using a top-down methodology.

• Varying specification levels are required at each stage of the design process. For example, at
the architectural level, a specification can correspond to a block diagram or an Algorithmic
State Machine (ASM) chart.

• A block or ASM stage corresponds to a register transfer block in which the connections are
N-bit wires, such as:

○ Register

○ Adder

○ Counter

○ Multiplexer

○ Interconnect logic

○ Finite State Machine (FSM)

• Verilog allows the expression of notations such as ASM charts and circuit diagrams in a
computer language.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 234Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=234

Verilog Functionality
Verilog provides both behavioral and structural language structures. These structures allow the
expression of design objects at high and low levels of abstraction.

• Designing hardware with Verilog allows the use of software concepts such as:

○ Parallel processing

○ Object-oriented programming

• Verilog has a syntax similar to C and Pascal.

• Vivado synthesis supports Verilog as IEEE 1364.

• Verilog support in Vivado synthesis allows you to describe the global circuit and each block in
the most efficient style.

○ Synthesis is performed with the best synthesis flow for each block.

○ Synthesis in this context is the compilation of high-level behavioral and structural Verilog
HDL statements into a flattened gate-level netlist. The netlist can be used to custom-
program a programmable logic device such as a Virtex device.

○ Different synthesis methods are used for:

• Arithmetic blocks

• Interconnect logic

• Finite State Machine (FSM) components

For information about basic Verilog concepts, see the IEEE Verilog HDL Reference Manual.

Verilog-2001 Support
Vivado synthesis supports the following Verilog-2001 features.

• Generate statements

• Combined port/data type declarations

• ANSI-style port list

• Module operator port lists

• ANSI C style task/function declarations

• Comma-separated sensitivity list

• Combinatorial logic sensitivity

• Default nets with continuous assigns

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 235Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=235

• Disable default net declarations

• Indexed vector part selects

• Multi-dimensional arrays

• Arrays of net and real data types

• Array bit and part selects

• Signed reg, net, and port declarations

• Signed-based integer numbers

• Signed arithmetic expressions

• Arithmetic shift operators

• Automatic width extension past 32 bits

• Power operator

• N-sized parameters

• Explicit in-line parameter passing

• Fixed local parameters

• Enhanced conditional compilation

• File and line compiler directives

• Variable part selects

• Recursive Tasks and Functions

• Constant Functions

For more information, see:

• Sutherland, Stuart. Verilog 2001: A Guide to the New Features of the Verilog Hardware Description
Language (2002)

• IEEE Standard Verilog Hardware Description Language Manual (IEEE Standard1364-2001)

Verilog-2001 Variable Part Selects
Verilog-2001 lets you use variables to select a group of bits from a vector.

Instead of being bounded by two explicit values, the variable part select is defined by the starting
point of its range and the width of the vector. The starting point of the part select can vary. The
width of the part select remains constant.

The following table lists the variable part selects symbols.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 236Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=236

Table 20: Variable Part Selects Symbols

Symbol Meaning
+ (plus) The part select increases from the starting point.

- (minus) The part select decreases from the starting point

Variable Part Selects Verilog Coding Example

reg [3:0] data;
reg [3:0] select; // a value from 0 to 7
wire [7:0] byte = data[select +: 8];

Structural Verilog
Structural Verilog descriptions assemble several blocks of code and allow the introduction of
hierarchy in a design. The following table lists the concepts of hardware structure and their
descriptions.

Table 21: Basic Concepts of Hardware Structure

Concept Description
Component Building or basic block

Port Component I/O connector

Signal Corresponds to a wire between components

The following table lists the Verilog Components, the view, and what the components describe.

Table 22: Verilog Components

Item View Describes
Declaration External What is seen from the outside,

including the component ports

Body Internal The behavior or the structure of the
component

• A component is represented by a design module.

• The connections between components are specified within component instantiation
statements.

• A component instantiation statement:

○ Specifies an instance of a component occurring within another component or the circuit

○ Is labeled with an identifier.

○ Names a component declared in a local component declaration.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 237Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=237

○ Contains an association list (the parenthesized list). The list specifies the signals and ports
associated with a given local port.

Built-In Logic Gates

Verilog provides a large set of built-in logic gates, which are instantiated to build larger logic
circuits. The set of logical functions described by the built-in logic gates includes:

• AND

• OR

• XOR

• NAND

• NOR

• NOT

2-Input XOR Function Example

In this coding example, each instance of the built-in modules has a unique instantiation name
such as a_inv, b_inv, and out.

module build_xor (a, b, c);
input a, b;
output c;
wire c, a_not, b_not;

not a_inv (a_not, a);not b_inv (b_not, b);and a1 (x, a_not, b);and a2 (y,
b_not, a);or out (c, x, y);
endmodule

Half-Adder Example

This coding example shows the structural description of a half-Adder composed of four, 2-input
nand modules.

module halfadd (X, Y, C, S);
input X, Y;
output C, S;
wire S1, S2, S3;

nand NANDA (S3, X, Y);nand NANDB (S1, X, S3);nand NANDC (S2, S3, Y);nand
NANDD (S, S1, S2);assign C = S3;
endmodule

Instantiating Pre-Defined Primitives
The structural features of Verilog allow you to design circuits by instantiating pre-defined
primitives such as: gates, registers, and AMD-specific primitives such as CLKDLL and BUFG.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 238Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=238

These primitives are additional to those included in Verilog, and are supplied with the AMD
Verilog libraries (unisim_comp.v).

Instantiating an FDC and a BUFG Primitive Example
The unisim_comp.v library file includes the definitions for FDC and BUFG .

module example (sysclk, in, reset, out);
input sysclk, in, reset;
output out;
reg out;
wire sysclk_out;

FDC register (out, sysclk_out, reset, in); //position based referencing
BUFG clk (.O(sysclk_out),.I(sysclk)); //name based referencing

Verilog Parameters
Verilog parameters do the following:

• Allow you to create parameterized code that can be easily reused and scaled.

• Make code more readable, more compact, and easier to maintain.

• Describe such functionality as:

○ Bus sizes

○ The amount of certain repetitive elements in the modeled design unit

• Are constants. For each instantiation of a parameterized module, default operator values can
be overridden.

• Are the equivalent of VHDL generics. Null string parameters are not supported.

Use the Generics command line option to redefine Verilog parameters defined in the top-level
design block. This allows you to modify the design without modifying the source code. This
feature is useful for IP core generation and flow testing.

Parameters Example (Verilog)

Download the coding example files from Coding Examples.

Filename: parameter_1.v

// A Verilog parameter allows to control the width of an instantitated
// block describing register logic
//
//
// File:parameter_1.v
//
module myreg (clk, clken, d, q);

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 239Send Feedback

https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=239

parameter SIZE = 1;

input clk, clken;
input [SIZE-1:0] d;
output reg [SIZE-1:0] q;

always @(posedge clk)
begin
if (clken)
q <= d;
end

endmodule

module parameter_1 (clk, clken, di, do);

parameter SIZE = 8;

input clk, clken;
input [SIZE-1:0] di;
output [SIZE-1:0] do;

myreg #8 inst_reg (clk, clken, di, do);

endmodule

Parameter and Generate-For Example (Verilog)

The following coding example illustrates how to control the creation of repetitive elements using
parameters and generate-for constructs. For more information, see Generate Statements.

Filename: parameter_generate_for_1.v

//
// A shift register description that illustrates the use of parameters and
// generate-for constructs in Verilog
//
// File: parameter_generate_for_1.v
//
module parameter_generate_for_1 (clk, si, so);

parameter SIZE = 8;

input clk;
input si;
output so;

reg [0:SIZE-1] s;

assign so = s[SIZE-1];

always @ (posedge clk)
s[0] <= si;

genvar i;
generate
for (i = 1; i < SIZE; i = i+1)
begin : shreg
always @ (posedge clk)

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 240Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=240

begin
s[i] <= s[i-1];
end
end
endgenerate

endmodule

Verilog Parameter and Attribute Conflicts
Verilog parameter and attribute conflicts can arise because of the following:

• Parameters and attributes can be applied to both instances and modules in the Verilog code.

• Attributes can also be specified in a constraints file.

Verilog Usage Restrictions
Verilog usage restrictions in Vivado synthesis include the following:

• Case Sensitivity

• Blocking and Non-Blocking Assignments

• Integer Handling

Case Sensitivity

Vivado synthesis supports Verilog case sensitivity despite the potential of name collision.

• Because Verilog is case-sensitive, the names of modules, instances, and signals can
theoretically be made unique by changing capitalization.

○ Vivado synthesis can synthesize a design in which instance and signal names differ only by
capitalization.

○ Vivado synthesis errors out when module names differ only by capitalization.

• Do not rely on capitalization alone to make object names unique. Capitalization alone can
cause problems in mixed language projects.

Blocking and Non-Blocking Assignments
Vivado synthesis supports blocking and non-blocking assignments.

• Do not mix blocking and non-blocking assignments.

• Although Vivado synthesis synthesizes the design without error, mixing blocking and non-
blocking assignments can cause errors during simulation.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 241Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=241

For more information about the Verilog format for Vivado simulation, see Vivado Design Suite
User Guide: Logic Simulation (UG900).

Unacceptable Example One

Do not mix blocking and non-blocking assignments for different bits of the same signal.

always @(in1)
begin
if (in2)
out1 = in1;

end else
out1 <= in2;

Unacceptable Example Two

Do not mix blocking and non-blocking assignments for different bits of the same signal.

if (in2)
begin
out1[0] = 1'b0;
out1[1] <= in1;
end else begin
out1[0] = in2;
out1[1] <= 1'b1;
end

Integer Handling
Vivado synthesis handles integers differently from other synthesis tools in some situations. In
those instances, the integers must be coded in a particular way.

Integer Handling in Verilog Case Statements

Unsized integers in case item expressions can cause unpredictable results.

Integer Handling in Verilog Case Statements Example

In the following coding example, the case item expression 4 is an unsized integer that causes
unpredictable results. To resolve this issue, size the case item expression 4 to 3 bits, as shown in
the following example:

reg [2:0] condition1; always @(condition1) begin
case(condition1)
4 : data_out = 2; // Generates faulty logic
3'd4 : data_out = 2; // Does work
endcase
end

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 242Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug900-vivado-logic-simulation&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=242

Integer Handling in Concatenations

Unsigned integers in Verilog concatenations can cause unpredictable results. If you use an
expression that results in an unsized integer, it does the following:

• Assign the expression to a temporary signal.

• Use the temporary signal in the concatenation.

reg [31:0] temp;
assign temp = 4'b1111 % 2;
assign dout = {12/3,temp,din};

Verilog-2001 Attributes and Meta Comments

Verilog-2001 Attributes

• Verilog-2001 attributes pass specific information to programs such as synthesis tools.

• Verilog-2001 attributes are generally accepted.

• Specify Verilog-2001 attributes anywhere for operators or signals, within module declarations
and instantiations.

• Although the compiler might support other attribute declarations, Vivado synthesis ignores
them.

• Use Verilog-2001 attributes to set constraints on:

○ Individual objects, such as:

- Module

- Instance

- Net

○ Set the following synthesis constraints:

- Full Case

- Parallel Case

Verilog Meta Comments
• Verilog meta comments are understood by the Verilog parser.

• Verilog meta comments set constraints on individual objects, such as:

○ Module

○ Instance

○ Net

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 243Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=243

• Verilog meta comments set directives on synthesis:

○ parallel_case and full_case

○ translate_on and translate_off

○ All tool specific directives (for example, syn_sharing)

Verilog Meta Comment Support

Vivado synthesis supports:

• C-style and Verilog style meta comments:

○ C-style

/* ...*/

• C-style comments can be multiple line:

○ Verilog style

// ...

Verilog style comments end at the end of the line.

• Translate Off and Translate On

// synthesis translate_on
// synthesis translate_off

• Parallel Case

// synthesis parallel_case full_case
// synthesis parallel_case
// synthesis full_case

• Constraints on individual objects

Verilog Meta Comment Syntax
// synthesis attribute [of] ObjectName [is] AttributeValue

Verilog Meta Comment Syntax Examples

// synthesis attribute RLOC of u123 is R11C1.S0
// synthesis attribute HUSET u1 MY_SET
// synthesis attribute fsm_extract of State2 is "yes"
// synthesis attribute fsm_encoding of State2 is "gray"

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 244Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=244

Verilog Constructs
The following table lists the support status of Verilog constructs in Vivado synthesis.

Table 23: Verilog Constructs

Verilog Constants Support Status
Constant

Integer Supported

Real Supported

String Unsupported

Verilog Data Types

Net types:
• tri0
• tri1
• trireg

Unsupported

• wand
• wor

Supported

All Drive strengths Ignored

Real and realtime registers Unsupported

All Named events Unsupported

Delay Ignored

Verilog Procedural Assignments

assign Supported with limitations. See Using assign and deassign
Statements.

deassign Supported with limitations. See Using assign and deassign
Statements.

force Supported inside initial blocks

release Unsupported

forever statements Unsupported

repeat statements Supported, but repeat value must be constant

for statements Supported, but bounds must be static

delay (#) Ignored

event (@) Unsupported

wait Unsupported

named events Unsupported

parallel blocks Unsupported

specify blocks Ignored

disable Supported

Verilog Design Hierarchies

module definition Supported

macromodule definition Unsupported

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 245Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=245

Table 23: Verilog Constructs (cont'd)

Verilog Constants Support Status
hierarchical names Supported1

defparam Supported

array of instances Supported

configurations Supported

Verilog Compiler Directives

`celldefine `endcelldefine Ignored

`default_nettype Supported

`define Supported

`ifdef `else `endif Supported

`undef, `ifndef, `elsif Supported

`include Supported

`resetall Ignored

`timescale Ignored

`unconnected_drive
`nounconnected_drive

Ignored

`uselib Unsupported

`file, `line Supported

Notes:
1. The processing for hierarchical names is done post-elaboration. Because of this, the connections are not seen in the

elaborated view. They only start appearing in the post-synthesis view.

Verilog System Tasks and Functions
Vivado synthesis supports system tasks or function as shown in the following table. Vivado
synthesis ignores unsupported system tasks.

Table 24: System Tasks and Status

System Task or Function Status Comment
$display Limited Support

$fclose Not Supported

$fdisplay Ignored

$fgets Not Supported

$finish Ignored

$fopen Ignored

$fscanf Ignored Escape sequences are limited to %b
and %d

$fwrite Ignored

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 246Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=246

Table 24: System Tasks and Status (cont'd)

System Task or Function Status Comment
$monitor Ignored

$random Ignored

$readmemb Supported

$readmemh Supported

$signed Supported

$stop Ignored

$strobe Ignored

$time Ignored

$unsigned Supported

$write Not Supported

$clog2 Supported This is supported with SystemVerilog
only.

$floor Limited Support For parameters only.

$ceil Limited Support For parameters only.

$rtoi Supported

$itor Supported

$bits Supported

$bitstoreal Supported

$realtobits Supported

$bitstoshortreal Supported

$shortrealtobits Supported

$unpacked_dimensions Supported

$dimensions Supported

$left Supported

$right Supported

$low Supported

$high Supported

$increment Supported

$size Supported

$countones Supported

$countbits Supported

$onehot Supported

$onehot0 Supported

$isunknown Supported

$asin Supported

$acos Supported

$atan Supported

$atan2 Supported

$sinh Supported

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 247Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=247

Table 24: System Tasks and Status (cont'd)

System Task or Function Status Comment
$cosh Supported

$tanh Supported

$sin Supported

$asinh Supported

$cos Supported

$ascosh Supported

$tan Supported

$ln Supported

$atanh Supported

$log10 Supported

$exp Supported

$sqrt Supported

$hypot Supported

$pow Supported

$fatal Supported

$warning Supported

$error Supported

$info Supported

all others Ignored

Using Conversion Functions
Use the following syntax to call $signed and $unsigned system tasks on any expression.

$signed(expr) or $unsigned(expr)

• The return value from these calls is the same size as the input value.

• The sign of the return value is forced regardless of any previous sign.

Loading Memory Contents With File I/O Tasks
Use the $readmemb and $readmemh system tasks to initialize block memories.

• Use $readmemb for binary representation.

• Use $readmemh for hexadecimal representation.

• Use index parameters to avoid behavioral conflicts between Vivado synthesis and the
simulator.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 248Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=248

$readmemb("rams_20c.data",ram, 0, 7);

Supported Escape Sequences
• %h

• %d

• %o

• %b

• %c

• %s

Verilog Primitives
Vivado synthesis supports Verilog gate-level primitives except as shown in the Table
25: Unsupported Primitives.

Vivado synthesis does not support Verilog switch-level primitives, such as the following:

cmos, nmos, pmos, rcmos, rnmos, rpmos rtran, rtranif0, rtranif1, tran,
tranif0, tranif1

Gate-Level Primitive Syntax
gate_type instance_name (output, inputs,...);

Gate-Level Primitive Example
and U1 (out, in1, in2); bufif1 U2 (triout, data, trienable);

Unsupported Verilog Gate Level Primitives
The following table lists the gate-level primitives that are not supported in Vivado synthesis.

Table 25: Unsupported Primitives

Primitive Status
pulldown and pullup Unsupported

drive strength and delay Ignored

Arrays of primitives Unsupported

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 249Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=249

Verilog Reserved Keywords
The following table lists the reserved keywords. Keywords marked with an asterisk (*) are
reserved by Verilog and are not supported by Vivado synthesis.

always and assign automatic

begin buf bufif0 bufif1

case casex casez cell*

cmos* config* deassign default

defparam design* disable edge

else end endcase endconfig*

endfunction endgenerate endmodule endprimitive

endspecify endtable endtask event

for force forever fork

function generate genvar highz0

highz1 if ifnone incdir*

include* initial inout input

instance* integer join larger

liblist* library* localparam macromodule

medium module nand negedge

nmos* nor noshow-cancelled* not

notif0 notif1 or output

parameter pmos* posedge primitive

pull0 pull1 pullup* pulldown*

pulsestyle_ondetect* pulsestyle_onevent* rcmos* real

realtime reg release repeat

rnmos* rpmos* rtran* rtranif0*

rtranif1 scalared show-cancelled* signed

small specify specpa strong0

strong1 supply0 supply1 table

task time tran* tranif0*

tranif1* tri tri0 tri1

triand trior trireg use*

vectored wait wand weak0

weak1 while wire wor

xnor xor

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 250Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=250

Behavioral Verilog
Vivado synthesis supports the behavioral Verilog Hardware Description Language (HDL), except
as otherwise noted.

Variables in Behavioral Verilog
• Variables in behavioral Verilog are declared as an integer.

• These declarations are used in test code only. Verilog provides data types such as reg and
wire for actual hardware description.

• The difference between reg and wire depends on whether the variable is given its value in a
procedural block (reg) or in a continuous assignment (wire).

○ Both reg and wire have a default width of one bit (scalar).

○ To specify an N-bit width (vectors) for a declared reg or wire, the left and right bit positions
are defined in square brackets separated by a colon.

○ In Verilog-2001, reg and wire data types can be signed or unsigned.

Variable Declarations Example

reg [3:0] arb_priority;
wire [31:0] arb_request;
wire signed [8:0] arb_signed;

Initial Values
Initialize registers in Verilog-2001 when they are declared.

• The initial value:

○ Is a constant.

○ Cannot depend on earlier initial values.

○ Cannot be a function or task call.

○ Can be a parameter value propagated to the register.

○ Specifies all bits of a vector.

• When you assign a register as an initial value in a declaration, Vivado synthesis sets this value
on the output of the register at global reset or power up.

• When a value is assigned in this manner:

○ The value is carried in the Verilog file as an INIT attribute on the register.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 251Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=251

○ The value is independent of any local reset.

Assigning an Initial Value to a Register

Assign a set/reset (initial) value to a register.

• Assign the value to the register when the register reset line goes to the appropriate value. See
the following coding example.

• When you assign the initial value to a variable:

○ The value is implemented as a Flip-Flop, the output of which is controlled by a local reset.

○ The value is carried in the Verilog file as an FDP or FDC Flip-Flop.

Initial Values Example One

reg arb_onebit = 1'b0;
reg [3:0] arb_priority = 4'b1011;

Initial Values Example Two

always @(posedge clk) begin
if (rst)
arb_onebit <= 1'b0;
end

Arrays of Reg and Wire
Verilog allows arrays of reg and wire.

Arrays Example One

This coding example describes an array of 32 elements. Each element is 4 bits wide.

reg [3:0] mem_array [31:0];

Arrays Example Two

This coding example describes an array of 64 8-bit wide elements. These elements can be
assigned only in structural Verilog code.

wire [7:0] mem_array [63:0];

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 252Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=252

Multi-Dimensional Arrays
Vivado synthesis supports multi-dimensional array types of up to two dimensions.

• Multi-dimensional arrays can be:

○ Any net

○ Any variable data type

• Code assignments and arithmetic operations with arrays.

• You cannot select more than one element of an array at one time.

• You cannot pass multi-dimensional arrays to:

○ System tasks or functions

○ Regular tasks or functions

Multi-Dimensional Array Example One

This coding example describes an array of 256 x 16 wire elements of 8 bits each. These elements
can be assigned only in structural Verilog code.

wire [7:0] array2 [0:255][0:15];

Multi-Dimensional Array Example Two

This coding example describes an array of 256 x 8 register elements, each 64-bits wide. These
elements can be assigned in behavioral Verilog code.

reg [63:0] regarray2 [255:0][7:0];

Data Types
The Verilog representation of the bit data type contains the following values:

• 0 = logic zero

• 1 = logic one

• x =unknown logic value

• z = high impedance

Supported Data Types

• net

○ wire

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 253Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=253

○ wand

○ wor

• registers

○ reg

○ integer

• constants

○ parameter

○ Multi-dimensional arrays (memories)

Net and Registers

Net and Registers can be either:

• Single bit (scalar)

• Multiple bit (vectors)

Behavioral Data Types Example

This coding example shows sample Verilog data types found in the declaration section of a
Verilog module.

wire net1; // single bit net
reg r1; // single bit register
tri [7:0] bus1; // 8 bit tristate bus
reg [15:0] bus1; // 15 bit register
reg [7:0] mem[0:127]; // 8x128 memory register
parameter state1 = 3'b001; // 3 bit constant
parameter component = "TMS380C16"; // string

Legal Statements
Vivado synthesis supports behavioral Verilog legal statements.

• The following statements (variable and signal assignments) are legal:

○ variable = expression

○ if (condition) statement

○ else statement

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 254Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=254

○ case (expression), for example:

expression: statement
...
default: statement
endcase

○ for (variable = expression; condition; variable = variable + expression) statement

○ while (condition) statement

○ forever statement

○ functions and tasks

• All variables are declared as integer or reg.

• A variable cannot be declared as a wire.

Expressions
Behavioral Verilog expressions include:

• Constants

• Variables with the following operators:

○ arithmetic

○ logical

- bitwise

- logical

○ relational

○ conditional

Logical Operators
The category (bitwise or logical) into which a logical operator falls depends on whether it is
applied to an expression involving several bits, or a single bit.

Supported Operators
Table 27: Supported Operators

Arithmetic Logical Relational Conditional
+ & < ?

- && ==

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 255Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=255

Table 27: Supported Operators (cont'd)

Arithmetic Logical Relational Conditional
* | ===

** || <=

/ ^ >=

% ~ >=

~^ !=

^~ !==

<< >

>>

<<<

>>>

Supported Expressions
Table 28: Supported Expressions

Expression Symbol Status
Concatenation {} Supported

Replication {{}} Supported

Arithmetic +, -, *,** Supported

Division / Supported

Modulus % Supported

Addition + Supported

Subtraction - Supported

Multiplication * Supported

Power ** Supported:
• Both operands are constants, with

the second operand being non-
negative.

• If the first operand is a 2, the
second operand can be a variable.

• Vivado synthesis does not support
the real data type. Any combination
of operands that results in a real
type causes an error.

• The values X (unknown) and Z (high
impedance) are not allowed.

Relational >, <, >=, <= Supported

Logical Negation ! Supported

Logical AND && Supported

Logical OR || Supported

Logical Equality == Supported

Logical Inequality != Supported

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 256Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=256

Table 28: Supported Expressions (cont'd)

Expression Symbol Status
Case Equality === Supported

Case Inequality !== Supported

Bitwise Negation ~ Supported

Bitwise AND & Supported

Bitwise Inclusive OR | Supported

Bitwise Exclusive OR ^ Supported

Bitwise Equivalence ~^, ^~ Supported

Reduction AND & Supported

Reduction NAND ~& Supported

Reduction OR | Supported

Reduction NOR ~| Supported

Reduction XOR ^ Supported

Reduction XNOR ~^, ^~ Supported

Left Shift << Supported

Right Shift Signed >>> Supported

Left Shift Signed <<< Supported

Right Shift >> Supported

Conditional ?: Supported

Event OR or, ',' Supported

Evaluating Expressions
The (===) and (!==) operators in the following table are:

• Special comparison operators.

• Used in simulation to see if a variable is assigned a value of (x) or (z).

• Treated as (==) or (!=) by synthesis.

See Vivado Design Suite User Guide: Logic Simulation (UG900) for more information about Verilog
format for Vivado simulation.

Evaluated Expressions Based on Most Frequently Used Operators

Table 29: Evaluated Expressions Based On Most Frequently Used Operators

a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b
0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 0 0 1 1 1

0 x x 0 x 1 0 0 x x x

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 257Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug900-vivado-logic-simulation&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=257

Table 29: Evaluated Expressions Based On Most Frequently Used Operators (cont'd)

a b a==b a===b a!=b a!==b a&b a&&b a|b a||b a^b
0 z x 0 x 1 0 0 x x x

1 0 0 0 1 1 0 0 1 1 1

1 1 1 1 0 0 1 1 1 1 0

1 x x 0 x 1 x x 1 1 x

1 z x 0 x 1 x x 1 1 x

x 0 x 0 x 1 0 0 x x x

x 1 x 0 x 1 x x 1 1 x

x x x 1 x 0 x x x x x

x z x 0 x 1 x x x x x

z 0 x 0 x 1 0 0 x x x

z 1 x 0 x 1 x x 1 1 x

z x x 0 x 1 x x x x x

z z x 1 x 0 x x x x x

Blocks
Vivado synthesis supports some block statements, as follows:

• Block statements group statements together. They are designated by begin and end keywords.
Block statements execute the statements in the order listed within the block.

• Vivado synthesis supports sequential blocks only.

• Vivado synthesis does not support parallel blocks.

• All procedural statements occur in blocks that are defined inside modules.

• The two kinds of procedural blocks are initial block and always block

• Verilog uses begin and end keywords within each block to enclose the statements. Because
initial blocks are ignored during synthesis, only always blocks are described.

• always blocks usually take the following format. Each statement is a procedural assignment
line terminated by a semicolon.

always
begin
statement
.... end

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 258Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=258

Modules
A Verilog design component is represented by a module. Modules must be declared and
instantiated.

Module Declaration
• A Behavioral Verilog module declaration consists of:

○ The module name

○ A list of circuit I/O ports

○ The module body in which you define the intended functionality

• End with an endmodule statement.

Circuit I/O Ports

• The circuit I/O ports are listed in the module declaration.

• Each circuit I/O port is characterized by:

○ A name

○ A mode: Input, Output, Inout

○ Range information if the port is of array type.

Behavioral Verilog Module Declaration Example One

module example (A, B, O);
input A, B;
output O;
assign O = A & B;
endmodule

Behavioral Verilog Module Declaration Example Two

module example (input A, inputB, output O
);

assign O = A & B;
endmodule

Module Instantiation
A behavioral Verilog module instantiation statement does the following:

• Defines an instance name.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 259Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=259

• Contains a port association list. The port association list specifies how the instance is
connected in the parent module. Each element of the port association list ties a formal port of
the module declaration to an actual net of the parent module.

• Is instantiated in another module. See the following coding example.

Behavioral Verilog Module Instantiation Example

module top (A, B, C, O); input A, B, C; output O;
wire tmp;

example inst_example (.A(A), .B(B), .O(tmp));

assign O = tmp | C;

endmodule

Continuous Assignments
Vivado synthesis supports both explicit and implicit continuous assignments.

• Continuous assignments model combinatorial logic in a concise way.

• Vivado synthesis ignores delays and strengths given to a continuous assignment.

• Continuous assignments are allowed on wire and tri data types only.

Explicit Continuous Assignments
Explicit continuous assignments start with an assign keyword after the net has been separately
declared.

wire mysignal;
...
assign mysignal = select ? b : a;

Implicit Continuous Assignments
Implicit continuous assignments combine declaration and assignment.

wire misignal = a | b;

Procedural Assignments
• Behavioral Verilog procedural assignments:

○ Assign values to variables declared as reg.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 260Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=260

○ Are introduced by always blocks, tasks, and functions.

○ Model registers and Finite State Machine (FSM) components.

• Vivado synthesis supports:

○ Combinatorial functions

○ Combinatorial and sequential tasks

○ Combinatorial and sequential always blocks

Combinatorial Always Blocks
Combinatorial logic is modeled efficiently by Verilog time control statements:

• Delay time control statement [#]

• Event control time control statement [@]

Delay Time Control Statement
The delay time control statement [# (pound)] is:

• Relevant for simulation only.

• Ignored for synthesis.

For more information on Verilog format for Vivado simulation, see Vivado Design Suite User Guide:
Logic Simulation (UG900).

Event Control Time Control Statement
The following statements describe modeling combinatorial logic with the event control time
control statement [@ (at)].

• A combinatorial always block has a sensitivity list appearing within parentheses after
always@.

• An always block is activated if an event (value change or edge) appears on one of the
sensitivity list signals.

• The sensitivity list can contain:

○ Any signal that appears in conditions, such as if or case.

○ Any signal appearing on the right-hand side of an assignment.

• By substituting a * (asterisk) in the parentheses for a list of signals, the always block is
activated for an event in any of the always block's signals as described.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 261Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug900-vivado-logic-simulation&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=261

• In combinatorial processes, if a signal is not explicitly assigned in all branches of if or case
statements, Vivado synthesis generates a latch to hold the last value.

• The following statements are used in a process:

○ variable and signal assignments

○ if-else statements

○ case statements

○ for-while loop statements

○ function and task calls

Using if-else Statements
Vivado synthesis supports if-else statements.

• The if-else statements use true and false conditions to execute statements.

○ If the expression evaluates to true, the first statement is executed.

○ If the expression evaluates to false, x, or z, the else statement is executed.

• A block of multiple statements is executed using begin and end keywords.

• if-else statements can be nested.

Example of if-else Statement

This coding example uses an if-else statement to describe a multiplexer.

module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @(sel or a or b or c or d)
begin
if (sel[1])
outmux = d;
else
outmux = c;
if (sel[0])
outmux = b;
else
outmux = a;
end
endmodule

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 262Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=262

Case Statements
Vivado synthesis supports case statements.

• A case statement performs a comparison to an expression to evaluate one of several parallel
branches.

○ The case statement evaluates the branches in the order they are written.

○ The first branch that evaluates to true is executed.

○ If none of the branches matches, the default branch is executed.

• Do not use unsized integers in case statements. Always size integers to a specific number of
bits. Otherwise, results can be unpredictable.

• casez treats all z values in any bit position of the branch alternative as a don't care.

• casex treats all x and z values in any bit position of the branch alternative as a don't care.

• The question mark (?) can be used as a don't care in either the casez or casex case
statements.

Multiplexer Case Statement Example (Verilog)

Filename: top.v

// Multiplexer using case statement
module mux4 (sel, a, b, c, d, outmux);
input [1:0] sel;
input [1:0] a, b, c, d;
output [1:0] outmux;
reg [1:0] outmux;

always @ *
begin
case(sel)
2'b00 : outmux = a;
2'b01 : outmux = b;
2'b10 : outmux = c;
2'b11 : outmux = d;
endcase
end
endmodule

Avoiding Priority Processing

• The case statement in the previous coding example evaluates the values of input sel in
priority order.

• To avoid priority processing:

○ Use a parallel-case Verilog attribute to ensure parallel evaluation of the input sel.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 263Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=263

○ Replace the case statement with:

(* parallel_case *) case(sel)

For and Repeat Statements
Vivado synthesis supports for and repeat statements. When using always blocks, repetitive
or bit slice structures can also be described using a for statement, or a repeat statement.

Using For Statements
The for statement is supported for constant bound, and stop test condition using the following
operators: <, <=, >, >=.

The for statement is supported also for next step computation falling in one of the following
specifications:

• var = var + step

• var = var - step Where:

○ var is the loop variable

○ step is a constant value

Repeat Statements
The repeat statement is supported for constant values only.

Using While Loops
When using always blocks, use while loops to execute repetitive procedures.

• A while loop:

○ Is not executed if the test expression is initially false.

○ Executes other statements until its test expression becomes false.

• The test expression is any valid Verilog expression.

• To prevent endless loops, use the -loop_iteration_limit option.

• A while loop can have disable statements. The disable statement is used inside a
labeled block, as shown in the following code snippet:

disable <blockname>

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 264Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=264

Example of While Loop

parameter P = 4; always @(ID_complete) begin : UNIDENTIFIED
integer i; reg found; unidentified = 0; i = 0;
found = 0;
while (!found && (i < P))
begin
found = !ID_complete[i];
unidentified[i] = !ID_complete[i];
i = i + 1;
end

Using Sequential Always Blocks
Vivado synthesis supports sequential always blocks.

• Describe a sequential circuit with an always block and a sensitivity list that contains the
following edge-triggered (with posedge or negedge) events:

○ A mandatory clock event

○ Optional set/reset events (modeling asynchronous set/reset control logic)

• If no optional asynchronous signal is described, the always block is structured as follows:

always @(posedge CLK) begin
<synchronous_part> end

• If optional asynchronous control signals are modeled, the always block is structured as
follows:

always @(posedge CLK or posedge ACTRL1 or à) begin
if (ACTRL1)
<$asynchronous part> else
<$synchronous_part> end

Sequential Always Block Examples

This coding example describes an 8-bit register with a rising-edge clock. There are no other
control signals.

module seq1 (DI, CLK, DO);
input [7:0] DI;
input CLK;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK) DO <= DI ;
endmodule

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 265Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=265

The following code example adds an active-High asynchronous reset.

module EXAMPLE (DI, CLK, ARST, DO);
input [7:0] DI;
input CLK, ARST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge ARST)
if (ARST == 1'b1)
DO <= 8'b00000000;
else
DO <= DI;
endmodule

The following code example describes an active-High asynchronous reset and an active-Low
asynchronous set:

module EXAMPLE (DI, CLK, ARST, ASET, DO);
input [7:0] DI;
input CLK, ARST, ASET;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge ARST or negedge ASET)
if (ARST == 1'b1)
DO <= 8'b00000000;
elsif (ASET == 1'b1) DO <= 8'b11111111;
else

DO <= DI;
endmodule

The following code example describes a register with no asynchronous set/reset, and a
synchronous reset.

module EXAMPLE (DI, CLK, SRST, DO);
input [7:0] DI;
input CLK, SRST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
if (SRST == 1'b1)
DO <= 8'b00000000;
else
DO <= DI;
endmodule

Using assign and deassign Statements
Vivado synthesis does not support assign and deassign statements.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 266Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=266

Assignment Extension Past 32-Bits

If the expression on the left-hand side of an assignment is wider than the expression on the
right-hand side, the left-hand side is padded to the left according to the following rules:

• If the right-hand expression is signed, the left-hand expression is padded with the sign bit.

• If the right-hand expression is unsigned, the left-hand expression is padded with 0 (zero).

• For unsized x or z constants only, the following rule applies:

If the value of the right-hand expression's leftmost bit is z (high impedance) or x (unknown),
regardless of whether the right-hand expression is signed or unsigned, the left-hand expression is
padded with that value (z or x, respectively).

Tasks and Functions
• When the same code is used multiple times across a design, using tasks and functions:

○ Reduces the amount of code.

○ Facilitates maintenance.

• Tasks and functions must be declared and used in a module. The heading contains the
following parameters:

○ Input parameters (only) for functions.

○ Input/output/inout parameters for tasks.

• The return value of a function is declared either signed or unsigned. The content is similar to
the content of the combinatorial always block.

Tasks and Functions Examples
Filename: functions_1.v

//
// An example of a function in Verilog
//
// File: functions_1.v
//
module functions_1 (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
wire [1:0] S0, S1, S2, S3;

function signed [1:0] ADD;
input A, B, CIN;

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 267Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=267

reg S, COUT;
begin
S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
ADD = {COUT, S};
end
endfunction

assign S0 = ADD (A[0], B[0], CIN),
S1 = ADD (A[1], B[1], S0[1]),
S2 = ADD (A[2], B[2], S1[1]),
S3 = ADD (A[3], B[3], S2[1]),
S = {S3[0], S2[0], S1[0], S0[0]},
COUT = S3[1];

endmodule

Filename: task_1.v

In this coding example, the same functionality is described with a task.

// Verilog tasks
// tasks_1.v
//
module tasks_1 (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
reg [3:0] S;
reg COUT;
reg [1:0] S0, S1, S2, S3;

task ADD;
input A, B, CIN;
output [1:0] C;
reg [1:0] C;
reg S, COUT;
begin
S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
C = {COUT, S};
end
endtask

always @(A or B or CIN)
begin
ADD (A[0], B[0], CIN, S0);
ADD (A[1], B[1], S0[1], S1);
ADD (A[2], B[2], S1[1], S2);
ADD (A[3], B[3], S2[1], S3);
S = {S3[0], S2[0], S1[0], S0[0]};
COUT = S3[1];
end

endmodule

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 268Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=268

Using Recursive Tasks and Functions
Verilog-2001 supports recursive tasks and functions.

• Use recursion with the automatic keyword only.

• The number of recursions is automatically limited to prevent endless recursive calls. The
default is 64.

• Use -recursion_iteration_limit to set the number of allowed recursive calls.

Example of Recursive Tasks and Functions

function automatic [31:0] fac;
input [15:0] n;
if (n == 1)
fac = 1;

else

fac = n * fac(n-1); //recursive function call
endfunction

Using Constant Functions and Expressions
Vivado synthesis supports function calls to calculate constant values. Constants are assumed to
be decimal integers.

• Specify constants in binary, octal, decimal, or hexadecimal.

• To specify constants explicitly, prefix them with the appropriate syntax.

Example of Constant Functions

Filename: functions_contant.v

// A function that computes and returns a constant value
//
// functions_constant.v
//
module functions_constant (clk, we, a, di, do);
parameter ADDRWIDTH = 8;
parameter DATAWIDTH = 4;
input clk;
input we;
input [ADDRWIDTH-1:0] a;
input [DATAWIDTH-1:0] di;
output [DATAWIDTH-1:0] do;

function integer getSize;
input addrwidth;
begin
getSize = 2**addrwidth;
end

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 269Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=269

endfunction

reg [DATAWIDTH-1:0] ram [getSize(ADDRWIDTH)-1:0];

always @(posedge clk) begin
if (we)
ram[a] <= di;
end
assign do = ram[a];

endmodule

Example of Constant Expressions

The following constant expressions represent the same value.

• 4'b1010

• 4'o12

• 4'd10

• 4'ha

Using Blocking and Non-Blocking Procedural
Assignments
Blocking and non-blocking procedural assignments have time control built into their respective
assignment statements.

• The pound sign (#) and the at sign (@) are time control statements.

• These statements delay execution of the statement following them until the specified event is
evaluated as true.

• The pound (#) delay is ignored for synthesis.

Blocking Procedural Assignment Syntax Example One

reg a;
a = #10 (b | c);

Blocking Procedural Assignment Syntax Example Two (Alternate)

if (in1) out = 1'b0;
else out = in2;

This assignment blocks the current process from continuing to execute additional statements at
the same time, and is used mainly in simulation.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 270Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=270

For more information regarding Verilog format for Vivado simulation, see Vivado Design Suite User
Guide: Logic Simulation (UG900).

Non-Blocking Procedural Assignment Syntax Example One

variable <= @(posedge_or_negedge_bit) expression;

Non-blocking assignments evaluate the expression when the statement executes, and allow
other statements in the same process to execute at the same time. The variable change occurs
only after the specified delay.

Non-Blocking Procedural Assignment Example Two

This coding example shows how to use a non-blocking procedural assignment.

if (in1) out <= 1'b1;
else out <= in2;

Verilog Macros
Verilog defines macros as follows:

`define TESTEQ1 4'b1101

The defined macro is referenced later, as follows:

if (request == 'TESTEQ1)

The `ifdef and `endif constructs do the following:

• Determine whether a macro is defined.

• Define conditional compilation.

If the macro called out by `ifdef is defined, that code is compiled.

• If the macro has not been defined, the code following the `else command is compiled.

• The `else is not required, but `endif must complete the conditional statement.

Use the Verilog Macros command line option to define (or redefine) Verilog macros.

• Verilog Macros let you modify the design without modifying the HDL source code.

• Verilog Macros is useful for IP core generation and flow testing.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 271Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug900-vivado-logic-simulation&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=271

Macro Example One

'define myzero 0
assign mysig = 'myzero;

Macro Example Two

'ifdef MYVAR
module if_MYVAR_is_declared;
...
endmodule
'else
module if_MYVAR_is_not_declared;
...
endmodule
'endif

Note: When synthesis runs, Vivado automatically sets the SYNTHESIS macro. So, when using ‘ifdef
SYNTHESIS, it is triggered during the synthesis run.

Include Files
Verilog allows you to separate HDL source code into more than one file. To reference the code in
another file, use the following syntax in the current file.

`include <path/file-to-be-included>

The previous line takes the contents of the file to be included and inserts it all into the current
file at the line with the `include.

The path can be a relative or an absolute path. In the case of a relative path, the Verilog compiler
looks in two different places for the file to be included.

• The first is relative to the file with the `include statement. The compiler looks there, and if
it can find the file, it inserts the contents of the file there.

• The second place it looks is relative to the -include_dirs option in the Verilog options
section of the General settings.

Multiple `include statements are allowed in the same Verilog file.

Behavioral Verilog Comments
Behavioral Verilog comments are similar to the comments in such languages as C++.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 272Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=272

One-Line Comments

One-line comments start with a double forward slash (//).

// This is a one-line comment.

Multiple-Line Block Comments

Multiple-line block comments start with /* and end with */.

/* This is a multiple-line comment.
*/

Generate Statements
Behavioral Verilog generate statements:

• Allow you to create:

○ parameterized and scalable code.

○ Repetitive or scalable structures.

○ Functionality conditional on a particular criterion being met.

• Are resolved during Verilog elaboration.

• Are conditionally instantiated into your design.

• Are described within a module scope.

• Start with a generate keyword.

• End with an endgenerate keyword.

Structures Created Using Generate Statements
Structures likely to be created using a generate statement include:

• Primitive or module instances

• Initial or always procedural blocks

• Continuous assignments

• Net and variable declarations

• parameter redefinitions

• Task or function definitions

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 273Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=273

Supported Generate Statements
Vivado synthesis supports all Behavioral Verilog generate statements:

• generate-loop (generate-for)

• generate-conditional (generate-if-else)

• generate-case (generate-case)

Generate Loop Statements
Use a generate-for loop to create one or more instances that can be placed inside a module.

Use the generate-for loop the same way you use a normal Verilog for loop, with the following
limitations:

• The generate-for loop index has a genvar variable.

• The assignments in the for loop control refers to the genvar variable.

• The contents of the for loop are enclosed by begin and end statements.

• The begin statement is named with a unique qualifier.

Generate Loop Statement 8-Bit Adder Example

generate genvar i;
for (i=0; i<=7; i=i+1)
begin : for_name
adder add (a[8*i+7 : 8*i], b[8*i+7 : 8*i], ci[i], sum_for[8*i+7 : 8*i],
c0_or[i+1]);
end
endgenerate

Generate Conditional Statements

A generate-if-else statement conditionally controls which objects are generated.

• Each branch of the if-else statement is enclosed by begin and end statements.

• The begin statement is named with a unique qualifier.

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 274Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=274

Generate Conditional Statement Coding Example

This coding example instantiates two different implementations of a multiplier based on the
width of data words.

generate
if (IF_WIDTH < 10)
begin : if_name
multiplier_imp1 # (IF_WIDTH) u1 (a, b, sum_if);
end
else
begin : else_name
multiplier_imp2 # (IF_WIDTH) u2 (a, b, sum_if);
end
endgenerate

Generate Case Statements

A generate-case statement conditionally controls which objects are generated under which
conditions.

• Each branch in a generate-case statement is enclosed by begin and end statements.

• The begin statement is named with a unique qualifier.

Behavioral Verilog Generate Case Statements Coding Example

This coding example instantiates more than two different implementations of an adder based on
the width of data words.

generate
case (WIDTH)
1:
begin : case1_name
adder #(WIDTH*8) x1 (a, b, ci, sum_case, c0_case);
end
2:
begin : case2_name
adder #(WIDTH*4) x2 (a, b, ci, sum_case, c0_case);
end default:
begin : d_case_name
adder x3 (a, b, ci, sum_case, c0_case);
end
endcase
endgenerate

Chapter 9: Verilog Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 275Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=275

Chapter 10

SystemVerilog Support

Introduction
AMD Vivado™ synthesis supports the subset of SystemVerilog RTL that can be synthesized. The
following sections describe those data types.

Targeting SystemVerilog for a Specific File
By default, the Vivado synthesis tool compiles *.v files with the Verilog 2001 syntax and *.sv files
with the SystemVerilog syntax.

To target SystemVerilog for a specific *.v file in the Vivado IDE, right-click the file, and select
Source Node Properties. In the Source File Properties window, change the File Type to
SystemVerilog, and click OK.

Tcl Command to Set Properties
Alternatively, you can use the following Tcl command in the Tcl Console:

set_property file_type SystemVerilog [get_files <filename>.v]

The following sections describe the supported SystemVerilog types in the Vivado IDE.

Compilation Units
System Verilog supports both single file and multiple file compilation through use of Compilation
units.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 276Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=276

A compilation unit is a collection of one or more SV source files compiled together. Every
compilation unit is associated with single library. The compilation unit scope is a scope that
is local to a global compilation unit, the scope has all the declarations that lie outside of any
other design scope. Generally functions, tasks, parameter, nets, variables, and user defined types
declared outside the module, interface, package or program come under the compilation unit
scope.

For example, consider the following design.

In Tcl mode

read_verilog -lib lib1 {test1.sv }
read_verilog -lib lib2 {test2.sv }
read_verilog test3.sv

Or IDE

Figure 23: IDE

In the previous case, if test1.sv has declarations in the compilation unit scope such as params,
typedefs, and so on. Following is an example.

Parameter P1 =2; // parameter declared out of module scope
module test1 (<port list>)
...
...
endmodule

and read the files as mentioned previously. Compiler unit scope starts with reading file test1.sv
under lib1, but while reading test2.sv with lib2 would be illegal because compilation unit should
be associated with single library. This can be addressed by following ways:

In Tcl mode, putting all the files in a single library.

read_verilog -lib lib1 {test1.sv}
read_verilog -lib lib1 {test2.sv}
read_verilog test3.sv

or not declaring libraries at all

read_verilog {test1.sv }
read_verilog {test2.sv}
read_verilog test3.sv

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 277Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=277

or (single file compilation unit mode)

read_verilog -lib lib1 {test1.sv}
read_verilog -lib lib2 {test2.sv}
read_verilog test3.sv
synth_design -top <top_name> -sfcu

Figure 24: Settings

Data Types
The following data types are supported, as well as the mechanisms to control them.

Declaration
Declare variables in the RTL as follows:

[var] [DataType] name;

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 278Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=278

Where:

• var is optional and implied if not in the declaration.

• DataType is one of the following:

○ integer_vector_type: bit, logic, or reg

○ integer_atom_type: byte, shortint, int, longint, integer, or time

○ non_integer_type: shortreal, real, or realtime

○ struct

○ enum

Integer Data Types
SystemVerilog supports the following integer types:

• shortint: 2-state 16-bit signed integer

• int: 2-state 32-bit signed integer

• longint: 2-state 64-bit signed integer

• byte: 2-state 8-bit signed integer

• bit: 2-state, user defined vector size

• logic: 4-state user defined vector size

• reg: 4-state user-defined vector size

• integer: 4-state 32-bit signed integer

• time: 4-state 64-bit unsigned integer

4-state and 2-state refer to the values that can be assigned to those types, as follows:

• 2-state allows 0s and 1s.

• 4-state also allows X and Z states.

X and Z states cannot always be synthesized; therefore, items that are 2-state and 4-state are
synthesized in the same way.

CAUTION! Take care when using 4-state variables; RTL versus simulation mismatches could occur.

• The types byte, shortint, int, integer, and longint default to signed values.

• The types bit, reg, and logic default to unsigned values.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 279Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=279

See Vivado Design Suite User Guide: Logic Simulation (UG900) for more information about Verilog
format for simulation.

Real Numbers
Synthesis supports real numbers; however, they cannot be used to create logic. They can only be
used as parameter values. The SystemVerilog-supported real types are:

• real

• shortreal

• realtime

Void Data Type
The void data type is only supported for functions that have no return value.

User-Defined Types
Vivado synthesis supports user-defined types, which are defined using the typedef keyword. Use
the following syntax:

typedef data_type type_identifier {size};

or

typedef [enum, struct] type_identifier;

Enum Types
Enumerated types can be declared with the following syntax:

enum [type] {enum_name1, enum_name2...enum_namex} identifier

If no type is specified, the enum defaults to int. Following is an example:

enum {sun, mon, tues, wed, thurs, fri, sat} day_of_week;

This code generates an enum of int with seven values. The values that are given to these names
start with 0 and increment, so that, sun = 0 and sat = 6.

To override the default values, use code as in the following example:

enum {sun=1, mon, tues, wed, thurs, fri, sat} day_of week;

In this case, sun is 1 and sat is 7.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 280Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug900-vivado-logic-simulation&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=280

The following is another example how to override defaults:

enum {sun, mon=3, tues, wed, thurs=10, fri=12, sat} day_of_week;

In this case, sun=0, mon=3, tues=4, wed=5, thurs=10, fri=12, and sat=13.

Enumerated types can also be used with the typedef keyword.

typedef enum {sun,mon,tues,wed,thurs,fri,sat} day_of_week; day_of_week
my_day;

The preceding example defines a signal called my_day that is of type day_of_week. You can
also specify a range of enums. For example, the preceding example can be specified as:

enum {day[7]} day_of_week;

This creates an enumerated type called day_of_week with seven elements as follows: day0,
day1…day6.

Following are other ways to use enumerated types:

enum {day[1:7]} day_of_week; // creates day1,day2...day7
enum {day[7] = 5} day_of_week; //creates day0=5, day1=6... day6=11

Constants
SystemVerilog gives three types of elaboration-time constants:

• parameter: Is the same as the original Verilog standard and can be used in the same way.

• localparameter: Is similar to parameter but cannot be overridden by upper-level
modules.

• specparam: Is used for specifying delay and timing values; consequently, this value is not
supported in Vivado synthesis.

There is also a runtime constant declaration called const.

Type Operator
The type operator allows parameters to be specified as data types, which allows modules to have
different types of parameters for different instances.

Casting
Assigning a value of one data type to a different data type is illegal in SystemVerilog.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 281Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=281

However, a workaround is to use the cast operator ('). The cast operator converts the data type
when assigning between different types. The usage is:

casting_type'(expression)

The casting_type is one of the following:

• integer_type

• non_integer_type

• real_type

• constant unsigned number

• user-created signing value type

Aggregate Data Types
In aggregate data types there are structures and unions, which are described in the following
subsections.

Structures

A structure is a collection of data that can be referenced as one value, or the individual members
of the structure. This is similar to the VHDL concept of a record. The format for specifying a
structure is:

struct {struct_member1; struct_member2;...struct_memberx;} structure_name;

Unions

A union is a single section of data that can be referenced in different ways. The format for
specifying a union is:

typedef union packed {union_member1; union_member2...union_memberx;}
unions_name;

Packed and Unpacked Arrays

Vivado synthesis supports both packed and unpacked arrays:

logic [5:0] sig1; //packed array logic sig2 [5:0]; //unpacked array

Data types with predetermined widths do not need the packed dimensions declared:

integer sig3; //equivalent to logic signed [31:0] sig3

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 282Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=282

Processes
Always Procedures
There are four always procedures:

• always

• always_comb

• always_latch

• always_ff

The procedure always_comb describes combinational logic. A sensitivity list is inferred by the
logic driving the always_comb statement.

For always you must provide the sensitivity list. The following examples use a sensitivity list of
in1 and in2:

always@(in1 or in2)
out1 = in1 & in2;
always_comb out1 = in1 & in2;

The procedure always_latch provides a quick way to create a latch. Like always_comb, a
sensitivity list is inferred, but you must specify a control signal for the latch enable, as in the
following example:

always_latch
if(gate_en) q <= d;

The procedure always_ff is a way to create Flip-Flops. Again, you must specify a sensitivity
list:

always_ff@(posedge clk)
out1 <= in1;

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 283Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=283

Block Statements
Block statements provide a mechanism to group sets of statements together. Sequential blocks
have a begin and end around the statement. The block can declare its own variables, and those
variables are specific to that block. The sequential block can also have a name associated with
that block. The format is as follows:

begin [: block name]
[declarations]
[statements]
end [: block name]
begin : my_block logic temp;
temp = in1 & in2; out1 = temp;
end : my_block

In the previous example, the block name is also specified after the end statement. This makes the
code more readable, but it is not required.

Note: Parallel blocks (or fork join blocks) are not supported in Vivado synthesis.

Procedural Timing Controls
SystemVerilog has two types of timing controls:

• Delay control: Specifies the amount of time between the statement its execution. This is not
useful for synthesis, and Vivado synthesis ignores the time statement while still creating logic
for the assignment.

• Event control: Makes the assignment occur with a specific event; for example,
always@(posedge clk). This is standard with Verilog, but SystemVerilog includes extra
functions.

The logical or operator is an ability to give any number of events so that any event triggers the
execution of the statement. To do this, use either a specific or, or separate with commas in the
sensitivity list. For example, the following two statements are the same:

always@(a or b or c)
always@(a,b,c)

SystemVerilog also supports the implicit event_expression @*. This helps to eliminate
simulation mismatches caused because of incorrect sensitivity lists.

For example:

Logic always@* begin

See Vivado Design Suite User Guide: Logic Simulation (UG900) for the Verilog format for simulation.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 284Send Feedback

https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug900-vivado-logic-simulation&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=284

Operators
Vivado synthesis supports the following SystemVerilog operators:

• Assignment operators (=, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=,
>>>=)

• Unary operators (+, -, !, ~, &, ~&, |, ~|, ^, ~^, ^~)

• Increment/decrement operators (++, --)

• Binary operators (+, -, *, /, %, ==, ~=, ===, ~==, &&, ||, **, <, <=, >,
>=, &, |, ^, ^~, ~^, >>, <<, >>>, <<<)

Note: A**B is supported if A is a power of 2 or B is a constant.

• Conditional operator (? :)

• Concatenation operator ({...})

Signed Expressions
Vivado synthesis supports both signed and unsigned operations. Signals can be declared as
unsigned or signed. For example:

logic [5:0] reg1;
logic signed [5:0] reg2;

Procedural Programming Assignments
Conditional if-else Statement
The syntax for a conditional if-else statement is:

if (expression)
command1;
else
command2;

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 285Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=285

The else is optional and assumes a latch or flip-flop depending on whether or not there was a
clock statement. Code with multiple if and else entries can also be supported, as shown in the
following example:

If (expression1)
Command1;
elsif (expression2)
command2;
elsif (expression3)
command3;
else
command4;

This example is synthesized as a priority if statement.

• If the first expression is found to be TRUE, the others are not evaluated.

• If unique or priority if-else statements are used, Vivado synthesis treats those as
parallel_case and full_case, respectively.

Case Statement
The syntax for a case statement is:

case (expression)
value1: statement1;
value2: statement2;
value3: statement3;
default: statement4;
endcase

The default statement inside a case statement is optional. The values are evaluated in order, so
if both value1 and value3 are true, statement1 is performed.

In addition to case, there are also the casex and casez statements. These statements let you
handle don't cares in the values (casex) or tri-state conditions in the values (casez).

If unique or priority case statements are used, Vivado synthesis treats those as parallel_case
and full_case respectively.

Loop Statements
Several types of loops that are supported in Vivado synthesis and SystemVerilog. One of the
most common is the for loop. Following is the syntax:

for (initialization; expression; step) statement;

A for loop starts with the initialization and evaluates the expression. If the expression evaluates
to 0, it stops and executes; otherwise, if it evaluates to 1, it continues with the statement. When
it is done with the statement, it executes the step function.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 286Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=286

• A repeat loop works by performing a function a stated number of times. Following is the
syntax:

repeat (expression) statement;

This syntax evaluates the expression to a number, and executes the statement the specified
number of times.

• The for-each loop executes a statement for each element in an array.

• The while loop takes an expression and a statement and executes the statement until the
expression is false.

• The do-while loop performs the same function as the while loop, but instead it tests the
expression after the statement.

• The forever loop executes all the time. To avoid infinite loops, use it with the break
statement to get out of the loop.

Tasks and Functions
Tasks
The syntax for a task declaration is:

task name (ports); [optional declarations]; statements;
endtask

Following are the two types of tasks:

• Static task: Declarations retain their previous values the next time the task is called.

• Automatic task: Declarations do not retain previous values.

CAUTION! Be careful when using these tasks; Vivado synthesis treats all tasks as automatic.

Many simulators default to static tasks if the static or automatic is not specified, so there is
a chance of simulation mismatches. The way to specify a task as automatic or static is the
following:

task automatic my_mult... //or
task static my_mult ...

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 287Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=287

Functions (Automatic and Static)
Functions are similar to tasks, but return a value. The format for a function is:

function data_type function_name(inputs);
declarations;
 statements;
endfunction : function_name

The final function_name is optional but does make the code easier to read.

Because the function returns a value, it must either have a return statement or specifically state
the function name:

function_name =

Like tasks, functions can also be automatic or static.

CAUTION! Vivado synthesis treats all functions as automatic. However, some simulators might behave
differently. Be careful when using these functions with third-party simulators.

Modules and Hierarchy
Using modules in SystemVerilog is very similar to Verilog, and includes additional features as
described in the following subsections.

Connecting Modules
There are three main ways to instantiate and connect modules:

• The first two are by ordered list and by name, as in Verilog.

• The third is by named ports.

If the names of the ports of a module match the names and types of signals in an instantiating
module, the lower-level module can by hooked up by name. For example:

module lower (output [4:0] myout; input clk;
input my_in;
input [1:0] my_in2;
... ...
endmodule
//in the instantiating level.
lower my_inst (.myout, .clk, .my_in, .my_in2);

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 288Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=288

Connecting Modules with Wildcard Ports
You can use wildcards when connecting modules. For example, from the previous example:

// in the instantiating module lower my_inst (.*);

This connects the entire instance, as long as the upper-level module has the correct names and
types.

In addition, these can be mixed and matched. For example:

lower my_inst (.myout(my_sig), .my_in(din), .*);

This connects the myout port to a signal called my_sig, the my_in port to a signal called din
and clk and my_in2 is hooked up to the clk and my_in2 signals.

Interfaces
Interfaces provide a way to specify communication between blocks. An interface is a group of
nets and variables that are grouped together to make connections between modules is easier to
write. The syntax for a basic interface is:

interface interface_name; parameters and ports; items;
endinterface : interface_name

The interface_name at the end is optional but makes the code easier to read. For an example,
see the following code:

module bottom1 (input clk,
input [9:0] d1,d2, input s1,
input [9:0] result, output logic sel,
output logic [9:0] data1, data2, output logic equal);
//logic// endmodule
module bottom2 (input clk, input sel,
input [9:0] data1, data2, output logic [9:0] result);
//logic// endmodule
module top (input clk, input s1,
input [9:0] d1, d2, output equal);
logic [9:0] data1, data2, result; logic sel;
bottom1 u0 (clk, d1, d2, s1, result, sel, data1, data2, equal); bottom2 u1
(clk, sel, data1, data2, result);
endmodule

The previous code snippet instantiates two lower-level modules with some signals that are
common to both.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 289Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=289

These common signals can all be specified with an interface:

interface my_int
logic sel;
logic [9:0] data1, data2, result;
endinterface : my_int

In the two bottom-level modules, you can change to:

module bottom1 (
 my_int int1,
 input clk,
input [9:0] d1, d2,
 input s1,
output logic equal);

and

module bottom2 (
my_int int1,
input clk);

Inside the modules, you can also change how you access sel, data1, data2, and result.
According to the module, this is because there are no ports of these names. Instead, there is a
port called my_int. This requires the following change:

if (sel)
result <= data1;
to:
if (int1.sel)
int1.result <= int1.data1;

Finally, in the top-level module, the interface must be instantiated, and the instances reference
the interface:

module top(
input clk,
input s1,
input [9:0] d1, d2,
output equal);
my_int int3(); //instantiation
bottom1 u0 (int3, clk, d1, d2, s1, equal);
bottom2 u1 (int3, clk);
endmodule

Modports
In the previous example, the signals inside the interface are no longer expressed as inputs or
outputs. Before the interface was added, the port sel was an output for bottom1 and an input
for bottom2.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 290Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=290

After the interface is added, that is no longer clear. In fact, the Vivado synthesis engine does not
issue a warning that these are now considered bidirectional ports, and in the netlist generated
with hierarchy, these are defined as inouts. This is not an issue with the generated logic, but it
can be confusing.

To specify the direction, use the modport keyword, as shown in the following code snippet:

interface my_int;
logic sel;
logic [9:0] data1, data2, result;
modport b1 (input result, output sel, data1, data2);
modport b2 (input sel, data1, data2, output result);
endinterface : my_int

In the bottom modules, use when declared:

module bottom1 (
my_int.b1 int1,

This correctly associates the inputs and outputs.

Miscellaneous Interface Features
In addition to signals, there can also be tasks and functions inside the interface. This lets you
create tasks specific to that interface. Interfaces can be parameterized. In the previous example,
data1, and data2 were both 10-bit vectors, but you can modify those interfaces to be any size
depending on a parameter that is set.

Packages
Packages provide an additional way to share different constructs. They have similar behavior
to VHDL packages. Packages can contain functions, tasks, types, and enums. The syntax for a
package is:

package package_name;
items
endpackage : package_name

The final package_name is not required, but it makes code easier to read. Packages are
referenced in other modules by the import command. Following is the syntax:

import package_name::item or *;

The import command must include items from the package to import or specify the whole
package.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 291Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=291

SystemVerilog Constructs
The following table lists the SystemVerilog constructs. Constructs that are not supported are
shaded in gray.

Table 30: SystemVerilog Constructs

Construct Status
Data type

Singular and aggregate types Supported

Nets and variables Supported

Variable declarations Supported

Vector declarations Supported

2-state (two-value) and 4-state (four-value) data types Supported

Signed and unsigned integer types Supported

User-defined types Supported

Enumerations Supported

Defining new data types as enumerated types Supported

Enumerated type ranges Supported

Type checking Supported

Enumerated types in numerical expressions Supported

Enumerated type methods Supported

Type parameters Supported

Type operator Supported

Cast operator Supported

Bitstream casting Supported

Const constants Supported

$cast dynamic casting Not Supported

Real, shortreal, and realtime data types Supported

Aggregate data types

Structures Supported

Packed/Unpacked structures Supported

Assigning to structures Supported

Packed arrays Supported

Unpacked arrays Supported

Operations on arrays Supported

Multidimensional arrays Supported

Indexing and slicing of arrays Supported

Array assignments Supported

Arrays as arguments to subroutines Supported

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 292Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=292

Table 30: SystemVerilog Constructs (cont'd)

Construct Status
Array manipulation methods (those that do not return
queue type)

Not Supported

Array querying functions Not Supported

Unpacked unions Supported

Tagged unions Not Supported(1)

Packed unions Supported

Processes

Combinational logic always_comb procedure Supported

Implicit always_comb sensitivities Supported

Latched logic always_latch procedure Supported

Sequential blocks Supported

Sequential logic always_ff procedure Supported

Iff event qualifier Supported

Aliases Supported

Conditional event controls Not Supported

Parallel blocks Not Supported

Procedural timing controls Not Supported

Sequence events Not Supported

Assignment statement

The continuous assignment statement Supported

Variable declaration assignment (variable initialization) Supported

Assignment-like contexts Supported

Array assignment patterns Supported

Structure assignment patterns Supported

Unpacked array concatenation Supported

Net aliasing Not Supported

Operators and expressions

$error, $warning, $info Supported only within initial blocks, and can only be used to
evaluate constant expressions; for example, parameters.

Aggregate expressions Supported

Arithmetic expressions with unsigned and signed types Supported

Assignment operators Supported

Assignment within an expression Supported

Concatenation operators Supported

Constant expressions Supported

Increment and decrement operators Supported

Operations on logic (4-state) and bit (2-state) types Supported

Wildcard equality operators Supported

Concatenation of stream_expressions Supported

Operators with real operands Not Supported

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 293Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=293

Table 30: SystemVerilog Constructs (cont'd)

Construct Status
Re-ordering of the generic stream Not Supported

Set membership operator Not Supported

Streaming concatenation as an assignment target (unpack) Supported

Streaming dynamically sized data Not Supported

Procedural programming statement

Case statement violation reports and multiple processes Supported

Loop statements Supported

Unique-if, unique0-if and priority-if Supported

Assert Statements Not Supported

If statement violation reports and multiple processes Not Supported

Jump statements Not Recommended

Pattern matching conditional statements Not Supported

Set membership case statement Not Supported

unique-case, unique0-case, and priority-case Supported

Violation reports generated by unique-if, unique0-if, and
priority-if constructs

Not Supported

Tasks

Coverage control functions Not Supported

Static and Automatic task Supported

Tasks memory usage and concurrent activation Not Supported

Functions

Return values and void functions Supported

Static and Automatic function Supported

Constant function Supported

Background process spawned by function call Not Supported

Virtual Functions Not Supported

Subroutine calls and argument passing

Argument binding by name Supported

Default argument value Supported

Pass by reference Supported

Pass by value Supported

Optional argument list Not Supported

Compiler Directives

Supported

Modules and Hierarchy

Default port values Supported

External modules Supported

Module instantiation syntax Supported

Member selects Supported

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 294Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=294

Table 30: SystemVerilog Constructs (cont'd)

Construct Status
Overriding module parameters Supported

Top-level modules and $root Supported

Binding auxiliary code to scopes or instances Not Supported

Hierarchical names Supported

Upwards name referencing Not Supported

Interfaces

Interface syntax Supported

Modport expressions Supported

Parameterized interfaces Supported

Ports in interfaces Supported

Array of interface Supported

Clocking blocks and modports Not Supported

Dynamic Arrays Not Supported

Example of exporting tasks and functions Not Supported

Example of multiple task exports Not Supported

Interfaces and specify blocks Not Supported

Nested interface Not Supported

Virtual interfaces Not Supported

Packages

Package declarations Supported

Referencing data in packages Supported

Using packages in module headers Supported

Exporting imported names from packages Supported

The std built-in package Not Supported

Generate constructs

Supported

config statements

Supported

Class

Instances Supported

Member and method access Supported

Constructors Supported

Static class member and methods Supported

Access using 'this' and 'super' Supported

Object assignment Supported

Inheritance Supported

Data hiding and encapsulation Supported

Scope and resolution operator (::) Supported

Nested classes Supported

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 295Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=295

Table 30: SystemVerilog Constructs (cont'd)

Construct Status
Objects inside structs Supported

Virtual Classes Not Supported

Abstract classes Not Supported

Assignment with base class object Not Supported

Object comparison with NULL Not Supported

Notes:
1. If used, tagged is ignored, and the tool produces a warning message.

Chapter 10: SystemVerilog Support

UG901 (v2025.1) June 11, 2025
Synthesis 296Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=296

Chapter 11

Mixed Language Support

Introduction
AMD Vivado™ synthesis supports VHDL and Verilog mixed language projects except as
otherwise noted.

Mixing VHDL and Verilog
The VHDL and Verilog files that make up a project are specified in a unique HDL project file. The
rules for mixing VHDL and Verilog are, as follows:

• Mixing VHDL and Verilog is restricted to design unit (cell) instantiation.

• A Verilog module can be instantiated in VHDL code and a VHDL entity can be instantiated
in Verilog code. No other mixing between VHDL and Verilog is supported. For example, you
cannot embed Verilog source code directly in VHDL source code.

• In a VHDL design, a restricted subset of VHDL types, generics, and ports is allowed on
the boundary to a Verilog module. In a Verilog design, a restricted subset of Verilog types,
parameters, and ports is allowed on the boundary to a VHDL entity or configuration. See
VHDL and Verilog Boundary Rules.

• Vivado synthesis binds VHDL design units to a Verilog module during HDL elaboration.

Instantiation
For instantiation, the following rules apply:

• Component instantiation based on default binding is used for binding Verilog modules to a
VHDL design unit.

• For a Verilog module instantiation in VHDL, Vivado synthesis does not support:

○ Configuration specification

Chapter 11: Mixed Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 297Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=297

○ Direct instantiation

○ Component configurations

Instantiating VHDL in Verilog
To instantiate a VHDL design unit in a Verilog design, do the following:

1. Declare a module name with the same as name as the VHDL entity that you want to
instantiate (optionally followed by an architecture name).

2. Perform a normal Verilog instantiation.

Instantiating Verilog in VHDL
To instantiate a Verilog module in a VHDL design, do the following:

1. Declare a VHDL component with the same name as the Verilog module to be instantiated.
VHDL direct entity instantiation is not supported when instantiating a Verilog module.

2. Observe case sensitivity.

3. Instantiate the Verilog component as if you were instantiating a VHDL component.

• Binding a component to a specific design unit from a specific library by using a VHDL
configuration declaration is not supported. Only the default Verilog module binding is
supported.

• The only Verilog construct that can be instantiated in a VHDL design is a Verilog module.
No other Verilog constructs are visible to VHDL code.

• During elaboration, Vivado synthesis treats all components subject to default binding as
design units with the same name as the corresponding component name.

• During binding, Vivado synthesis treats a component name as a VHDL design unit name
and searches for it in the logical library work.

○ If Vivado synthesis finds a VHDL design unit, Vivado synthesis binds it.

○ If Vivado synthesis does not find a VHDL design unit, it treats the component name
as a Verilog module name and searches for it using a case sensitive search. Vivado
synthesis selects and binds the first Verilog module matching the name.

• Because libraries are unified, a Verilog cell with the same name as a VHDL design unit
cannot exist in the same logical library.

• A newly-compiled cell or unit overrides a previously-compiled cell or unit.

Chapter 11: Mixed Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 298Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=298

Instantiation Limitations

VHDL in Verilog

Vivado synthesis has the following limitations when instantiating a VHDL design unit in a Verilog
module:

• The only VHDL construct that can be instantiated in a Verilog design is a VHDL entity.
No other VHDL constructs are visible to Verilog code. Vivado synthesis uses the entity-
architecture pair as the Verilog-VHDL boundary.

• Use explicit port association. Specify formal and effective port names in the port map.

• All parameters are passed at instantiation, even if they are unchanged.

• The override is named and not ordered. The parameter override occurs through instantiation,
not through defparam.

Acceptable Example

ff #(.init(2'b01)) u1 (.sel(sel), .din(din), .dout(dout));

Unacceptable Example

ff u1 (.sel(sel), .din(din), .dout(dout));
defpa u1.init = 2'b01;

Verilog in VHDL

Vivado synthesis has the following limitations when instantiating a Verilog module in a VHDL
design unit:

• Use explicit port association. Specify formal and effective port names in the port map.

• All parameters are passed at instantiation, even if they are unchanged.

• The parameter override is named and not ordered. The parameter override occurs through
instantiation, and not through defparam.

• Only component instantiation is supported when instantiating a Verilog module in VHDL.
Direct entity instantiation is not supported.

VHDL and Verilog Libraries
For libraries with mixed VHDL and Verilog, libraries are handled as follows:

• VHDL and Verilog libraries are logically unified.

Chapter 11: Mixed Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 299Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=299

• The default work directory for compilation is available to both VHDL and Verilog.

• Mixed language projects accept a search order for searching unified logical libraries in design
units (cells). Vivado synthesis follows this search order during elaboration to select and bind a
VHDL entity or a Verilog module to the mixed language project.

VHDL and Verilog Boundary Rules
VHDL and Verilog boundary rules are, as follows:

• The boundary between VHDL and Verilog is enforced at the design unit level.

• A VHDL entity or architecture can instantiate a Verilog module. See Instantiating VHDL in
Verilog in the following section.

• A Verilog module can instantiate a VHDL entity. See Instantiating Verilog in VHDL.

Binding
Vivado synthesis performs binding during elaboration. During binding, the following actions
occur:

1. Vivado synthesis searches for a Verilog module with the same name as the instantiated
module with a user-specified list of unified logical libraries and with a user-specified order.

2. Vivado synthesis ignores any architecture name specified in the module instantiation.

3. If Vivado synthesis finds the Verilog module, synthesis binds the name.

4. If Vivado synthesis does not find the Verilog module, it treats the Verilog module as a VHDL
entity, and searches for the first VHDL entity matching the name using a case-sensitive
search for a VHDL entity in the user-specified list of unified logical libraries or the user-
specified order. This assumes that a VHDL design unit is stored with an extended identifier.

Generics Support
Vivado synthesis supports the following VHDL generic types and their Verilog equivalents for
mixed language designs: integer, real, string, boolean.

Chapter 11: Mixed Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 300Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=300

Port Mapping
Vivado synthesis supports port mapping for VHDL instantiated in Verilog and Verilog instantiated
in VHDL.

Port Mapping for VHDL Instantiated in Verilog
When a VHDL entity is instantiated in a Verilog module, formal ports can have the following
characteristics:

• Allowed directions: in, out, inout

• Unsupported directives: buffer, linkage

• Allowed data types: bit, bit_vector, std_logic, std_ulogic, std_logic_vector,
std_ulogic_vector

Port Mapping for Verilog Instantiated in VHDL
When a Verilog module is instantiated in a VHDL entity or architecture, formal ports can have
the following characteristics:

• Allowed directions are: input, output, and inout.

• Allowed data types are: wire and reg

• Vivado synthesis does not support:

○ Connection to bidirectional pass options in Verilog.

○ Unnamed Verilog ports for mixed language boundaries.

Use an equivalent component declaration to connect to a case sensitive port in a Verilog module.
Vivado synthesis assumes Verilog ports are in all lowercase.

Chapter 11: Mixed Language Support

UG901 (v2025.1) June 11, 2025
Synthesis 301Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=301

Appendix A

Additional Resources and Legal
Notices

Finding Additional Documentation
Technical Information Portal

The AMD Technical Information Portal is an online tool that provides robust search and
navigation for documentation using your web browser. To access the Technical Information
Portal, go to https://docs.amd.com.

Documentation Navigator

Documentation Navigator (DocNav) is an installed tool that provides access to AMD Adaptive
Computing documents, videos, and support resources, which you can filter and search to find
information. To open DocNav:

• From the AMD Vivado™ IDE, select Help → Documentation and Tutorials.

• On Windows, click the Start button and select Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Note: For more information on DocNav, refer to the Documentation Navigator User Guide (UG968).

Design Hubs

AMD Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• Go to the Design Hubs web page.

Appendix A: Additional Resources and Legal Notices

UG901 (v2025.1) June 11, 2025
Synthesis 302Send Feedback

https://docs.amd.com
https://docs.amd.com/access/sources/dita/map?isLatest=true&ft:locale=en-US&url=Xilinx-Documentation-Navigator-User-Guide
https://docs.amd.com/p/design-hubs
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=302

Support Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Support.

References
These documents provide supplemental material useful with this guide:

Vivado Documentation

1. UltraScale Architecture and Product Data Sheet: Overview (DS890)

2. 7 Series DSP48E1 Slice User Guide (UG479)

3. UltraScale Architecture Memory Resources User Guide (UG573)

4. Vivado Design Suite Tcl Command Reference Guide (UG835)

5. Vivado Design Suite User Guide: Design Flows Overview (UG892)

6. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

7. Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

8. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

9. Vivado Design Suite User Guide: Designing with IP (UG896)

10. Vivado Design Suite User Guide: I/O and Clock Planning (UG899)

11. Vivado Design Suite User Guide: Logic Simulation (UG900)

12. Vivado Design Suite User Guide: Using Constraints (UG903)

13. Vivado Design Suite User Guide: Implementation (UG904)

14. Vivado Design Suite User Guide: Design Analysis and Closure Techniques (UG906)

15. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)

16. Vivado Design Suite User Guide: Programming and Debugging (UG908)

17. ISE to Vivado Design Suite Migration Guide (UG911)

18. Vivado Design Suite Properties Reference Guide (UG912)

19. Vivado Design Suite Tutorial: Using Constraints (UG945)

20. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

21. Vivado Design Suite User Guide: Creating and Packaging Custom IP (UG1118)

22. Vivado Design Suite Tutorial: Creating, Packaging Custom IP (UG1119)

Appendix A: Additional Resources and Legal Notices

UG901 (v2025.1) June 11, 2025
Synthesis 303Send Feedback

https://adaptivesupport.amd.com/
https://docs.amd.com/go/en-US/ds890-ultrascale-overview
https://docs.amd.com/go/en-US/ug479_7Series_DSP48E1
https://docs.amd.com/go/en-US/ug573-ultrascale-memory-resources
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug835-vivado-tcl-commands&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug892-vivado-design-flows-overview&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug893-vivado-ide&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug894-vivado-tcl-scripting&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug895-vivado-system-level-design-entry&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug896-vivado-ip&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug899-vivado-io-clock-planning&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug900-vivado-logic-simulation&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug903-vivado-using-constraints&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug904-vivado-implementation&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug906-vivado-design-analysis&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug907-vivado-power-analysis-optimization&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug908-vivado-programming-debugging&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug911-vivado-migration&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug912-vivado-properties&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug945-vivado-using-constraints-tutorial&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug973-vivado-release-notes-install-license&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug1118-vivado-creating-packaging-custom-ip&ft:locale=en-US
https://docs.amd.com/access/sources/dita/map?isLatest=true&url=ug1119-vivado-creating-packaging-ip-tutorial&ft:locale=en-US
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=303

23. Vivado Design Suite Documentation

Synthesis Coding Examples

Coding Examples

Training Resources

1. Vivado Design Suite QuickTake Video: Synthesis Options

2. Vivado Design Suite QuickTake Video: Creating and Managing Runs

3. Vivado Design Suite QuickTake Video: Advanced Synthesis using Vivado

4. Vivado Design Suite QuickTake Video Tutorials

Revision History
The following table shows the revision history for this document.

Section Revision Summary
06/11/2025 Version 2025.1

Linter with OOC Runs Added new section

Running Synthesis with Tcl Updated section

Vivado Preconfigured Strategies Updated section

Verilog Reserved Keywords Updated section

Please Read: Important Legal Notices
The information presented in this document is for informational purposes only and may contain
technical inaccuracies, omissions, and typographical errors. The information contained herein
is subject to change and may be rendered inaccurate for many reasons, including but not
limited to product and roadmap changes, component and motherboard version changes, new
model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security
vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation
to update or otherwise correct or revise this information. However, AMD reserves the right to
revise this information and to make changes from time to time to the content hereof without
obligation of AMD to notify any person of such revisions or changes. THIS INFORMATION IS
PROVIDED "AS IS." AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES,
ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

Appendix A: Additional Resources and Legal Notices

UG901 (v2025.1) June 11, 2025
Synthesis 304Send Feedback

https://www.xilinx.com/products/design-tools/vivado.html?resultsTablePreSelect=xlnxdocumenttypes:SeeAll#documentation
https://www.xilinx.com/member/forms/download/design-license.html?cid=467de7a9-09bb-4003-bead-69a95dcb9522&filename=ug901-vivado-synthesis-examples.zip
https://www.xilinx.com/video/hardware/synthesis-options.html
https://www.xilinx.com/video/hardware/creating-and-managing-runs.html
https://www.xilinx.com/video/hardware/creating-and-managing-runs.html
https://www.xilinx.com/products/design-tools/vivado.html#video
https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=304

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR
FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY
PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL
DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF
AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS
A SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY
TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2025 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, UltraScale,
UltraScale+, Versal, Virtex, Vivado, and combinations thereof are trademarks of Advanced Micro
Devices, Inc. Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

Appendix A: Additional Resources and Legal Notices

UG901 (v2025.1) June 11, 2025
Synthesis 305Send Feedback

https://www.amd.com/en/forms/feedback/document-feedback.html?docId=UG901&Title=Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2025.1&docPage=305

	Vivado Design Suite User Guide
	Table of Contents
	Ch. 1: Introduction
	Navigating Content by Design Process

	Ch. 2: Vivado Synthesis
	Synthesis Methodology
	Using Synthesis
	Using Synthesis Settings
	Tcl Commands to Get Property

	Creating Run Strategies
	Setting Synthesis Inputs
	Controlling File Compilation Order
	Defining Global Include Files

	RTL Linter
	Running the Linter
	Linter Output
	Linter with OOC Runs
	Creating Waivers for the RTL Linter
	List of Linter Rules

	Running Synthesis
	Using the Design Runs Window
	Setting the Active Run
	Launching a Synthesis Run

	Setting a Bottom-Up, Out-of-Context Flow
	Manually Setting a Bottom-Up Flow and Importing Netlists
	Creating a Lower-Level Netlist
	Instantiating the Lower-Level Netlist in a Design
	Putting Together the Manual Bottom-Up Components

	Incremental Synthesis
	Setting Up Incremental Synthesis in Project Mode
	Using Incremental Synthesis in Non-Project Mode
	Interpreting the Log File
	Re-Synthesizing the Full Design

	Using Third-Party Synthesis Tools with Vivado IP
	Moving Processes to the Background
	Monitoring the Synthesis Run
	Flow After Synthesis Completion
	Analyzing Synthesis Results
	Using the Synthesized Design Environment
	Exploring the Logic
	Exploring the Logic Hierarchy
	Exploring the Logical Schematic

	Running Timing Analysis
	Running Synthesis with Tcl
	Tcl Script Example
	Setting Constraints

	Multi-Threading in RTL Synthesis
	Vivado Preconfigured Strategies

	Ch. 3: Synthesis Attributes
	Introduction
	Supported Attributes
	ASYNC_REG
	ASYNC_REG Verilog Example
	ASYNC_REG VHDL Examples

	BLACK_BOX
	BLACK_BOX Verilog Example
	BLACK_BOX VHDL Example

	CASCADE_HEIGHT
	CASCADE_HEIGHT Verilog example
	CASCADE_HEIGHT VHDL example

	CLOCK_BUFFER_TYPE
	CLOCK_BUFFER_TYPE Verilog example
	CLOCK_BUFFER_TYPE VHDL example
	CLOCK_BUFFER_TYPE XDC Example

	CRITICAL_SIG_OPT
	CRITICAL_SIG_OPT Verilog Example
	CRITICAL_SIG_OPT VHDL Example
	CRITICAL_SIG_OPT XDC Example

	DIRECT_ENABLE
	DIRECT_ENABLE Verilog Example
	DIRECT_ENABLE VHDL Example
	DIRECT_ENABLE XDC Example

	DIRECT_RESET
	DIRECT_RESET Verilog Example
	DIRECT_RESET VHDL Example
	DIRECT_RESET XDC Example

	DONT_TOUCH
	DONT_TOUCH Verilog Examples
	Verilog Wire Example
	Verilog Module Example
	Verilog Instance Example

	DONT_TOUCH VHDL Examples
	VHDL Signal Example
	VHDL Entity Example
	VHDL Component Example
	VHDL Example on Architecture

	DSP_FOLDING
	DSP_FOLDING Verilog Example
	DSP_FOLDING VHDL Example

	DSP_FOLDING_FASTCLOCK
	DSP_FOLDING_FASTCLOCK Verilog Example
	DSP_FOLDING_FASTCLOCK VHDL Example

	EXTRACT_ENABLE
	EXTRACT_ENABLE Verilog Example
	EXTRACT_ENABLE VHDL Example
	EXTRACT_ENABLE XDC Example

	EXTRACT_RESET
	EXTRACT_RESET Verilog Example
	EXTRACT_RESET VHDL Example
	EXTRACT_RESET XDC Example

	FSM_ENCODING
	FSM_ENCODING Verilog Example
	FSM_ENCODING VHDL Example

	FSM_SAFE_STATE
	FSM_SAFE_STATE Verilog Example
	FSM_SAFE_STATE VHDL Example

	FULL_CASE (Verilog Only)
	FULL_CASE Verilog Example

	GATED_CLOCK
	GATED_CLOCK Verilog Example
	GATED_CLOCK VHDL Example
	GATED_CLOCK XDC Example

	IOB
	IOB Verilog Example
	IOB VHDL Example

	IO_BUFFER_TYPE
	IO_BUFFER_TYPE Verilog Example
	IO_BUFFER_TYPE VHDL Example

	KEEP
	KEEP Verilog Example
	KEEP VHDL Example

	KEEP_HIERARCHY
	KEEP_HIERARCHY Verilog Example
	KEEP_HIERARCHY VHDL Example
	KEEP_HIERARCHY XDC Example

	MARK_DEBUG
	Syntax
	Verilog Syntax
	Verilog Syntax Example
	VHDL Syntax
	VHDL Syntax Example
	XDC Syntax
	XDC Syntax Example

	MAX_FANOUT
	MAX_FANOUT Verilog Example
	MAX_FANOUT VHDL Example
	MAX_FANOUT XDC Examples

	PARALLEL_CASE (Verilog Only)
	RAM_DECOMP
	RAM_DECOMP Verilog Example
	RAM_DECOMP VHDL Example
	RAM_DECOMP XDC Example

	RAM_STYLE
	RAM_STYLE Verilog Example
	RAM_STYLE VHDL Example

	RETIMING_BACKWARD
	RETIMING_BACKWARD Verilog Example
	RETIMING_BACKWARD VHDL Example
	RETIMING_BACKWARD XDC Example

	RETIMING_FORWARD
	RETIMING_FORWARD Verilog Example
	RETIMING_FORWARD VHDL Example
	RETIMING_FORWARD XDC Example

	ROM_STYLE
	ROM_STYLE Verilog Example
	ROM_STYLE VHDL Example

	RW_ADDR_COLLISION
	RW_ADDR_COLLISION Verilog Example
	RW_ADDR_COLLISION VHDL Example

	SHREG_EXTRACT
	SHREG_EXTRACT Verilog Example
	SHREG_EXTRACT VHDL Example

	SRL_STYLE
	SRL_STYLE Verilog Example
	SRL_STYLE VHDL Example
	SRL_STYLE XDC Example

	TRANSLATE_OFF/TRANSLATE_ON OFF/ON
	TRANSLATE_OFF/TRANSLATE_ON OFF/ON Verilog Example
	TRANSLATE_OFF/TRANSLATE_ON OFF/ON VHDL Example

	USE_DSP
	USE_DSP Verilog Example
	USE_DSP VHDL Example

	Custom Attribute Support in Vivado
	Example with Custom Attribute on Hierarchy (Verilog)
	Example with Custom Attribute on Hierarchy (VHDL)
	Example with Custom Attribute on a Signal (Verilog)
	Example with Custom Attribute on a Signal (VHDL)

	Using Synthesis Attributes in XDC files
	Synthesis Attribute Propagation Rules

	Ch. 4: Using Block Synthesis Strategies
	Overview
	Setting a Block-Level Flow
	Block-Level Flow Options

	Ch. 5: HDL Coding Techniques
	Introduction
	Advantages of VHDL
	Advantages of Verilog
	Advantages of SystemVerilog
	Flip-Flops, Registers, and Latches
	Flip-Flops and Registers Control Signals
	Coding Guidelines
	Flip-Flops and Registers Inference
	Flip-Flops and Registers Initialization
	Flip-Flops and Registers Reporting
	Flip-Flops and Registers Reporting Example
	Flip-Flops and Registers Coding Examples
	Register with Rising-Edge Coding Verilog Example
	Flip-Flop Registers with Rising-Edge Clock Coding VHDL Example

	Latches
	Latches Reporting Example
	Latch With Positive Gate and Asynchronous Reset Coding Verilog Example
	Latch With Positive Gate and Asynchronous Reset Coding VHDL Example

	Tristates
	Tristate Implementation
	Tristate Reporting Example
	Tristate Description Using Concurrent Assignment Coding Verilog Example
	Tristate Description Using Combinatorial Process Implemented with OBUFT Coding VHDL Example
	Tristate Description Using Combinatorial Always Block Coding Verilog Example

	Shift Registers
	Static Shift Register Elements
	Shift Registers SRL-Based Implementation
	Shift Registers Coding Examples
	32-Bit Shift Register Coding Example One (VHDL)
	32-Bit Shift Register Coding Example Two (VHDL)
	8-Bit Shift Register Coding Example One (Verilog)
	32-Bit Shift Register Coding Example Two (Verilog)
	SRL Based Shift Registers Reporting

	Dynamic Shift Registers
	Dynamic Shift Registers Coding Examples
	32-Bit Dynamic Shift Registers Coding Verilog Example
	32-Bit Dynamic Shift Registers Coding VHDL Example

	Multipliers
	Multipliers Implementation
	DSP Block Implementation

	Multipliers Coding Examples
	Unsigned 16x24-Bit Multiplier Coding Verilog Example
	Unsigned 16x16-Bit Multiplier Coding VHDL Example
	Multiply-Add and Multiply-Accumulate
	Multiply-Add and Multiply-Accumulate Implementation
	Macro Implementation on DSP Block Resources

	Complex Multiplier Examples
	Complex Multiplier Verilog Example
	Complex Multiplier Examples (VHDL)

	Pre-Adders in the DSP Block
	Pre-Adder Dynamically Configured Followed by Multiplier and Post-Adder (Verilog)
	Pre-Adder Dynamically Configured Followed by Multiplier and Post-Adder (VHDL)

	Using the Squarer in the UltraScale DSP Block
	Square of a Difference (Verilog)
	Square of a Difference (VHDL)

	FIR Filters
	8-Tap Even Symmetric Systolic FIR (Verilog)
	8-Tap Even Symmetric Systolic FIR (VHDL)

	Convergent Rounding (LSB Correction Technique)
	Rounding to Even (Verilog)
	Rounding to Even (VHDL)
	Rounding to Odd (Verilog)
	Rounding to Odd (VHDL)

	RAM HDL Coding Techniques
	Choosing Between Distributed RAM and Dedicated Block RAM
	Memory Inference Capabilities
	UltraRAM Coding Templates

	Inferring UltraRAM in Vivado Synthesis
	Overview of the UltraRAM Primitive
	Description of the UltraRAM Primitive
	Differences between UltraRAM and Block RAM
	Using UltraRAM Inference
	Attributes for Controlling UltraRAM
	RAM_STYLE
	RAM_STYLE Verilog Example
	RAM_STYLE VHDL Example

	CASCADE_HEIGHT
	CASCADE_HEIGHT Verilog Example
	CASCADE_HEIGHT VHDL Example

	Inference Capabilities
	Pipelining the RAM
	Creating Pipeline Example 1: 8K x 72
	Creating Pipeline Example 2 : 8K x 80
	Creating Pipeline Example 3: 16K x 70 CASCADE_HEIGHT Set to 3

	RAM HDL Coding Guidelines
	Block RAM Read/Write Synchronization Modes
	Distributed RAM Examples
	Dual-Port RAM with Asynchronous Read Coding Verilog Example
	Single-Port RAM with Asynchronous Read Coding Example (VHDL)

	Single-Port Block RAMs
	Single-Port Block RAM with Resettable Data Output (Verilog)
	Single Port Block RAM with Resettable Data Output (VHDL)
	Single-Port Block RAM Write-First Mode (Verilog)
	Single-Port Block RAM Write-First Mode (VHDL)
	Single-Port RAM with Read First (VHDL)
	Single-Port Block RAM No-Change Mode (Verilog)
	Single-Port Block RAM No-Change Mode (VHDL)

	Simple Dual-Port Block RAM Examples
	Simple Dual-Port Block RAM with Single Clock (Verilog)
	Simple Dual-Port Block RAM with Single Clock (VHDL)
	Simple Dual-Port Block RAM with Dual Clocks (Verilog)
	Simple Dual-Port Block RAM with Dual Clocks (VHDL)

	True Dual-Port Block RAM Examples
	Dual-Port Block RAM with Two Write Ports in Read First Mode Verilog Example
	Dual-Port Block RAM with Two Write Ports in Read-First Mode (VHDL)
	Block RAM with Optional Output Registers (Verilog)
	Block RAM with Optional Output Registers (VHDL)

	Byte Write Enable (Block RAM)
	Byte Write Enable—True Dual Port with Byte-Wide Write Enable (Verilog)
	Byte Write Enable—True Dual Port READ_FIRST Mode (VHDL)
	Byte Write Enable—WRITE_FIRST Mode (VHDL)
	Byte-Wide Write Enable—NO_CHANGE Mode (Verilog)
	Byte-Wide Write Enable—NO_CHANGE Mode (VHDL)

	Asymmetric RAMs
	Simple Dual-Port Asymmetric RAM When Read is Wider than Write (VHDL)
	Dual-Port Asymmetric RAM When Read is Wider than Write (Verilog)
	Simple Dual-Port Asymmetric RAM When Write is Wider than Read (Verilog)
	Simple Dual Port Asymmetric RAM When Write Wider than Read (VHDL)
	True Dual Port Asymmetric RAM Read First (Verilog)
	True Dual Port Asymmetric RAM Read First (VHDL)
	True Dual Port Asymmetric RAM Write First (Verilog)
	True Dual Port Asymmetric RAM Write First (VHDL)

	Initializing RAM Contents
	Specifying RAM Initial Contents in the HDL Source Code
	VHDL Coding Examples
	Verilog Coding Example

	Specifying RAM Initial Contents in an External Data File
	Verilog Code Example
	VHDL Code Example
	Initializing Block RAM (Verilog)
	Initializing Block RAM (VHDL)
	Initializing Block RAM From an External Data File (Verilog)
	Initializing Block RAM From an External Data File (VHDL)

	3D RAM Inference
	RAMs Using 3D Arrays
	3D RAM Inference Single Port (Verilog)
	3D RAM Inference Single Port (VHDL)
	3D RAM Inference Simple Dual Port (Verilog)
	3D RAM Inference - Simple Dual Port (VHDL)
	3D RAM Inference True Dual Port (Verilog)

	RAM Inference Using Structures and Records
	RAM Inference Single Port Structure (Verilog)
	RAM Inference Single Port Structure (VHDL)
	RAM Inference - Simple Dual Port Structure (SystemVerilog)
	RAM Inference - Simple Dual Port Record (VHDL)
	RAM Inference True Dual Port Structure (SystemVerilog)
	RAM Inference True Dual Port Record (VHDL)

	Black Boxes
	Black Box Verilog Example
	Black Box VHDL Example

	FSM Components
	Vivado Synthesis Features
	FSM Description
	FSM Diagrams
	FSM Registers
	Auto State Encoding
	One-Hot State Encoding
	Gray State Encoding
	Johnson State Encoding
	Sequential State Encoding
	FSM Example (Verilog)
	FSM Example with Single Sequential Block (VHDL)

	FSM Reporting

	ROM HDL Coding Techniques
	ROM Using Block RAM Resources (Verilog)
	ROM Inference on an Array (VHDL)

	Ch. 6: VHDL Support
	Introduction
	Supported and Unsupported VHDL Data Types
	Unsupported Data Types
	VHDL Data Types
	VHDL Predefined Enumerated Types
	Supported Overloaded Enumerated Types
	VHDL User-Defined Enumerated Types
	User-Defined Enumerated Types Coding Example (VHDL)

	Supported VHDL Types
	VHDL Integer Types
	VHDL Multi-Dimensional Array Types
	Fully Constrained Array Type Coding Example
	Array Declared as a Matrix Coding Example
	Multi-Dimensional Array Signals and Variables Coding Examples
	VHDL Record Types Code Example

	VHDL Objects
	Signals
	Variables
	Constants
	Operators
	Shift Operator Examples

	VHDL Entity and Architecture Descriptions
	VHDL Circuit Descriptions
	VHDL Entity Declarations
	Constrained and Unconstrained Ports
	Buffer Port Mode
	NOT RECOMMENDED Coding Example WITH Buffer Port Mode
	Dropping Buffer Port Mode
	RECOMMENDED Coding Example WITHOUT Buffer Port Mode

	VHDL Architecture Declarations
	VHDL Architecture Declaration Coding Example

	VHDL Component Instantiation
	Elements of Component Instantiation Statement
	Component Instantiation (VHDL)

	Recursive Component Instantiation
	Recursive Component Instantiation Example (VHDL)

	VHDL Component Configuration
	VHDL GENERICS
	Declaring Generics
	GENERIC Parameters Example

	VHDL Combinatorial Circuits
	VHDL Concurrent Signal Assignments
	Simple Signal Assignment Example
	Concurrent Selection Assignment Example (VHDL)

	Generate Statements
	Using for-generate Statements
	Example of for-generate Statement (VHDL)

	Using if-generate Statements
	Example of for-generate Nested in an if-generate Statement (VHDL)

	Combinatorial Processes
	Memory Elements
	Sensitivity List
	Missing Signals
	Variable and Signal Assignments
	Signal Assignment in a Process Example
	Variable and Signal Assignment in a Process Example (VHDL)
	Using if-else Statements
	Example of if-else Statement (VHDL)

	Using case Statements
	Example of case Statement (VHDL)

	Using for-loop Statements
	Example of for-loop Statement (VHDL)

	VHDL Sequential Logic
	Sequential Process With a Sensitivity List Syntax
	Asynchronous Control Logic Modelization
	Clock Event Statements
	Missing Signals
	VHDL Sequential Processes Without a Sensitivity List
	Sequential Process Using a Wait Statement Coding Example (VHDL)
	Describing a Clock Enable in the wait Statement Example (VHDL)
	Describing a Clock Enable After the Wait Statement Example (VHDL)
	Describing Synchronous Control Logic

	VHDL Initial Values and Operational Set/Reset
	Initializing Registers Example One (VHDL)
	Initializing Registers Example Two (VHDL)

	VHDL Functions and Procedures
	Function Declared Within a Package Example (VHDL)
	Procedure Declared Within a Package Example (VHDL)
	Recursive Functions Example (VHDL)
	VHDL Assert Statements

	VHDL Predefined Packages
	VHDL Predefined Standard Packages
	VHDL IEEE Packages
	VHDL Legacy Packages
	VHDL Predefined IEEE Real Type and IEEE Math_Real Packages
	VHDL Real Number Constants
	VHDL Real Number Functions

	Defining Your Own VHDL Packages
	Package Declaration Syntax
	Accessing VHDL Packages

	VHDL Constructs Support Status
	VHDL RESERVED Words

	Ch. 7: VHDL-2008 Language Support
	Introduction
	Setting up Vivado to use VHDL-2008
	Supported VHDL-2008 Features
	Operators
	Matching Relational Operators

	Maximum and Minimum Operators
	Shift Operators (rol, ror, sll, srl, sla, and sra)
	Unary Logical Reduction Operators
	Mixing Array and Scalar Logical Operators
	Statements
	If-else- If and Case Generate

	Sequential Assignments
	Using case? Statements
	Using select? Statements
	Using Slices in Aggregates
	Types
	Unconstrained Element Types

	Using boolean_vector and integer_vector Array Types
	Miscellaneous
	Reading Output Ports
	Expressions in Port Maps
	Using the process (all) Statement
	Referencing Generics in Generic Lists
	Generics in Packages
	Generic Types in Entities
	Functions in Generics
	Relaxed Return Rules for Function Return Values
	Extensions to Globally Static and Locally Static Expressions
	Static Ranges and Integer Expressions in Range Bounds
	Block Comments

	VHDL-2008 RESERVED Words
	VHDL-2008 Constructs

	Ch. 8: VHDL-2019 Language Support
	Introduction
	Setting up Vivado to use VHDL-2019
	Supported VHDL-2019 Features
	Interfaces
	Conditional Identifiers
	64-bit Integers

	Ch. 9: Verilog Language Support
	Introduction
	Verilog Design
	Verilog Functionality
	Verilog-2001 Support
	Verilog-2001 Variable Part Selects
	Variable Part Selects Verilog Coding Example

	Structural Verilog
	Built-In Logic Gates
	2-Input XOR Function Example
	Half-Adder Example

	Instantiating Pre-Defined Primitives
	Instantiating an FDC and a BUFG Primitive Example
	Verilog Parameters
	Parameters Example (Verilog)
	Parameter and Generate-For Example (Verilog)

	Verilog Parameter and Attribute Conflicts
	Verilog Usage Restrictions
	Case Sensitivity

	Blocking and Non-Blocking Assignments
	Unacceptable Example One
	Unacceptable Example Two

	Integer Handling
	Integer Handling in Verilog Case Statements
	Integer Handling in Verilog Case Statements Example
	Integer Handling in Concatenations

	Verilog-2001 Attributes and Meta Comments
	Verilog-2001 Attributes

	Verilog Meta Comments
	Verilog Meta Comment Support

	Verilog Meta Comment Syntax
	Verilog Meta Comment Syntax Examples

	Verilog Constructs
	Verilog System Tasks and Functions
	Using Conversion Functions
	Loading Memory Contents With File I/O Tasks
	Supported Escape Sequences

	Verilog Primitives
	Gate-Level Primitive Syntax
	Gate-Level Primitive Example
	Unsupported Verilog Gate Level Primitives

	Verilog Reserved Keywords
	Behavioral Verilog
	Variables in Behavioral Verilog
	Variable Declarations Example

	Initial Values
	Assigning an Initial Value to a Register
	Initial Values Example One
	Initial Values Example Two

	Arrays of Reg and Wire
	Arrays Example One
	Arrays Example Two

	Multi-Dimensional Arrays
	Multi-Dimensional Array Example One
	Multi-Dimensional Array Example Two

	Data Types
	Supported Data Types
	Net and Registers
	Behavioral Data Types Example

	Legal Statements
	Expressions
	Logical Operators
	Supported Operators
	Supported Expressions
	Evaluating Expressions
	Evaluated Expressions Based on Most Frequently Used Operators

	Blocks

	Modules
	Module Declaration
	Circuit I/O Ports
	Behavioral Verilog Module Declaration Example One
	Behavioral Verilog Module Declaration Example Two

	Module Instantiation
	Behavioral Verilog Module Instantiation Example

	Continuous Assignments
	Explicit Continuous Assignments
	Implicit Continuous Assignments

	Procedural Assignments
	Combinatorial Always Blocks
	Delay Time Control Statement
	Event Control Time Control Statement
	Using if-else Statements
	Example of if-else Statement

	Case Statements
	Multiplexer Case Statement Example (Verilog)
	Avoiding Priority Processing

	For and Repeat Statements
	Using For Statements
	Repeat Statements
	Using While Loops
	Example of While Loop

	Using Sequential Always Blocks
	Sequential Always Block Examples

	Using assign and deassign Statements
	Assignment Extension Past 32-Bits

	Tasks and Functions
	Tasks and Functions Examples
	Using Recursive Tasks and Functions
	Example of Recursive Tasks and Functions

	Using Constant Functions and Expressions
	Example of Constant Functions
	Example of Constant Expressions

	Using Blocking and Non-Blocking Procedural Assignments
	Blocking Procedural Assignment Syntax Example One
	Blocking Procedural Assignment Syntax Example Two (Alternate)
	Non-Blocking Procedural Assignment Syntax Example One
	Non-Blocking Procedural Assignment Example Two

	Verilog Macros
	Macro Example One
	Macro Example Two

	Include Files
	Behavioral Verilog Comments
	One-Line Comments
	Multiple-Line Block Comments

	Generate Statements
	Structures Created Using Generate Statements
	Supported Generate Statements
	Generate Loop Statements
	Generate Loop Statement 8-Bit Adder Example
	Generate Conditional Statements
	Generate Conditional Statement Coding Example
	Generate Case Statements
	Behavioral Verilog Generate Case Statements Coding Example

	Ch. 10: SystemVerilog Support
	Introduction
	Targeting SystemVerilog for a Specific File
	Tcl Command to Set Properties

	Compilation Units
	Data Types
	Declaration
	Integer Data Types
	Real Numbers
	Void Data Type
	User-Defined Types
	Enum Types
	Constants
	Type Operator
	Casting
	Aggregate Data Types
	Structures
	Unions
	Packed and Unpacked Arrays

	Processes
	Always Procedures
	Block Statements
	Procedural Timing Controls
	Operators
	Signed Expressions

	Procedural Programming Assignments
	Conditional if-else Statement
	Case Statement
	Loop Statements

	Tasks and Functions
	Tasks
	Functions (Automatic and Static)

	Modules and Hierarchy
	Connecting Modules
	Connecting Modules with Wildcard Ports

	Interfaces
	Modports
	Miscellaneous Interface Features

	Packages
	SystemVerilog Constructs

	Ch. 11: Mixed Language Support
	Introduction
	Mixing VHDL and Verilog
	Instantiation
	Instantiating VHDL in Verilog
	Instantiating Verilog in VHDL
	Instantiation Limitations
	VHDL in Verilog
	Acceptable Example
	Unacceptable Example

	Verilog in VHDL

	VHDL and Verilog Libraries
	VHDL and Verilog Boundary Rules
	Binding
	Generics Support
	Port Mapping
	Port Mapping for VHDL Instantiated in Verilog
	Port Mapping for Verilog Instantiated in VHDL

	Appx. A: Additional Resources and Legal Notices
	Finding Additional Documentation
	Support Resources
	References
	Revision History
	Please Read: Important Legal Notices

